城市规划-元胞自动机

城市规划-元胞自动机
城市规划-元胞自动机

元胞自动机-城市规划

城市规模设计

雄安新区占地总面积约为2000平方公里,涉及河北省雄县、容城、安新3个县及周边部分区域,地处北京、天津、保定腹地,通过ArcGIS地图软件搜索该区域并从中提取出来,区域图如下所示。

图5 雄安新区区域图

为对雄安新区进行更好的仿真模拟,首先先在地图中截取雄安新区地图,然后进行边缘轮廓提取和白洋淀等不可开发地区的剔除,获得预处理图像。最后用MATlAB进行图像灰度化、二值化处理如下图所示。为后续元胞自动机提供演变地图。

图6 Matlab识别图

城市规划CA模型总步骤:

1:

Step首先确定其组成的主要元素:元胞、元胞空间、元胞状态、元胞邻域及转变规则

2:

Step分析模拟城市空间结构;

3:Step 确定模型的参数:繁殖参数、扩散参数、传播参数及受规划约束参数 4:Step 确定模型所需元胞转换规则的定义 5:Step 进行城市发展模拟。

①本文提取的雄安新区地图像素为135109m m ?,元胞空间定义为11m m ?;元胞状态对应的是该地的四种状态:未城市化(即对应能开发还未开发的区域),城市化,扩展中心城市,不能被开发(如白洋淀等区域)。土地状态用编码表示。

②元胞邻域选取为on V Neumann 邻居,在CA 系统中一个元胞1t +时刻的状态取决于它t 时刻与它邻域内其他元胞状态,考虑到地区之间发展限制因素较多,所以选取邻域较少的Neumann V on 邻居型[7]。

on V Neumann 邻居型数学定义为:

()(){}

20,,1|||||,Z v v v v v v v v v N iy ix oy iy x ix iy ix i ∈≤-+-== (4.18)

式(18)中i v 、y v 为中心元胞邻居元胞的行列坐标值,ax v 、oy v 为中心元胞的行列坐标值。

③模型参数

借鉴参考文献[7]中的CA 模型设置了以下几个主要参数来描述城市发展[7]。 1.扩散参数diffusion :在自然增长规则下,扩散参数可以表示一个城市化单元格元胞可能转换成另一个城市化单元格元胞的次数

2.繁殖参数breed :在新中心传播增长规则中,繁殖参数用于一个城市化元胞可能转变成为一个新的中心传播城市化元胞

3.传播参数spread :在边界增长的规则下,用于一个扩散中心的已城市化的邻居元胞转变为城市化的可能性

4.规划系数参数onst int C ra :城市规划是城市工程建设和城市管理中基本依据之一,规划系数的变化对规划区最终达成的效果有约束作用[7] 模型转换规则:

④元胞的转换规则是指元胞状态的演化过程的法则,当前中心元胞和邻居元胞所处的状态决定下一个时刻贵中心状态的动力学函数,即一个状态转移函数[7]。

()11

:,t t t i i n f s f s s ++= (4.19)

式(4.19)中t i s 表示中心元胞i 在t 时刻的状态,t

n s 为t 时刻的邻居状态的组

合,1t i s +为中心元胞i 在1t +时刻所处的状态,f 为映射函数,即为元胞局部运动规则[7]。

⑤在传统的CA 模型转换规则上进行扩展,规则为:边界增长规则、自然增长规则、新扩展中心型增长规则及受规划系数影响增长规则[7]。

1.边界增长规则:原有城市元胞边缘一定区域内,随着城市化发展,城市向外扩展,生成一个新的城市化元胞,体现了城市发展的集聚效应[7]。规定对于

一个为城市化的元胞其周围至少有2个相邻的城市元胞,则该元胞可以城市化。

1(,,1)[,(,,),]U i j t f spread u i j t random += (4.20) 2.自然增长:在雄安新区空间,对于一些闲置未开发的土地、草地等逐渐转变为城市用地,可表示为在新区中随机产生城市化点。其中该新区中城市元胞的数量在t 时刻是不小于某个设定值,则在[]10 区间内随机产生一个随机数p ,但p 大于区域规划系数参数,那么在1t +时刻,该元胞转换为城市元胞。

()()2,,1int,,,,U i j t f Constra U i j t random +=???? (4.20)

上式中int Constra 表示规划系数参数,对于公式中的元胞如果是已城市化,则状态不变,或者进入新扩展中心型判断。

3.新扩展中心型增长:新扩展中心增长是一种以离心力为主的城市增长模型。这种增长方式是受城市经济发展需像周边范围内扩展成新的增长点。在自然增长下的城市元胞是否转变为新的城市扩展中型增长影响。

一个城市化转变为一个新的城市化元胞,则它的邻域至少有两个元胞必须已经是城市化的元胞。

()()3,,1,,,,U i j t f breed U i j t random +=???? (4.21)

城市规模仿真模拟

初始阶段:

