疏水性材料减阻特性实验研究

疏水性材料减阻特性实验研究
疏水性材料减阻特性实验研究

超疏水现状

1.6立题依据及研究内容 从当前抗菌材料发展的趋势看,利用疏水表面与抗菌剂结合并构建疏水抗茵涂层是一种极具发展潜力的抗菌手段。一方面,涂层的疏水性可有效避免湿气、污垢在物体表面富集,减少霉菌在物体表面的滋生;另一方面,即便疏水涂层因长期暴露于潮湿环境而被润湿导致细菌附着,但很快细菌也会被涂层中的抗菌组分杀灭。因此,通过疏水抑菌、抗菌剂杀菌的协同作用是构造高效抗菌涂层的重要途径。本文研究了两类疏水抗菌涂层,一是通过对当前研究较多的Ag/Ti02抗菌剂进行改性,使其与疏水性能优异的氟硅丙乳液进行复合,制备疏水抗菌涂层;二是在课题组前期研究[46】基础上,采用具有缓释抗菌特性的中空内部载银介孔二氧化硅微球与氟硅树脂构建类荷叶表面结构的超疏水抗菌涂层。主要研究内容如下: (1)Ag/Ti02粉体表面改性与表征。采用具有双键的硅烷偶联剂VTES对无 机粉体Ag/Ti02进行表面改性。研究VTES量、反应温度、反应时间等对粉体改性的影响,并对改性前后粉体表面形貌及疏水、抗菌性能等进行表征分析。 (2)Ag/Ti02疏水抗菌涂层制备与表征。采用乳液聚合法和共混工艺制备氟 硅改性丙烯酸乳液,与改性后的Ag/Ti02粉体复配制备具有疏水性能和抗菌性能的Ag/Ti02疏水抗菌涂层。研究制备工艺对乳液稳定性及涂层附着力的影响,并对所制备Ag/Ti02疏水抗菌涂层结构形貌、疏水性、抗菌性等进行表征分析。(3)类荷叶表面疏水抗菌涂层的制备与表征。采用具有缓释抗菌特性的中 空内部载银介孔二氧化硅微球与氟硅树脂复合,构建具有类似于荷叶表面结构的超疏水抗菌涂层。研究旋涂制备工艺对涂层表面形貌的影响,并对所制备超疏水抗菌涂层结构形貌以及疏水性、抗菌性进行表征分析。 1.4疏水抗菌材料的研究现状 疏水抗菌材料主要采用低表面能材料来制备。目前,应用较多的低表面能材料有有机硅和有机氟两大系列[61-63]。前者利用有机硅聚合物中Si、O骨架的低表面能和低弹性模量等独特性能,以其较低的表面张力使微生物难以牢固附着,在表面水流作用下使附着的微生物剥离来实现抗菌防污;后者则是利用将F原子引入到聚合物链中形成C-F键来降低聚合物的表面能。C-F键键能比C.H键键能大,且F原子电子云对C.C键的屏蔽较H原子强,即使最小的原子也难以进入碳主链,使得C-F键的极性较强,从而降低聚合物的表面能和表面张力。官能团的表面能高低依次为-CH2>-CH3>一CF2>一CF3,其中全氟烷基有机高聚物的表面自由能最低。研究表明,有机硅改性的聚合物具有优异的耐高低温性、耐水性和耐氧化降解性;有机氟改性的聚合物具有耐水性、耐腐蚀等优点;而有机硅和有机氟共同改性的聚合物,则具备有机硅和有机氟两者的优势,能够有效提高聚合物与基材的附着力,降低表面表面能,获得具有耐水性、耐高低温性、耐候性及抗老化的聚合物。 基团到侧链中后,因其极大的表面活Brady等【651设计以硅氧链为主链,引入CF 3 性将会使基团严格取向于表面,得到了兼具线性聚硅氧烷高弹性、高流动性和CF 3

热塑性高分子材料火灾特性及扑救对策——热塑性高分子材料火灾特点(4)示范文本

文件编号:RHD-QB-K5205 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 热塑性高分子材料火灾特性及扑救对策——热塑性高分子材料火灾

热塑性高分子材料火灾特性及扑救对策——热塑性高分子材料火灾特 点(4)示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1.燃烧表面呈立体型 热塑性高分子材料的粘流温度和分解温度比较低,而且燃烧热值比较高,引燃后燃烧放出大量热量很快将燃烧附近表面区域熔融、分解,使热塑性高分子材料(无论是成品、半成品,还是材料、制品的堆垛等)变形并使燃烧蔓延,燃烧表面呈不规则曲面形状。因此,热塑性高分子材料火灾与普通固体(如主要由天然纤维素组成的物质)火灾相似,呈立体燃烧特性,有别于液体火灾的平面燃烧性。

2.燃烧表面疏水性 由于热塑性高分子材料燃烧时的温度远超过其粘流温度和分解温度,而且熔融态高分子物质和分解产生的在燃烧温度下不气化的低分子量粘性物质一般难溶于水,因此燃烧表面物质类似于石蜡或沥青,与水的亲和力非常小,具有较大的疏水性。 3.燃烧迅速、蔓延快、燃烧表层温度高 热塑性高分子材料的氧指数(OI)一般都比较低(大都低于21%),而且燃烧热值和火焰温度非常高(如聚乙烯热值46KJ/g、火焰温度2120℃),比煤和木材的热值高许多(煤和木材热值分别为23KJ/g、15KJ/g,木材火焰温度800℃),当被引燃后,短时间内就会放出大量热量,促使高分子物质不断分解、燃烧,而且随着燃烧的不断进行,放出的热量更多,热塑性高分子材料很