20

40

60

80

100

120

102030405060708090100

图7 元胞自动机演化初始阶段

中期阶段

20

40

60

80

100

120

102030405060708090100

20

40

60

80

100

120

102030405060708090100

图8 元胞自动机演化中期阶段

远期阶段

20

40

60

80

100

120

102030405060708090100

20

40

60

80

100

120

102030405060708090100

图9 元胞自动机演化远期阶段

元胞自动机(CA)代码及应用

元胞自动机(CA)代码及应用 引言 元胞自动机(CA)是一种用来仿真局部规则和局部联系的方法。典型的元胞自动机是定义在网格上的,每一个点上的网格代表一个元胞与一种有限的状态。变化规则适用于每一个元胞并且同时进行。典型的变化规则,决定于元胞的状态,以及其(4或8 )邻居的状态。元胞自动机已被应用于物理模拟,生物模拟等领域。本文就一些有趣的规则,考虑如何编写有效的MATLAB的程序来实现这些元胞自动机。 MATLAB的编程考虑 元胞自动机需要考虑到下列因素,下面分别说明如何用MATLAB实现这些部分。并以Conway的生命游戏机的程序为例,说明怎样实现一个元胞自动机。 ●矩阵和图像可以相互转化,所以矩阵的显示是可以真接实现的。如果矩阵 cells的所有元素只包含两种状态且矩阵Z含有零,那么用image函数来显示cat命令建的RGB图像,并且能够返回句柄。 imh = image(cat(3,cells,z,z)); set(imh, 'erasemode', 'none') axis equal axis tight ●矩阵和图像可以相互转化,所以初始条件可以是矩阵,也可以是图形。以下 代码生成一个零矩阵,初始化元胞状态为零,然后使得中心十字形的元胞状态= 1。 z = zeros(n,n); cells = z; cells(n/2,.25*n:.75*n) = 1; cells(.25*n:.75*n,n/2) = 1; ●Matlab的代码应尽量简洁以减小运算量。以下程序计算了最近邻居总和,并 按照CA规则进行了计算。本段Matlab代码非常灵活的表示了相邻邻居。 x = 2:n-1; y = 2:n-1; sum(x,y) = cells(x,y-1) + cells(x,y+1) + ... cells(x-1, y) + cells(x+1,y) + ... cells(x-1,y-1) + cells(x-1,y+1) + ... cells(x+1,y-1) + cells(x+1,y+1); cells = (sum==3) | (sum==2 & cells); ●加入一个简单的图形用户界面是很容易的。在下面这个例子中,应用了三个 按钮和一个文本框。三个按钮,作用分别是运行,停止,程序退出按钮。文框是用来显示的仿真运算的次数。 %build the GUI %define the plot button plotbutton=uicontrol('style','pushbutton',...

基于约束条件的元胞自动机土地利用规划布局模型_图文(精)

第32卷第12期 2007年12月武汉大学学报信息科学版Geo matics and Informat ion Science of W uhan U niver sity Vo l.32N o.12Dec.2007收稿日期:2007 10 10。 项目来源:国家自然科学基金资助项目(40271088;广西应用基础研究专项基金资助项目(0731022;广西高校人才小高地资源与环境科学科研创新团队建设经费资助项目。 文章编号:1671 8860(200712 1164 04文献标志码:A 基于约束条件的元胞自动机 土地利用规划布局模型 杨小雄1,2 刘耀林1 王晓红1,3 段滔1 (1 武汉大学资源与环境科学学院,武汉市珞喻路129号,430079 (2 广西师范学院资源与环境科学学院,南宁市明秀东路175号,530001 (3 贵州大学林学院,贵阳市花溪区,550025 摘要:分析了我国当前土地利用规划布局的不足,对标准的元胞自动机模型的元胞涵义、规则定义等进行了 扩展,探讨了元胞自动机模型在政策及相关规划约束、邻域耦合、适宜性约束、继承性约束及土地利用规划指 标约束下的土地利用规划布局的元胞自动机模型。以广西东兴市为例进行了模型的仿真运行和结果分析。 关键词:土地利用规划布局;元胞自动机;约束条件 中图法分类号:P273;P208

常见的土地利用规划布局有土地利用分区模 式和土地利用类型模式[1]。传统的布局方法受人 为因素影响较大,不能动态地反映土地利用规划 布局的全过程,难以适应土地规划智能化信息处 理的需求。 元胞自动机(cellular auto mata,CA作为一 种通用的时空动态模型,已成为城市增长、扩散和 土地利用演化、土地利用情景模拟等方面的研究 热点[2 4]。元胞自动机在土地利用规划布局方面 的研究正处于探讨阶段,并在基本农田保护区的 自动生成方面已取得一些成果[5],但对如何利用 元胞自动机进行区域土地利用规划布局尚未系统 地研究。本文通过基于约束条件的元胞自动机与 GIS 相结合来进行土地利用规划布局研究,对于 消除常规模拟方法所带来的弊端,提高土地利用 总体规划的科学性、合理性具有重要的理论和现 实意义。1 模型构建1.1 基本流程利用元胞自动机进行区域土地利用规划布 局,是从土地利用现状出发,通过土地利用方式的迭代来实现土地利用的规划目标。对于N 种土地利用类型,每个元胞可以有N N 种可能的变化,但在规划期内,土

城市建设用地扩张研究中CA模型的应用

城市建设用地扩张研究中CA模型的应用 摘要:本文首先介绍了元胞自动机基本理论及其应用于城市建设用地扩张研究中表现的特性。其次,就城市建设用地扩张的特点,阐述了研究中如何定义元胞自动机。然后以Idrisi Andes软件中集成的Markov模型和CA模型为研究工具,重点提出了研究方法及思路。最后总结分析了利用成熟CA模块研究城市建设用地扩张的利弊。 关键词:建设用地;扩张;CA 随着人类生存需求和经济活动的日趋加剧,特别是近年城市化水平的不断提高,给耕地保护和经济发展带来了巨大压力。为了合理有序的推进城市化建设,必须加强城市用地扩张的管理,提高城市用地规划的水平。城市用地是城市复杂巨系统的一部分,其扩张的演变过程遵循一定规律,受到地理条件、基础设施、社会经济、政治、人口、国家政策法规和人类活动等因素的影响。 目前,元胞自动机(CA)模型与GIS技术相结合,进行城市用地扩张的动态模拟日益成为研究热点,作为时空演化分析和模拟的工具,将元胞自动机模型和GIS技术引入城市建设用地扩张的研究中,能够弥补统计分析模型的不足,提供具有时空特性的分析结果。 一、基本概念 元胞自动机(CA)由V on Neumann在20世纪40年代提出,用于研究自复制系统的逻辑特性。元胞自动机是一种时间、空间、状态都离散,空间相互作用及时间因果关系皆局部的网格动力学模型(周成虎等,1999)。分布在规则格网中的每一个元胞拥有有限的离散状态,按照一致的作用规则,根据确定的局部规则同时同步更新元胞状态,完成整个元胞空间的变化。大量元胞通过简单的相互作用完成系统的动态演化。与传统的动力学模型不同,元胞自动机不是由明确的函数或模型确定,而是一系列模型在确定的构造规则条件下的有机组合。遵守这些既定构造规则的模型都可以称作元胞自动机模型。所以元胞自动机是一种解决问题思想,或者说是一个方法框架。 元胞自动机由元胞、元胞空间、元胞状态、邻域、转换规则和离散时间构成。在元胞自动机系统中,各个元胞之间是相互离散的,它们共同构成一个离散的元胞空间;在系统任一个时间点t,每一个元胞只能取离散有限状态集合中的一种状态;邻域由分布在中心元胞周围的元胞集合构成,这些元胞按照一定的布局规则,在中心元胞周围一定范围内,以一定形状存在,邻域对中心元胞下一时刻的状态有很大决定作用;转换规则是元胞状态转换应遵循的规则,确定元胞t到t+1时刻状态是否发生转换和如何转换;元胞自动机中的时间没有具体的意义,是离散的,可以简单的理解为元胞空间的一次迭代变化。 二、建设用地扩张中元胞自动机的构成

基于元胞自动机模型的城市历史文化街区的仿真

文章编号: 1673 9965(2009)01 079 05 基于元胞自动机模型的城市历史文化街区的仿真* 杨大伟1,2,黄薇3,段汉明4 (1.西安工业大学建筑工程系,西安710032;2.西安建筑科技大学建筑学院,西安710055; 3.陕西师范大学历史文化学院,西安710061; 4.西北大学城市与资源学系,西安710069) 摘 要: 为了探讨当前城市规划中远期预测的科学性和准确性问题,将自组织理论与元胞自动机模型结合,在一定的时空区域,构建了一个城市增长仿真模型.将元胞自动机模型应用于西安市最具历史文化特色的区域中,形成自下而上的规划模型.元胞自动机模型对于西安回民区的空间发展城市历史文化特色街区的模拟具有一定的原真性和时效性,在时空中能反应当前的空间格局.元胞自动机在城市规划的预测中具有图式与范式结合的特点,在中长期的预测中形成符合城市规划发展战略的空间格局. 关键词: 元胞自动机;自组织;历史文化特色街区;空间演化 中图号: T U984 文献标志码: A 自组织理论是当前城市复杂性研究的主要研究方向之一.自组织是相对他组织而言,即自我、本身自主地组织化、有机化,意味着一种自动的、自发性的行为,一种自下而上、由内至外的发展方式.其主要涵义可以简单概括:在大多数情况下,作用于系统的外部力量并不能直接对系统的行为产生作用,而是作为一种诱因,即引入序参量引发系统内部发生相变,系统通过这一系列的变化自发地组织起来,最终大量微观个体的随机过程表现出宏观有序的现象[1]. 20世纪40年代U lam提出元胞自动机模型(Cellular Autom at o n M odel,CA),V on N eu m ann将其用于研究自复制系统的逻辑特性,且很快用于研究自组织系统的演变过程,其中对城市系统自组织过程的模拟是焦点问题[2 9]. CA是定义在一个具有离散状态的单元(细胞)组成的离散空间上,按一定的局部规则在离散时间维演化的动力学系统.一个CA模型通常包括单元、状态、邻近范围和转换规则4要素[9],单元是其最小单位,而状态则是单元的主要属性.根据转换规则,单元可以从一个状态转换为另外一个状态,转换规则通过多重控制函数来实现. 自组织理论的提出,对于解释相对封闭,具有自身演化规律的复杂适应系统中的复杂现象和问题具有重要意义和应用前景.而CA 自下而上的研究思路,强大的复杂计算功能、固有的并行计算能力、高度动态特征以及具有空间概念等特征,使其在模拟空间复杂系统的时空演变方面具有很强的能力,在城市学研究中具有天然优势[9 15].本文将自组织理论引入CA模型,并将该模型首次应用于西安回民区这一复杂的相对独立的历史街区中,就是为了得出其在自组织的作用下,未来20年空间发展的变化模型,为城市规划的制定做出科学的预测.下面对西安回民区做一简单介绍. 西安回民区位于西安旧城中心的中西地段,东接西安历史文化遗产钟楼和北大街,西接洒金桥,南到西大街,北到莲湖路,面积约为93.4公顷,人口约为77600人,在此居住的居民中有43.6%以 第29卷第1期 西 安 工 业 大 学 学 报 V o l.29No.1 2009年02月 Jo urnal o f Xi!an T echnolo g ical U niver sity Feb.2009 *收稿日期:2008 06 04 基金资助:国家自然科学基金(50678149) 作者简介:杨大伟(1981 ),男,西安工业大学助教,西安建筑科技大学博士研究生,主要研究方向为城市空间复杂性. E mail:yangdaw ei@https://www.360docs.net/doc/616378536.html,.