神奇的超疏水材料:我虐水滴千百遍水滴待我如初恋

神奇的超疏水材料:我虐水滴千百遍,水滴待我如初恋! 神奇的超疏水材料:我虐水滴千百遍,水滴待我如初恋!一盆水泼向一块金属板,水珠像钢珠一样滚落,金属板仍然干爽;一只船桨浸入水缸,拿出来竟然未带出一滴水珠,就像是从没放进去过一样;一杯水倒在一块经过特殊处理的玻璃板上,水紧紧靠在中央“不越雷池半步”,即使用手搅出来一两滴也立即跑回去……这些违背我们肉眼“常识”的现象,就是“超疏水材料”捣的鬼。这种通过改变材料的表面自由能和表面粗糙度获得的新型材料,灵感来自于自然界中的荷叶。由于其防水、防腐蚀、抗菌的特殊效果,如今已经成为国际热门的研究领域,可以在环保、工业、医疗等各种你想象不到的领域大展身手。一、超疏水简介超疏水技术是一种具有特殊表面性质的新型技术,具有防水、防雾、防雪、防污染、抗氧化、防腐蚀和自清洁以及防止电流传导等重要特点,在科学研究和生产、生活等诸多领域中有极为广泛的应用前景。超疏水技术对于建筑工业、汽车工业、金属行业等的防腐防锈及防污也很有现实意义。特别是近年来的微电子系统、光电子元器件及纳米科技等高新技术的高速发展,给超疏水涂层的研究和应用于勃勃生机。超疏水材料的研究以诗句“出淤泥而不染,灌清涟而不妖”为契机,以科学的手段向我们解释这一奇特的自然现象,荷花表面覆盖的天然

超疏水薄膜,使得水滴聚集成股,顺势流下,冲刷着荷叶表面的淤泥,营造了出淤泥而不染的状态。因此荷叶在雨后会变得一尘不染,这种现象在生活中很常见,我们称之为“荷叶效应”。二、超疏水现象荷叶效应--超疏水性原理为什么“粗糙”表面能产生超疏水性呢?对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“自清洁”的能力。这种接触角大于150度的表面就被称为“超疏水表面”。而一般疏水表面的接触角仅大于90度。三、自然界中的超疏水现象1999年,Barthlott和Neihuis认为:自清洁的特征是由于粗糙表面上的微米结构的乳突以及表面蜡 状物的存在共通引起的;乳突的平均直径为5~9um。荷叶表面的微/纳米复合结构2002年,江雷等提出微米结构下面还存在纳米结构,二者相结合的阶层结构才是引起表面超疏水的根本原因。单个乳突由平均直径为120nm结构分支组成。超疏水各向异性的水稻叶子水稻叶表面存在滚动的各向异性,水滴更容易沿着平行叶边缘的方向流动。超疏水的蝉翼表面蝉翼表面由规则排列的纳米柱状结构组成,纳米柱的直

纳米SiO_2疏水改性研究及应用进展

纳米SiO2疏水改性研究及应用进展 王 倩1,刘 莉2,张 琴1 (1 四川大学高分子科学与工程学院,成都610065;2 广州吉必时科技实业有限公司,广州510510) 摘要 由于与有机基体之间存在良好相容性,疏水纳米SiO2已成为一种广泛应用于有机材料中的重要无机纳米填料。介绍了纳米SiO2疏水改性的原理方法,综述了纳米SiO2疏水改性最新研究进展及其在硅橡胶、涂料、塑料、化妆品等领域的应用情况,并对今后的研究发展提出了建议。 关键词 纳米SiO2 疏水 改性 中图分类号:TQ424.26 文献标识码:B R esearch and Applications of H ydrophobic N ano Silica WAN G Qian1,L IU Li2,ZHAN G Qin1 (1 College of Polymer Science and Engineering,Sichuan University,Chengdu610065; 2 Guangzhou G BS High2Tech&Industry Co.Ltd.,Guangzhou510510) Abstract For the fairly good compatibility with organic matrix,hydrophobic nano silica is now one of the most important inorganic nano fillers widely used in organic materials.The mechanism of hydrophobic modification of nano silica is introduced.The current research and applications in silicone rubbers,coatings,plastics and cosmetics,etc are summarized.Some advices for civil researchers are put forward. K ey w ords nano silica,hydrophobic,modification   纳米SiO2具有小尺寸效应、量子隧道效应、特殊光电性等特点,是一种无毒、化学稳定、耐高温的无机纳米填料,在橡胶、塑料、涂料、油墨、化妆品等领域有着重要应用[1]。纳米SiO2的制备方法主要有气相法(Chemical vapor deposition)[2,3]、水解沉淀法(Hydrolysis2precipitation)[4~8]、溶胶2凝胶法(Sol2gel)[9]和微乳液法(Micro2emulsion)[10],其中气相法属于干法,其余方法属于湿法。气相法与水解沉淀法是工业上纳米SiO2成熟的生产方法。由于表面大量存在硅羟基,纳米SiO2在贮存和使用过程中易团聚,难分散,在有机基体中的分散性和浸润性尤其不好。为改善和拓宽纳米SiO2的应用领域,必须设法减少其表面硅羟基数量浓度,使之由强亲水性转为一定程度的疏水性,从而与有机基体之间具有良好相容性。疏水处理后的纳米SiO2具有明显的特点:既能通过疏水基团在有机相良好分散,又能通过硅羟基与有机相形成强相互作用,从而在本不相容的无机相与有机相之间建立稳固联系,达到补强目的[11]。本文就纳米SiO2的疏水原理、国内外疏水纳米SiO2的研发现状及其在橡胶、涂料、塑料、化妆品等领域的应用研究现状进行分析介绍,以期对国内的研发与生产有所帮助。 1 疏水改性原理及方法 纳米SiO2因为粒度极小,表面能极高,且表面有大量硅羟基,故极易团聚。无论何种方法制备的纳米SiO2均含3种结构:①粒径仅十几纳米的原生粒子;②原生粒子相互粘接、缩聚而成的数百纳米大小的聚集体;③聚集体彼此依附而成的微米级的附聚体。原生粒子由于极高的表面能和强烈的缩聚趋势,在成品纳米SiO2中基本不存在;靠微弱范德华力维系而存在的附聚体结构十分疏松,受外力作用很容易分散;而聚集体是原生粒子通过化学键结合在一起而成的具有一定强度的结构,不易破坏。故一般认为聚集体是纳米SiO2在填充体系中最终能够保持的状态。 为解决纳米SiO2在贮存和使用过程中的分散问题,提高与有机基体之间的相容性,采用氯硅烷、硅氮烷、硅氧烷和醇等对其表面硅羟基进行部分或全面“屏蔽”,使之由亲水转为一定程度的疏水甚至完全疏水,同时达到抑制粒径增长、提高分散性的目的,此为疏水改性原理。疏水改性方法分为两种:传统的成品疏水改性法(即对由干法或湿法制得的成品纳米SiO2进行疏水改性)和原位疏水改性法(即在纳米SiO2的制备过程中原位进行疏水改性)。疏水改性处理的作用在于使纳米SiO2的表面结构和化学性质发生改变,既减少亲水硅羟基的数量,又通过疏水基在纳米SiO2表面形成空间位阻,从而阻止颗粒之间相邻硅羟基因缔合而形成结构紧凑的聚集体,达到控制粒度的目的。成品疏水改性的对象是附聚体和聚集体,而原位疏水改性的对象则是初生成的原生粒子和正在生长中的聚集体,故一般认为原位疏水更有利于抑制聚集体增长、改善分散、控制粒度及粒度分布。 2 疏水改性研究进展 粒径与表面性质是决定纳米SiO2应用性能的基本属性。  王倩:女,1975年生,博士生,工程师,主要从事纳米复合材料的研究 Tel:028********* E2mail:salicyl@1631com

脊状表面减阻特性的风洞试验研究

第23卷 第5期2008年10月 实 验 力 学 J OU RNAL OF EXPERIM EN TAL M ECHANICS Vol.23 No.5 Oct.2008 文章编号:100124888(2008)0520469206 脊状表面减阻特性的风洞试验研究 刘占一,宋保维3,胡海豹,黄桥高,黄明明 (西北工业大学航海学院,西安710072) 摘要:利用热线风速仪,对光滑表面和多个脊状表面在低速风洞中进行了表面流场测试。基于测得的边界层速度分布数据,利用对数律区速度分布公式,编程分别计算出光滑表面和脊状表面的壁面摩擦速度和虚拟原点。研究发现,脊状表面最大减阻量达13.5%;有减阻效果的脊状表面使边界层速度曲线上移、湍流强度下降;与光滑表面相比,脊状表面的位移厚度和动量损失厚度明显减小,也表明脊状表面具有减阻效果;位移厚度和动量损失厚度减少量随槽间距s+的增加呈现先变大后变小的趋势,在s+=12时达到最大。 关键词:脊状表面;热线风速仪;摩擦速度;减阻量 中图分类号:O357 文献标识码:A 0 引言 目前的各种湍流减阻方法中,脊状表面减阻技术以其减阻效果显著和易于推广使用的特点,被公认最具使用潜力。该技术起源于仿生学对鲨鱼等鱼类表皮的研究,通过在航行体外表面加工具有一定形状尺寸的脊状结构,来达到很好的减阻效果。该项技术在国外已投入了实际应用,如空中客车将A320试验机表面的约70%贴上脊状表面薄膜,获得了节油1%~2%的效果;NASA兰利中心在Learjet型飞机上开展的类似飞行试验显示,脊状表面的减阻量约为6%左右。 脊状表面减阻的物理机制在于:脊状表面与顺流向的“反向旋转涡对”作用,产生“二次涡”。“二次涡”的产生和发展削弱了“反向旋转涡对”的强度,进而抑制了湍流猝发的形成。脊状表面流场理论研究发现,脊状表面的粘性底层厚度比平板的要厚得多,表明在脊状表面近壁区存在着低速流层,使得边界层外层高速流不直接与壁面接触,而从低速流层上流过,降低了壁面法线方向的速度梯度,从而产生了减阻效果[1,2]。 近些年,为了从微观流动结构方面研究脊状结构的减阻原理,PIV、LDV和热线风速仪等设备越来越多的被应用在减阻研究中。与以前使用测力天平等设备直接测量阻力不同,这些设备测得的是脊状结构表面流场的特性参数,需要计算出壁面摩擦速度,才能间接给出定量的减阻效果。Ant hony Ken2 dall等在文献[3]中提出用Musker和Spalding公式求摩擦速度;D.Hoo shmand等在文献[6]中提到用Clauser方法求摩擦速度。这些方法都要求准确测得包括粘性底层在内的边界层内层速度分布,但是对数律公式仅需要边界层对数律区的速度分布即可。由于准确测量粘性底层比较困难,因此笔者考虑利用对数律区速度分布公式,通过拟合求摩擦速度。 本文利用热线风速仪测量了五种不同尺寸的脊状结构表面流场,不仅从速度分布、湍流度分布方面3收稿日期:2008203218;修订日期:2008210206 基金项目:国家自然科学基金面上项目(10672136);国家自然科学基金重点项目(50835009)资助 通讯作者:宋保维(1963-),男,教授,目前主要研究方向:水下航行器设计、制造,流体力学,系统工程理论及其应用,计算机辅助设计与制造,机电一体化与机器人技术等。E2mail:songbaowei@https://www.360docs.net/doc/615137399.html,