元胞自动机与Matlab

元胞自动机与MATLAB 引言 元胞自动机(CA)是一种用来仿真局部规则和局部联系的方法。典型的元胞自动机是定义在网格上的,每一个点上的网格代表一个元胞与一种有限的状态。变化规则适用于每一个元胞并且同时进行。典型的变化规则,决定于元胞的状态,以及其(4或8 )邻居的状态。元胞自动机已被应用于物理模拟,生物模拟等领域。本文就一些有趣的规则,考虑如何编写有效的MATLAB的程序来实现这些元胞自动机。 MATLAB的编程考虑 元胞自动机需要考虑到下列因素,下面分别说明如何用MATLAB实现这些部分。并以Conway的生命游戏机的程序为例,说明怎样实现一个元胞自动机。 ●矩阵和图像可以相互转化,所以矩阵的显示是可以真接实现的。如果矩阵 cells的所有元素只包含两种状态且矩阵Z含有零,那么用image函数来显示cat命令建的RGB图像,并且能够返回句柄。 imh = image(cat(3,cells,z,z)); set(imh, 'erasemode', 'none') axis equal axis tight ●矩阵和图像可以相互转化,所以初始条件可以是矩阵,也可以是图形。以下 代码生成一个零矩阵,初始化元胞状态为零,然后使得中心十字形的元胞状态= 1。 z = zeros(n,n); cells = z; cells(n/2,.25*n:.75*n) = 1; cells(.25*n:.75*n,n/2) = 1; ●Matlab的代码应尽量简洁以减小运算量。以下程序计算了最近邻居总和,并 按照CA规则进行了计算。本段Matlab代码非常灵活的表示了相邻邻居。 x = 2:n-1; y = 2:n-1; sum(x,y) = cells(x,y-1) + cells(x,y+1) + ... cells(x-1, y) + cells(x+1,y) + ... cells(x-1,y-1) + cells(x-1,y+1) + ... cells(x+1,y-1) + cells(x+1,y+1); cells = (sum==3) | (sum==2 & cells); ●加入一个简单的图形用户界面是很容易的。在下面这个例子中,应用了三个 按钮和一个文本框。三个按钮,作用分别是运行,停止,程序退出按钮。文框是用来显示的仿真运算的次数。

元胞自动机在城市扩展方面的应用综述

元胞自动机在城市扩展方面的应用综述 摘要 本文在介绍元胞自动机各要素的基础上,综述了元胞自动机用于城市扩展模拟的历史、元胞自动机用于城市扩展模拟的具体研究方向,即在具体的模型中如何确定模型的结构和参数,并对其未来的发展趋势进行了展望,并指出CA 中的转换规则的扩展是在将来的研究中的一个首要问题。 关键字:元胞自动机;城市扩展模拟;转换规则 一引言 元胞自动机(CA)是一种时间、空间、状态都离散,空间的相互作用及时间上的因果关系皆局部的网格动力学模型,其“自下而上”的研究思路,强大的复杂计算功能、固有的平行计算能力、高度动态以及具有空间概念等特征,使得它在模拟空间复杂系统的时空动态演变方面具有很强的能力。在城市空间动态变化的模拟研究方面, CA模型已应用到除非洲、南极洲的所有大洲的城市模拟研究当中。 CA模型和GIS的集成,一方面增强GIS的空间模型运算及分析能力,另一方面, GIS提供的强大空间处理能力可以为CA模型准备数据和定义有效的元胞转换规则以及对模拟结果进行可视化。同时CA模型还可以与神经网络、主成分分析、遗传算法、模糊逻辑以及其他研究方法相结合,以增强其在城市空间变化模拟研究方面的能力。将CA与MAS技术相结合,建立一个能够模拟多个不同参与因子(自然系统) 、不同决策者(人文系统)共同影响下的城市发展模型,以此来模拟与预测城市发展的真实状况,将是CA模型在城市空间变化模拟与预测研究中的未来发展趋势。 国内元胞自动机应用研究起步较晚,受国际研究的推动,20世纪90年代末地理学界才开始类似的尝试研究,主要集中在基于元胞自动机的LUCC和城市增长模拟,罗平从经典地理过程分析的基本理论人手,分析和阐述了CA对于经典,地理过程分析概念的表达程度的局限性,综合地理系统的几何属性和非几何属性提出了基于地理特征概念的元胞自动机(GeoFeature 一CA),周成虎等人在Batty和Xie的DUEM模型的基础上,构建了面向对象的、随机的、不同构的和两个CA模型耦合的GeoCA—Urban模型,并成功模拟了深圳特区土地利用动态演化过程。何春阳、史培军等从宏观外部约束性因素和局部城市单元自身扩展能力变化的角度建立元胞自动机模型对北京地区城市发展过程进行了模拟重建和不同情景预测。 本文在介绍元胞自动机原理的基础上,对比国内外元胞自动机在城市扩展方面的研究现状和新进展,总结近年来元胞自动机研究的热点和聚焦所在,对其未来的发展趋势进行预测。

元胞自动机的定义与构成及其特征

元胞自动机的定义与构成及其特征 https://www.360docs.net/doc/616378536.html, 2005-4-17 15:05:00 来源:生命经纬 尽管元胞自动机有着较为宽松,甚至近乎模糊的构成条件。但作为一个数理模型,元胞自动机有着严格的科学定义。同时,元胞自动机是一个地地道道的"混血儿"。是物理学家、数学家,计算机科学家和生物学家共同工作的结晶。因此。对元胞自动机的含义也存在不同的解释,物理学家将其视为离散的、无穷维的动力学系统;数学家将其视为描述连续现象的偏微分方程的对立体,是一个时空离散的数学模型;计算机科学家将其视为新兴的人工智能、人工生命的分支;而生物学家则将其视为生命现象的一种抽象。下面给出几种常见的定义: 1.元胞自动机的物理学定义 元胞自动机是定义在一个由具有离散、有限状态的元胞组成的元胞空间上,并按照一定局部规则,在离散的时间维上演化的动力学系统。 具体讲,构成元胞自动机的部件被称为"元胞",每个元胞具有一个状态。这个状态只琵取某个有限状态集中的一个,例如或"生"或"死",或者是256中颜色中的一种,等等;这些元胞规则地排列在被你为"元胞空间"的空间格网上;它们各自的状态随着时间变化。而根据一个局部规则来进行更新,也就是说,一个元胞在某时刻的状态取决于、而且仅仅家决于上一时刻该元胞的状态以及该元胞的所有邻居元胞的状态;元胞空间内的元胞依照这样的局部规则进行同步的状态更新,整个元胞空间则表现为在离散的时间维上的变化。 2.元胞自动机的数学定义 美国数学家L.P.Hurd和K·Culik等人在90年代初,对元胞自动机分别从集合论和拓扑学等角度进行了严格地描述和定义 (谢惠民,1994; Culik,II K,1990;李才伟,1997) 1)基于集合论的定义 设d代表空间维数,k代表元胞的状态,并在一个有限集合S中取值,r表元胞的邻居半径。Z是整数集,表示一维空间,t代表时间。 为叙述和理解上简单起见,在一维空间上考虑元胞自动机,即假定d=1。那么整个元胞空间就是在一维空间,将整数集Z上的状态集S的分布,记为S Z。元胞自动机的动