热塑性高分子材料火灾特性及扑救对策热塑性高分子材料火灾扑救对策

热塑性高分子材料火灾特性及扑救对策——热塑性高分子材料火灾扑救对策(5)对于热塑性高分子材料火灾,实战上一般都按固体火灾对待,偶尔也按可燃液体火灾处理。笔者认为,虽然这类火灾基本上没有爆炸危险性,扑救对策与其它固体火灾也基本相似,但是,由于同时具有立体型和疏水性的特点,这类火灾既不同于普通固体火灾,也不同于可燃液体火灾,扑救这类火灾不能简单地使用适用于普通固体火灾和可燃液体火灾的灭火剂,必须具体情况具体分析。因此,这里对热塑性高分子材料火灾对策分析仅讨论发生这类火灾时应怎样正确使用灭火剂进行扑救。 1.用水灭火 对于普通固体火灾,比如主要由天然纤维素组成的物质火灾,不管是木材、家具、纸张、纸箱,还是衣服、布料及其堆垛等,由于天然纤维素分子结构中含有大量亲水性的羟基(-OH),以及物质表面和内部疏松、多孔,使这类物质具有较强的亲水性和吸水性,虽然这类火灾发展蔓延也比较快,燃烧也比较猛烈,只要战术方法得当,用水很快就能控制火势、达到灭火的目的。

但是,由于热塑性高分子材料火灾具有疏水性和立体型,水射 向燃烧部位后,很快就会因为与燃烧表面亲和力不强而流淌下来、 离开燃烧部位。这样,不仅不能将空气与燃烧表面隔离、起不到灭 火作用,而且由于在燃烧表面停留的时间太短,起到的冷却作用也 很有限。即使射向燃烧表面的水有少量被热量蒸发而有一定的将氧 气浓度降低的作用,但一方面由于热塑性高分子材料的OI值比较低、表面温度远离于自燃温度,另一方面产生的蒸汽很快会被热流冲走,燃烧仍能够维持进行。何况水枪射水,不管是点射、开花射,还是 喷水雾,都不能使水将整个燃烧表面覆盖、使所有燃烧表面同时与 空气隔离而窒息灭火,也不能及时将整个燃烧区域冷却。除非火场 是在封闭空间内,可以用水雾灭火。相反,如果一到火场就急于向 火焰根部盲目射水反而会因水流对火焰的冲击作用使高温火焰飘向 附近部位、使火势扩展蔓延更快。 2.用泡沫灭火 由于表面活性剂的作用,泡沫与热塑性高分子材料燃烧表面物 质有一定亲和力。但由于一方面燃烧表面呈不规则立体曲面状使泡 沫向低处流淌;另一方面温度非常高的高分子燃烧表面在使泡沫与 燃烧表面的摩擦阻力变小的同时,还使泡沫液很快汽化而将泡沫破坏、降低泡沫与燃烧表面的亲和力。这样,虽然热塑高分子材料发

超疏水材料研究进展

超疏水材料研究进展 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

超疏水材料研究进展 摘要:本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。 关键词:超疏水材料;超疏水应用;制备 1 引言 近年来,超疏水材料引起了人们的普遍关注。所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。固体表面的润湿性是由其化学组成和表面微观结构共同决定的。目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。 人们通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于 90o 时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5o,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为 7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于 90o 时,我们认为这种材料是疏水