元胞自动机参考文献

[1] Zhou W H, Lee J, Li G L, et al. Embedding Game of Life into a Simple Asynchronous Cellular Automaton[C]. Computing and Networking (CANDAR), 2014 Second International Symposium on IEEE, 2014: 503-506. [2]Tian J, Treiber M, Zhu C, et al. Cellular Automaton Model with Non-hypothetical Congested Steady State Reproducing the Three-Phase Traffic Flow Theory[M]. Cellular Automata. Springer International Publishing, 2014: 610-619. [3]Delivorias S, Hatzikirou H, Penaloza R, et al. Detecting Emergent Phenomena in Cellular Automata Using Temporal Description Logics[M]. Cellular Automata. Springer International Publishing, 2014: 357-366. [4] D'Ariano G M, Mosco N, Perinotti P, et al. Path-integral solution of the one-dimensional Dirac quantum cellular automaton[J]. Physics Letters A, 2014, 378(43): 3165-3168. [5] Bisio A, D’Ariano G M, Tosini A. Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension[J]. Annals of Physics, 2015, 354: 244-264. [6] Masuda T, Nishinari K, Schadschneider A. Cellular Automaton Approach to Arching in Two-Dimensional Granular Media[M]. Cellular Automata. Springer International Publishing, 2014: 310-319. [7] Takada K, Namiki T. on Limit Set of Two-Dimensional Two-State Linear Cellular Automaton Rules[C]. Computing and Networking (CANDAR), 2014 Second International Symposium on. IEEE, 2014: 470-475. [8] Al-Mamun M A, Srisukkham W, Fall C, et al. A cellular automaton model for hypoxia effects on tumour growth dynamics[C].Software, Knowledge, Information Management and Applications (SKIMA), 2014 8th International Conference on. IEEE, 2014: 1-8. [9] Hu M L, Sun J. Sudden change of geometric quantum discord in finite temperature reservoirs[J]. Annals of Physics, 2015, 354: 265-273. [10] Bure? M, Siegl P. Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss’ law [J]. Annals of Physics, 2015, 354: 316-327. [11] Terrier V. Recognition of linear-slender context-free languages by real time one-way cellular automata[C]. AUTOMATA 2015. 2015, 9099: 251-262. [12] Fuentes M L, Klimchuk J A. Two-dimensional cellular automaton model for the evolution of active region coronal plasmas[J]. The Astrophysical Journal, 2015, 799(2): 128. [13] Tucker G E, Hobley D E J, Hutton E, et al. CellLab-CTS 2015: a Python library for continuous-time stochastic cellular automaton modeling using Landlab[J]. Geoscientific Model Development Discussions, 2015, 8: 9507-9552.

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

城市规划-元胞自动机

元胞自动机-城市规划 城市规模设计 雄安新区占地总面积约为2000平方公里,涉及河北省雄县、容城、安新3个县及周边部分区域,地处北京、天津、保定腹地,通过ArcGIS地图软件搜索该区域并从中提取出来,区域图如下所示。 图5 雄安新区区域图 为对雄安新区进行更好的仿真模拟,首先先在地图中截取雄安新区地图,然后进行边缘轮廓提取和白洋淀等不可开发地区的剔除,获得预处理图像。最后用MATlAB进行图像灰度化、二值化处理如下图所示。为后续元胞自动机提供演变地图。 图6 Matlab识别图 城市规划CA模型总步骤: 1: Step首先确定其组成的主要元素:元胞、元胞空间、元胞状态、元胞邻域及转变规则 2: Step分析模拟城市空间结构;

3:Step 确定模型的参数:繁殖参数、扩散参数、传播参数及受规划约束参数 4:Step 确定模型所需元胞转换规则的定义 5:Step 进行城市发展模拟。 ①本文提取的雄安新区地图像素为135109m m ?,元胞空间定义为11m m ?;元胞状态对应的是该地的四种状态:未城市化(即对应能开发还未开发的区域),城市化,扩展中心城市,不能被开发(如白洋淀等区域)。土地状态用编码表示。 ②元胞邻域选取为on V Neumann 邻居,在CA 系统中一个元胞1t +时刻的状态取决于它t 时刻与它邻域内其他元胞状态,考虑到地区之间发展限制因素较多,所以选取邻域较少的Neumann V on 邻居型[7]。 on V Neumann 邻居型数学定义为: ()(){} 20,,1|||||,Z v v v v v v v v v N iy ix oy iy x ix iy ix i ∈≤-+-== (4.18) 式(18)中i v 、y v 为中心元胞邻居元胞的行列坐标值,ax v 、oy v 为中心元胞的行列坐标值。 ③模型参数 借鉴参考文献[7]中的CA 模型设置了以下几个主要参数来描述城市发展[7]。 1.扩散参数diffusion :在自然增长规则下,扩散参数可以表示一个城市化单元格元胞可能转换成另一个城市化单元格元胞的次数 2.繁殖参数breed :在新中心传播增长规则中,繁殖参数用于一个城市化元胞可能转变成为一个新的中心传播城市化元胞 3.传播参数spread :在边界增长的规则下,用于一个扩散中心的已城市化的邻居元胞转变为城市化的可能性 4.规划系数参数onst int C ra :城市规划是城市工程建设和城市管理中基本依据之一,规划系数的变化对规划区最终达成的效果有约束作用[7] 模型转换规则: ④元胞的转换规则是指元胞状态的演化过程的法则,当前中心元胞和邻居元胞所处的状态决定下一个时刻贵中心状态的动力学函数,即一个状态转移函数[7]。 ()11 :,t t t i i n f s f s s ++= (4.19) 式(4.19)中t i s 表示中心元胞i 在t 时刻的状态,t n s 为t 时刻的邻居状态的组 合,1t i s +为中心元胞i 在1t +时刻所处的状态,f 为映射函数,即为元胞局部运动规则[7]。 ⑤在传统的CA 模型转换规则上进行扩展,规则为:边界增长规则、自然增长规则、新扩展中心型增长规则及受规划系数影响增长规则[7]。 1.边界增长规则:原有城市元胞边缘一定区域内,随着城市化发展,城市向外扩展,生成一个新的城市化元胞,体现了城市发展的集聚效应[7]。规定对于

元胞自动机方法及其在材料介观模拟中的应用

https://www.360docs.net/doc/616378536.html, 1 元胞自动机方法及其在材料介观模拟中的应用 何燕,张立文,牛静 大连理工大学材料系(116023)  E-mail : commat @https://www.360docs.net/doc/616378536.html,   摘 要:元胞自动机(CA)是复杂体系的一种理想化模型,适合于处理难以用数学公式定量描 述的复杂动态物理体系问题,如材料的组织演变等。本文概述了元胞自动机方法的基本思想 及原理,介绍了CA的基本组成及特征,综述了CA方法在材料介观模拟研究中的应用。研究表 明CA法在对金属凝固结晶、再结晶、及相变现象等材料介观尺度的组织模拟中表现出特有的 优越性。  关键词:元胞自动机,组织演变,介观模拟,动态再结晶 1. 引 言  自20世纪计算机问世以来,用计算机建立模型来模拟材料行为的方法在材料设计中的 应用越来越广泛,此方法既可节省大量的人力物力和实验资金,又能为实验提供巨大的灵活 性和方便性,因而已经引起了各界科学家的高度重视和极大兴趣。计算机对材料行为的模拟 主要有三个方面:材料微观行为、介观行为和宏观行为的模拟。材料的微观行为是指在电子、原子尺度上的材料行为,如模拟离子实(原子)体系行为,在这方面主要应用分子动力学、分子力学等理论方法;材料的介观行为是指材料显微组织结构的转变,包括金属凝固结晶、再结晶及相变过程,在这方面的模拟主要应用Monte Carlo(MC)方法和Cellular Automata(CA)方法;材料的宏观行为主要指材料加工方面,如材料加工中的塑性变形,应力 应变场及温度场的变化等,在这方面的模拟工作主要应用大型有限元软件Marc, Ansys等。大量实验研究表明,材料的微观组织结构决定了其宏观行为及特征。因此,对材料介观行为 的模拟显得尤为重要。传统的数学建模方法是建立描述体系行为的偏微分方程,它依赖于对 体系的成熟定量理论,而对大多数体系来说这种理论是缺乏的;从微观入手的Monte Carlo 方法主要依赖于体系内部自由能的计算,由于其运算量大,需要大量的数据,运算速度慢,为模拟工作带来了诸多不便;而CA方法则另辟蹊径,通过直接考察体系的局部相互作用, 再借助计算机模拟这种作用导致的总体行为,从而得到其组态变化,并体现出宏观上的金属 性能。由于CA的结构简单,便于计算,允许考虑数量极大的元胞,并且在空间和时间的尺 度上都不受限制,出于以上特点,元胞自动机方法已经受到越来越多研究工作者的青睐。本 文概述了元胞自动机方法的基本思想及原理,介绍了CA的基本组成及特征,对CA法在模拟 介观组织行为方面的应用进行了综述。