材料;如果材料的表面接触角大于 150o那么我们认为这种材料是超疏水材料,例如我 们前面所提到的荷叶,水滴在其表面的接触角大于 150o,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。如图1所示,(a)为亲水,(b)为疏水。 (a) (b) 图1 接触角示意图 2 超疏水材料的用途 超疏水材料在流体减阻中的应用 超疏水表面的一个突出的性质是滑移效应的出现, 这一点已被广泛认可[3]。随着疏 水表面滑移效应的发现, 人们开始重视研究基于疏水表面滑移效应所产生的减阻新技术. Watanabe 等[4]研究了内壁覆盖氟烷烃改性的丙烯酸树脂条纹的超疏水圆管的减阻性能, 实测的压强 - 速度剖面曲线表明, 当雷诺数为 500~10000 时, 阻力下降达 14%, 对应的滑移长度达 450μm。Bechert 等[5]受到鲨鱼表皮三维肋条结构的减阻性能的启发, 从实验出发研究了具有类似结构的新型机翼表面的减阻性能, 结果表明这种表面比光滑的机翼表 面剪应力降低 %。Koeltzsch 等[6]研究了具有分叉型肋条结构的管道内壁表面的减阻性能, 以及不同肋条结构的影响效果, 这为输油管道内壁的减阻方法提供了新思路。王家楣等[7]从船首底部喷气生成微气泡出发研究了不同雷诺数、不同微气泡浓度下的减阻试验, 为 微气泡减阻技术的应用提供了依据。徐中等[8]采用标准κ - ε湍流模型对凹坑形表面在空气介质中不同条件下的流动进行了模拟, 得到的最大减阻率达到 %. 超疏水材料在抗腐蚀中的应用 通过超疏水膜技术在金属表面形成一层超疏水性的膜层,可以有效地增强金属表面阻抗、降低腐烛电流密度,使平衡腐烛电位向正方向移动,提高金属的防腐能力。超疏水膜技术应用于金属防腐已有大量研究。刘涛[9]在铜、锅及铁锅金属间化合物表面制备

超疏水性材料

揭秘超疏水性表面 哈工大报讯(潘钦敏)[编者的话] 宋代周敦颐在《爱莲说》中写道“予独爱莲之出淤泥而不染”。一千年后的今天,人们已经可以从科学的角度解释莲这种“出淤泥而不染”的特性。与之相关的“仿生超疏水性表面”的研究已成为化学模拟生物体系研究中的一个新领域。本期,化工学院副教授潘钦敏为我们揭开“超疏水性表面”的神秘面纱。 浸润性是固体表面的重要特征之一,它由表面的化学组成和微观形貌共同决定。超亲水和超疏水特性是表面浸润性研究的主要内容。所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。人们对超疏水表面的认识,主要来自植物叶——荷叶表面的“自清洁”现象。比如,水珠可以在荷叶的表面滚来滚去,即使在上面浇一些污水,也不会在叶子上留下污痕。荷叶这种出污泥而不染的特性被称作“自清洁”效应。 荷叶效应——超疏水性原理 尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。 为什么这样的“粗糙”表面能产生超疏水性呢?对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“自清洁”的能力。这种接触角大于150度的表面就被称为“超疏水表面”,而一般疏水表面的接触角仅大于90度。 自然界里具有“自清洁”能力的植物除了荷叶之外,还有水稻、芋头之类的植物以及鸟类的羽毛。这种“自清洁”效应除了保持表面的清洁外,对于防止病原体的入侵还有特别的意义。因为即使有病原体到了叶面上,一沾水也就被冲走了。所以象荷花这样的植物即使生长在很“脏”的环境中也不容易生病,很重要的原因就是这种自清洁能力。 超疏水表面制备方法 人们知道荷叶自清洁效应已经很多年了,但是很长的时间内却无法做出荷叶那样的表面来。通过对自然界中典型的超疏水性表面——荷叶的研究发现,在低表面能的固体表面构建具有特殊几何形状的粗糙结构对超疏水性起重要的作用。基于这些原理,科学家们就开始模仿这种表面。现在,关于超疏水粗糙表面的研制已有相当多的报道。一般来说, 超疏水性表面可以通过两种方法来制备:一种是在疏水材料表面上构建粗糙结构;另一种是在粗糙表面上修饰低表面能的物质。比如材料学家们可以通过表面处理仿生制备了碳纳米管阵列、碳纳米纤维、聚合物纳米纤维等多种超疏水性表面。关于超疏水表面的研制方法总结起来主要有:熔融物的固化、刻蚀、化学气相沉积法、阳极氧化法、乳液聚合、相分离法以及模板法等。但是这些方法涉及复杂的化学物质和晶体生长,实验条件比较苛刻,成本高,还不能进行工

热塑性塑料

热塑性塑料 热塑性塑料品种极多,即使同一品种也由于树脂分子及附加物配比不同而使其使用及工艺特性也有所不同。另外,为了改变原有品种的特性,常用共聚、交链等各种化学聚合方法在原有的树脂结构中导入一定百分比量的异种单体或高分子相等树脂,以改变原有树脂的结构成为具有新的使用及工艺特性的改性品种。例如,ABS即为在聚苯乙烯分子中导入了丙烯腈、丁二烯等异种单体后成为改性共聚物,也可称为改性聚苯乙烯,具有比聚苯乙烯优越的使用,工艺特性。由于热塑性塑料品种多、性能复杂,即使同一类的塑料也有仅供注射用或挤出用之分,故本章节主要介绍各种注射用的热塑性塑料。 一、工艺特性 (一)收缩率 热塑性塑料成形收缩的形式及计算如前所述,影响热塑性塑料成形收缩的因素如下1、塑料品种热塑性塑料成形过程中由于还存在结晶化形起的体积变化,内应力强,冻结在塑件内的残余应力大,分子取向性强等因素,因此与热固性塑料相比则收缩率较大,收缩率范围宽、方向性明显,另外成形后的收缩、退火或调湿处理后的收缩一般也都比热固性塑料大。 2、塑件特性成形时融料与型腔表面接触外层立即冷却形成低密度的固态外壳。由于塑料的导热性差,使塑件内层缓慢冷却而形成收缩大的高密度固态层。所以壁厚、冷却慢、高密度层厚的则收缩大。另外,有无嵌件及嵌件布局,数量都直接影响料流方向,密度分布及收缩阻力大小等,所以塑件的特性对收缩大小,方向性影响较大 3、进料口形式、尺寸、分布这些因素直接影响料流方向、密度分布、保压补缩作用及