元胞自动机在城市土地利用规划中的应用

元胞自动机在城市土地利用规划中的应用 一.研究背景及进展 1.1城市土地利用研究背景和进展 随着中国社会主义市场经济体制的不断完善,计划导向的土地利用规划也逐步向社会主义市场经济体制下的土地利用规划转变。借鉴国际上市场经济国家土地利用规划的经验,建立具有中国特色的土地利用规划体系成为必然。对国际上土地利用规划的对比研究有以下主要观点: 美国的土地利用规划更多采用公众参与的方法,参与者包括房屋所有人、社会活动家、房地产开发商、联邦和州政府、规划委员会以及民选官员包括城市议会会员。同时,美国基于可持续发展的土地利用规划设计了保护生态环境、维持生态平衡、注重新技术的应用、提高土地利用效率和控制人口增长的一系列政策。 联合国粮食与农业组织(FAO)的土地利用规划指南强调土地利用规划作为最佳土地利用的选择,是以土地评价为基础的,而且不仅包括自然的适宜性评价,也包括经济效益的评价和环境效应的检验,这是编制规划方案和方案选择的科学基础。 英国规划的体系由国家级规划、区域性规划、郡级规划、区级规划组成。国家级规划叫规划政策指南,提出全国性的土地利用方针政策,以白皮文件的形式下发。地区规划又叫区域规划指南,通过召开区域协调会议制定。郡级规划也叫结构规划,由每一个郡级的规划机关在土地测量基础上,与相关委员会协商后提出本郡土地利用的方针、政策及发展的框架结构。区级规划也叫地方规划,是一种详细的发展和实施规划。 科学发展观对土地利用规划的科学性提出了较高的要求,土地利用规划的应用基础研究尤为重要。从2002年国土资源部启动12个县级规划试点工作,2003年又启动14个地(市)级规划修编试点,2004年土地利用规划修编的重新开始,到2005年关于土地利用规划前期研究工作的国办[32]文的颁布,新一轮土地利用规划稳步开展。相应的土地利用规划相关研究也日益深入,但与城市规划相比,与作为中国空间规划重要组成部分的地位要求还有一定差距。但这些研究的广泛开展标志着中国土地利用规划逐渐走上了新的轨道,是提高中国土地利用规划科学性的重要基础。 城市总体规划和土地利用规划同属空间规划,受空间规划理论和方法的指导。从发展历程而言,两者都经历了开发、发展、控制和保护的不同阶段,或者是物质规划、生态规划、社会规划、文化规划等不同的阶段;就指导理论而言,更具有大体一致的内容;而就实体理论而言,由于规划具体内容的不同而有所差别。但在具体的技术和方法上,都是针对空间问题进行分析、预测和布局的,因而具有相似的方法。两个规划在理论和方法上的一致成为未来两个规划走向一体化的基础[1]。 1.2元胞自动机的研究背景及进展 元胞自动机即Cellular Automata,称作单元自动机,简称CA。起源于20世纪40年代,“现代计算机之父”冯.诺伊曼设计可自我复制的自动机时,参照了生物现象的自繁殖原理,提出了元胞自动机的概念和模型。它是一时间和空间都离散的动力系统,散步在规则格网中的每一元胞取有限的离散状态,遵循同样的作用规则,依据确定的局部规则同步更新,大量元胞通过简单的相互作用而构成动态系统的演化,不同于一般的动力学模型,元胞自动机不

基于元胞自动机原理的微观交通仿真模型

2005年5月重庆大学学报(自然科学版)May2005第28卷第5期Journal of Chongqing University(Natural Science Editi on)Vol.28 No.5 文章编号:1000-582X(2005)05-0086-04 基于元胞自动机原理的微观交通仿真模型3 孙 跃,余 嘉,胡友强,莫智锋 (重庆大学自动化学院,重庆 400030) 摘 要:描述了一种对高速路上的交通流仿真和预测的模型。该模型应用了元胞自动机原理对复杂的交通行为进行建模。这种基于元胞自动机的方法是将模拟的道路量离散为均匀的格子,时间也采用离散量,并采用有限的数字集。同时,在每个时间步长,每个格子通过车辆跟新算法来变换状态,车辆根据自定义的规则确定移动格子的数量。该方法使得在计算机上进行仿真运算更为可行。同时建立了跟车模型、车道变换的超车模型,并根据流程对新建的VP算法绘出时空图。提出了一个设想:将具备自学习的神经网络和仿真系统相结合,再根据安装在高速路上的传感器所获得的统计数据,系统能对几分钟以后的交通状态进行预测。 关键词:元胞自动机;交通仿真;数学模型 中图分类号:TP15;TP391.9文献标识码:A 1 元胞自动机 生物体的发育过程本质上是单细胞的自我复制过程,50年代初,计算机创始人著名数学家冯?诺依曼(Von Neu mann)曾希望通过特定的程序在计算机上实现类似于生物体发育中细胞的自我复制[1],为了避免当时电子管计算机技术的限制,提出了一个简单的模式。把一个长方形平面分成若干个网格,每一个格点表示一个细胞或系统的基元,它们的状态赋值为0或1,在网格中用空格或实格表示,在事先设定的规则下,细胞或基元的演化就用网格中的空格与实格的变动来描述。这样的模型就是元胞自动机(cellular aut omata)。 80年代,元胞自动机以其简单的模型方便地复制出复杂的现象或动态演化过程中的吸引子、自组织和混沌现象而引起了物理学家、计算机科学家对元胞自动机模型的极大兴趣[1]。一般来说,复杂系统由许多基本单元组成,当这些子系统或基元相互作用时,主要是邻近基元之间的相互作用,一个基元的状态演化受周围少数几个基元状态的影响。在相应的空间尺度上,基元间的相互作用往往是比较简单的确定性过程。用元胞自动机来模拟一个复杂系统时,时间被分成一系列离散的瞬间,空间被分成一种规则的格子,每个格子在简单情况下可取0或1状态,复杂一些的情况可以取多值。在每一个时间间隔,网格中的格点按照一定的规则同步地更新它的状态,这个规则由所模拟的实际系统的真实物理机制来确定。格点状态的更新由其自身和四周邻近格点在前一时刻的状态共同决定。不同的格子形状、不同的状态集和不同的操作规则将构成不同的元胞自动机。由于格子之间在空间关系不同,元胞自动机模型分为一维、二维、多维模型。在一维模型中,是把直线分成相等的许多等分,分别代表元胞或基元;二维模型是把平面分成许多正方形或六边形网格;三维是把空间划分出许多立体网格。一维模型是最简单的,也是最适合描述交通流在公路上的状态。 2 基于元胞自动机的交通仿真模型的优点目前,交通模型主要分为3类: 1)流体模型(Hydr odyna m ic Model),在宏观上,以流体的方式来描述交通状态; 2)跟车模型(Car-f oll owing Model),在微观上,描述单一车辆运动行为而建立的运动模型; 3)元胞自动机模型(Cellular Aut omat on),在微观 3收稿日期:2005-01-04 基金项目:重庆市自然科学基金项目(6972) 作者简介:孙跃(1960-),浙江温州人,重庆大学教授,博士,研究方向:微观交通仿真、电力电子技术、运动控制技术及系统。