成形时间。直接进料口、进料口截面大(尤其截面较厚的)则收缩小但方向性大,进料口宽及长度短的则方向性小。距进料口近的或与料流方向平行的则收缩大。 4、成形条件模具温度高,融料冷却慢、密度高、收缩大,尤其对结晶料则因结晶度高,体积变化大,故收缩更大。模温分布与塑件内外冷却及密度均匀性也有关,直接影响到各部分收缩量大小及方向性。另外,保持压力及时间对收缩也影响较大,压力大、时间长的则收缩小但方向性大。注射压力高,融料粘度差小,层间剪切应力小,脱模后弹性回跳大,故收缩也可适量的减小,料温高、收缩大,但方向性小。因此在成形时调整模温、压力、注射速度及冷却时间等诸因素也可适当改变塑件收缩情况。模具设计时根据各种塑料的收缩范围,塑件壁厚、形状,进料口形式尺寸及分布情况,按经验确定塑件各部位的收缩率,再来计算型腔尺寸。对高精度塑件及难以掌握收缩率时,一般宜用如下方法设计模具:(1)对塑件外径取较小收缩率,内径取较大收缩率,以留有试模后修正的余地。(2)试模确定浇注系统形式、尺寸及成形条件。 (3)要后处理的塑件经后处理确定尺寸变化情况(测量时必须在脱模后24小时以后)。(4)按实际收缩情况修正模具。 (5)再试模并可适当地改变工艺条件略微修正收缩值以满足塑件要求。 (二)流动性 1、热塑性塑料流动性大小,一般可从分子量大小、熔融指数、阿基米德螺旋线长度、表现粘度及流动比(流程 长度/塑件壁厚)等一系列指数进行分析。分子量小,分子量分布宽,分子结构规整性差,熔融指数高、螺旋线长 度长、表现粘度小,流动比大的则流动性就好,对同一品名的塑料必须检查其说明书判断

超疏水材料研究报告进展

超疏水材料研究进展 摘要:本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。 关键词:超疏水材料;超疏水应用;制备 1 引言 近年来,超疏水材料引起了人们的普遍关注。所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。固体表面的润湿性是由其化学组成和表面微观结构共同决定的。目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。 人们通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于90o时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5o,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于90o时,我们认为这种材料是疏水材料;如果材料的表面接触角大于150o那么我们认为这种材料是超疏水材料,例如我们前面所提到的荷叶,水滴在其表面的接触角大于150o,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。如图1所示,(a)为亲水,(b)为疏水。 (a) (b)

超疏水材料研究进展

超疏水材料的研究进展 2015年5月3日

超疏水材料的研究进展 摘要:超疏水性材料因为它独特的性质,而在很多方面得到了广泛的应用。近年来,许多具有特殊润湿性的动植物表面同样受到关注。通过研究这些表面微观结构,人们成功地仿生制备出各种功能化超疏水表面,从而更好地满足工业中实际应用的需要。该综述简单地介绍了表面润湿的基本原理和一些自然界中的超疏水表面现象,重点介绍近几年超疏水表面应用的最新研究进展。最后,对超疏水表面研究的未来发展进行了展望。 关键词:超疏水、仿生、润湿、功能化表面 自然界中,经亿万年的自然选择,许多生物的表面都表现出优良的超疏水性能,比如荷叶、花生叶、莲叶等植物表面和水黾、鲨鱼表皮、沙漠甲虫、蝴蝶翅膀等动物体表。一直以来,这类自然现象都启发着各领域的科学工作者们,尤其是近几十年,仿生超疏水表面以其优越的防腐蚀、自清洁、防覆冰、抗菌等性能,在防腐、自清洁、建筑防水、流体减阻、防污等领域都有广泛的应用[1]。因此,对超疏水材料进行总结和展望,对这种材料的发展有重要的意义。 1超疏水原理 超疏水表面的定义可以从字面意思上进行理解,即指难以湿润的表面,固体表面的湿润性作为固体表面重要的特性之一,不仅受到固体表面粗糙度的影响,还受固体表面化学成分的影响,我们可以用液体与固体的接触角θ来作为是否湿润的判断依据。接触角越大,表面的疏水效果越好,反之亦然[2]。当θ=0°时,所表现为完全湿润;当θ<90°时,表面为可湿润,也叫做亲液表面;当θ>90°时,表面则为不湿润的疏离表面;当θ=180°时,则为完全不湿润。一般θ>150°被称为超疏水表面[3]。 接触角是衡量表面疏水性涂层湿润性的主要指标,但并不是唯一指标,在实际应用中还可以根据前进角、后退角的大小来考虑其动态过程。前进角与后退角是液滴前进或后退时与固体表面所成的临界角度。但是如果不断增加或减小固体

SiO2气凝胶疏水改性方法研究进展

SiO 2气凝胶疏水改性方法研究进展1 刘明龙,杨德安 天津大学材料学院先进陶瓷与加工技术教育部重点实验室,天津 (300072) E-mail :m.dragonliu@https://www.360docs.net/doc/615137399.html, 摘 要:文章综述了对SiO2气凝胶进行疏水改性的技术的最新研究进展,介绍了溶剂置换-表面改性法,直接表面改性法和联合前驱体法三种改性方法的改性机制及各种常用的表面改性剂,并从所制得的最终样品的性能、成本、实用性等方面进行了比较,从而总结出一种较经济实用的制备方法。 关键词:SiO2气凝胶;纳米多孔材料;溶胶-凝胶;疏水型;绝热材料 1 本课题得到国家自然基金委重点基金项目(10232030),天津大学先进陶瓷与加工技术教育部重点实验室 (x06050)的资助。 SiO 2气凝胶是一种具有独特的纳米多孔网络结构的轻质材料,因其极低的折射率、热导率和介电常数,高的比表面积和对气体的选择透过等特性,而在绝热材料、隔音材料、过滤材料以及催化剂载体等众多领域有着广泛的应用前景,尤其在作为高性能绝热材料方面受到了普遍关注。由于通常方法制备出的SiO 2气凝胶内表面有大量的硅羟基存在,它们不仅会因缩聚而引起凝胶块体产生额外收缩,还能吸附空气中的水分而使气凝胶开裂破碎,严重影响了气凝胶的声、光、电、热、力学等性能,限制了它的应用场合。因此,只有设法对制备的气凝胶进行疏水改性,增加它在空气中的稳定性和使用寿命,另外,再配合一系列增强、增韧措施,以制成纳米多孔绝热复合材料,才能在保温工程中发挥出它的真正作用。 1. SiO 2气凝胶的疏水改性及原理 SiO 2气凝胶通常是由溶胶-凝胶法制备的,开始制得的醇凝胶固态骨架周围存在着大量溶剂(包括醇类、少量水和催化剂),要得到气凝胶,必须通过干燥以去掉其中的溶剂。然而,在溶剂干燥过程中,由于凝胶纳米孔内气-液界面间产生表面张力,导致邻近的Si-OH 基团发生缩聚反应,形成 Si-O-Si 键,从而产生了不可恢复的收缩;另外,这些Si-OH 基团还可以吸附空气中的水分,使表面张力增大,从而使气凝胶块体开裂破碎。有时,气凝胶内一些未完全反应的Si-OCH 3(或Si-OC 2H 5)基团随使用时间的延长,也会吸附空气中的水分,发生水解-缩聚反应。气凝胶表面这些基团的存在是导致气凝胶性能恶化的主要原因。 因此,要获得疏水型气凝胶,就必须采用一定的方法,将上面的亲水基团取代成疏水稳定的Si-R 基(R=CH 3,C 2H 5等)基团。这些基团的存在,一定程度上会限制气凝胶表面对水分的吸附,从而避免了在使用时性能的恶化。 2. SiO 2气凝胶疏水改性的方法 2.1 溶剂置换-表面改性法 用一定的疏水表面改性剂取代硅凝胶表面的亲水基团是最常用的一种方法。表面改性剂的种类很多,在实际工作中要根据不同的需要和材料的本身特性来确定。改性剂一般是由亲水基和憎水基组成,对于硅质气凝胶而言,其表面含有较多的Si-OH ,-OH 可以与OH, Cl, COOH, HNCO 等基团反应,从而使聚硅氧烷与有机聚合物(如聚酯,聚氨酯,换氧树脂等)得以通过Si-O 键连接,大大改善了有机聚合物的耐热、耐湿、抗水

热固性塑料与热塑性塑料

热固性塑料与热塑性塑料

塑料是以高分子量合成树脂为主要成分,在一定条件下(如温度、压力等)可塑制成一定形状且在常温下保持形状不变的材料。 塑料按受热后表面的性能,可分为热固性塑料与热塑性塑料两大类。前者的特点是在一定温度下,经一定时间加热、加压或加入硬化剂后,发生化学反应而硬化。硬化后的塑料化学结构发生变化、质地坚硬、不溶于溶剂、加热也不再软化,如果温度过高则就分解。后者的特点为受热后发生物态变化,由固体软化或熔化成粘流体状态,但冷却后又可变硬而成固体,且过程可多次反复,塑料本身的分子结构则不发生变化。 塑料都以合成树脂为基本原料,并加入填料、增塑剂、染料、稳定剂等各种辅助料而组成。因此,不同品种牌号的塑料,由于选用树脂及辅助料的性能、成分、配比及塑料生产工艺不同,则其使用及工艺特性也各不相同。为此模具设计时必须了解所用塑料的工艺特性。 第一节热固性塑料

常用热固性塑料有酚醛、氨基(三聚氰胺、脲醛)聚酯、聚邻苯二甲酸二丙烯酯等。主要用于压塑、挤塑、注射成形。硅酮、环氧树脂等塑料,目前主要作为低压挤塑封装电子元件及浇注成形等用。 一、工艺特性 (一)收缩率 塑件自模具中取出冷却到室温后,发生尺寸收缩这种性能称为收缩性。由于收缩不仅是树脂本身的热胀冷缩,而且还与各成形因素有关,所以成形后塑件的收缩应称为成形收缩。 1.成形收缩的形式成形收缩主要表现在下列几方面: (1)塑件的线尺寸收缩由于热胀冷缩,塑件脱模时的弹性恢复、塑性变形等原因导致塑件脱模冷却到室温后其尺寸缩小,为此型腔设计时