疏散问题元胞自动机仿真方法

姓名:张雪蕾学号:201211131114 姓名:崔星宇学号:201211131072 姓名:王佳颖学号:201211131054 基于元胞自动机的人员疏散仿真研究 摘要: 本文要仿真模拟学校某层教学楼中的人员疏散[1],主要方法是建立元胞自动机模型。 本文首先规定了学校教室和走廊的规格,并将教室和走廊平面均匀地划分成大小相等且符合实际的正方形网格,每个网格作为一个元胞,可以由教室中的学生或者障碍物占据。模型的建立是先将此楼层的人员疏散过程分成教室和走廊两个部分分别考虑、并分别建立模型。 在教室中,根据每一个元胞距离教室门口的位置长短,建立了元胞位置危险度矩阵,然后在此基础上给出教室中书桌所在元胞的位置和教室墙壁所在元胞的位置。我们采用Moore neighborhood的元胞邻居方式,学生的行走方式取决于其邻居八个元胞及其本身在位置危险度矩阵中所对应的危险度的大小;有多个学生竞争同一元胞时,则采用生成随机数作为前进概率的方法,概率最大的可以成功抢到该目标元胞位置。这样每一次时间步的更新,都会有至多一个人走出本间教室,一间90人的教室需要大约26.25s就可使教室人员全部走出教室。 在走廊中,我们考虑走廊只能至多三排学生并行的情况,并规定走廊上的行走规则与教室里的一致。我们采用扩展的Von-Neumann neighborhood的元胞邻居方式,学生的行走方式取决于其邻居五个元胞及其本身在位置危险度矩阵中所对应的值的大小。每一时间步的更新会有至多三个人走出走廊。 最终,我们将教室和走廊的情况整合在一起考虑,得到了模拟学校学生在进行疏散时的元胞自动机模型。用此元胞自动机模型对该层教学楼的人员疏散问题进行仿真模拟,若每一时间步为0.25秒,我们得到时间步更新次数为333(即83.25s),四间教室共360人均可全部逃离教学楼,该结果与实际情况十分相符。关键字: 人员疏散元胞自动机位置危险度随机数法

基于元胞自动机的土地资源节约利用模拟

第24卷 第5期 自 然 资 源 学 报V ol 24N o 5 2009年5月J OURNAL OF NATURAL RESOURCES M ay ,2009 收稿日期:2008-08-22;修订日期:2008-12-02。 基金项目:国家自然科学基金重点资助项目(40830532);国家自然科学基金资助项目(40801236);国家杰出青年基金资助项目(40525002);国家高技术研究发展计划资助项目(2006AA12Z206)。 作者简介:杨青生(1974-),男,青海乐都人,讲师,博士,主要研究遥感与地理信息模型及应用。E m ai :l qs y ang2002@https://www.360docs.net/doc/616378536.html, 基于元胞自动机的土地资源节约利用模拟 杨青生1,2 (1 广东商学院资源环境学院,广州510230;2 中山大学地理科学与规划学院,广州510275) 摘要:为模拟节约土地资源的城市可持续发展形态,以珠江三角洲城市快速发展的东莞市为 例,运用元胞自动机(C A )、地理信息系统(G IS)和遥感(RS)从历史数据中建立城市空间扩展的 C A,将土地资源节约利用程度与城市用地空间聚集程度相结合,在评价城市用地空间聚集程度 的基础上,通过不断增加离市中心距离权重和离公路距离权重,调整CA 的参数,模拟节约土地 资源,城市用地在空间上紧凑布局的城市形态,并以调整参数的模型(离市中心距离权重为 -0 006,离公路权重为-0 024)模拟结果为基础,分析了实现城市用地空间上紧凑发展,土地 资源节约利用的政策:到2010年,东莞市离市中心27k m 范围内的适宜地区可规定为鼓励城市 发展区,27~34k m 范围内的适宜地区可规定为限制性城市发展区,其它地区为非城市发展区。 关 键 词:土地资源;节约利用;紧凑;元胞自动机 中图分类号:F301 24;P208 文献标识码:A 文章编号:1000-3037(2009)05-0753-10 1 引言 元胞自动机(C ellular Auto m ata ,简称CA )具有强大的空间运算能力,可以有效地模拟复杂的动态系统。近年来,CA 已被越来越多地运用在城市模拟中,取得了许多有意义的研究成果[1~3]。CA 可以模拟虚拟城市,验证城市发展的相关理论,也可以模拟真实城市的发展, 如W u 等模拟了广州市的城市扩展 [4];黎夏和叶嘉安模拟了东莞市的城市扩张[5]。同时,用CA 可以模拟未来的城市规划景观,如黎夏等模拟了珠江三角洲地区城市不同发展条件下的规划景观[6,7]。这些研究表明,C A 能模拟出与实际城市非常接近的特征,可以由此预测未来城市的发展及土地利用变化,为城市和土地利用规划提供决策依据。 CA 的特点是通过一些简单的局部转换规则,模拟出全局的、复杂的空间模式。为了模拟城市,除了运用CA 的局部转换规则外,还要在转换规则中引入影响城市扩展的区域变量和全局变量。转换规则中的这些变量对应着很多参数,这些参数值反映了不同变量对模型的 贡献 程度。研究表明,这些参数值对模拟的结果影响很大。目前,C A 主要通过多准则判断(MCE ) [8]、层次分析法(AH P)[9]和主成分分析[10]、自适应模型[11]、人工神经网络模型 [5]、决策树[12]等方法确定模型的参数值。笔者也采用粗集[13]、支持向量机[14]、贝叶斯分类[15]、空间动态转换规则[16]等方法研究了非线性、动态转换规则模拟城市发展。目前,采用CA 模拟虚拟城市系统和真实城市系统已经非常成熟,模型的精度也越来越高,而模拟可

相关文档
最新文档