必须考虑予以补偿。 (2)收缩方向性成形时分子按方向排列,使塑件呈现各向异性,沿料流方向(即平行方向)则收缩大、强度高,与料流直角方向(即垂直方向)则收缩小、强度低。另外,成形时由于塑件各部位密度及填料分布不匀,故使收缩也不匀。产生收缩差使塑件易发生翘曲、变形、裂纹,尤其在挤塑及注射成形时则方向性更为明显。因此,模具设计时应考虑收缩方向性按塑件形状、流料方向选取收缩率为宜。 (3)后收缩塑件成形时,由于受成形压力、剪切应力、各向异性、密度不匀、填料分布不匀、模温不匀、硬化不匀、塑性变形等因素的影响,引起一系列应力的作用,在粘流态时不能全部消失,故塑件在应力状态下成形时存在残余应力。当脱模后由于应力趋向平衡及贮存条件的影响,使残余应力发生变化而使塑件发生再收缩称为后收缩。一般塑件在脱模后10小时内变化最大,24 小时后基本定型,但最后稳定要经30~60天。通常热塑性塑料的后收缩比热固性大,挤塑

疏水改性玉米淀粉合成研究

Journal of Organic Chemistry Research 有机化学研究, 2015, 3, 97-104 Published Online June 2015 in Hans. https://www.360docs.net/doc/615137399.html,/journal/jocr https://www.360docs.net/doc/615137399.html,/10.12677/jocr.2015.32014 Preparation of Hydrophobic Modified Corn Starch Juan Kong, Haichao Liu, Ying Chen, Jiang Liu, Jingang Tian, Ruixin Shi* Department of Chemical Engineering, College of Science, Northeast Forestry University, Harbin Heilongjiang Email: *shiruixin@https://www.360docs.net/doc/615137399.html, Received: May 29th, 2015; accepted: Jun. 20th, 2015; published: Jun. 23rd, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/615137399.html,/licenses/by/4.0/ Abstract 2-Hydroxy-3-alkoxypropyl starches (AHPS) were synthesized by an environmentally-friendly process using alkyl glycidyl ether (AGE) as hydrophobic reagent, water as solvent and sodium hy-droxide as catalyst. Effects of reaction time and reaction temperature on molar substitution de-gree and react efficiency were studied. The optimized reaction time is 5 h and the optimized reac-tion temperature is 75?C. IR and 1HNMR were used to analyze the structure of modified products. Keywords Starch, Hydrophobic Modification, Alkyl Glycidyl Ether 疏水改性玉米淀粉合成研究 孔娟,刘海超,陈影,刘江,田景罡,史瑞欣* 东北林业大学理学院化工系,黑龙江哈尔滨 Email: *shiruixin@https://www.360docs.net/doc/615137399.html, 收稿日期:2015年5月29日;录用日期:2015年6月20日;发布日期:2015年6月23日 摘要 本文以玉米淀粉为原料,烷基缩水甘油醚(AGE)为疏水化试剂,氢氧化钠作催化剂,水为溶剂,在较温*通讯作者。

典型热塑性材料燃烧特性概述

典型热塑性材料燃烧特性概述热塑性材料由于其具有加工方便、质量轻、防水、防腐蚀且价格低廉等优点,已被广泛用于家具、内装修及建筑外保温等领域。然而,由于热塑性材料特殊的物理化学性质,受热易软化熔融并产生滴落或流动,形成壁面火或油池火,从而加快火灾蔓延速度,扩大火灾面积,极大地提高了火灾危险性。 1 热塑性材料火灾危险性 热塑性材料在现代人类日常生产生活中扮演着十分重要的角色,以室内装饰材料为例有:用于顶棚装修的木龙骨、泡沫塑料板;用于墙面装修的可燃墙纸、墙布;用于地面装修的地毯;用于隔断装修的胶合板、纤维板;用于沙发、卧具的聚氨酯泡沫塑料等。由于含有C、H、O等助燃性元素,大部分热塑性材料都具有热解性和燃烧性,可见热塑性材料在给予人们方便美观的同时,也增加了建筑的火灾荷载,带来了巨大的火灾隐患。 近年来国内许多大型火灾事故都与热塑性材料密切相关。例如: 1、2000年12月25日晚,河南洛阳东都商厦发生特大火灾,309人死亡,直接经济损失275万元。火灾是因该商厦地下一层非法施工、施焊,人员违章作业,电焊火花溅落到地下二层家具商场的沙发和塑料泡沫等物品上造成的。 2、2009年2月9日晚,央视新大楼北配楼发生火灾,直接经济损失1。6亿元,造成了严重恶劣的社会影响,其主要原因是外立面保温材料(热塑性材料)被烟花引燃,可燃物熔融燃烧后向下流淌,形成了火势由上向下、由外向内蔓延的特殊燃烧现象。 热塑性材料火灾危害性表现在四个方面: 一是增加建筑物火灾荷载; 二是火焰可通过可燃物表面蔓延,热塑性材料还会形成流动的液体,扩大了火灾范围; 三是加速火灾到达轰燃时间; 四是热塑性材料燃烧产生的大量有毒性气体和烟雾。 2 研究现状

相关文档
最新文档