无线输电技术发展及应用

无线输电技术发展及应用
无线输电技术发展及应用

无线输电技术发展及应用

从2007 年美国麻省理工学院成功完成无线电力传输实验开始,人类更加深刻地认识到了无线输电已不再是梦想。无线输电这项前沿技术被认为是今后电力科技的发展方向,必将带来人类生活和生产方式的重大变革,有着巨大的市场和发展前景。其中一个重要应用领域是电动汽车无线充电,短期内,静态无线充电技术有望应用于泊车自动充电。从长期来说,动态无线充电可以为电动汽车在行驶途中进行充电,使得电动汽车可以边行驶边充电。这将从根本上解决电动汽车充电难题,加速电动汽车普及。另外无线输电技术还有许多其他应用领域,如家用电器、工业机器人、医疗器械、航空航天、油田矿井、水下作业、无线传感器网络及RFID 等方面。

1 国内外无线输电技术研究现状

1.1 国外研究现状

19 世纪末被誉为“迎来电力时代的天才”的尼古拉·特斯拉,在电气与无线电技术方面做出了突出贡献,他也曾致力于研究无线传输信号及能量的可能性,早在1899 年,特斯拉在纽约长岛建造了无线电能发射塔(沃登克里弗塔),设想利用地球本身和大气电离层为导体来实现大功率长距离的无线电能传输,该塔矗立在纽约长岛的特斯拉无线电力传输实验室内,塔高57 m,球形塔顶直径为21 m。特斯拉想用它来实现全球无线电力传输,可惜由于资金缺乏,这个塔最终并未建成。

2001 年5 月,国际无线电力传输技术会议在法属留尼汪岛召开期间,法国国家科学研究中心的皮格努莱特,利用微波无线传输电能点亮40 m 外一个200 W 的灯泡。其后,2003 年在岛上建造的10 kW 试验型微波输电装置,已开始以2.45 GHz 频率向接近lkm 的格朗巴桑村进行点对点无线供电。

2007 年6 月,美国麻省理工学院宣布利用电磁共振技术成功地点亮了一个离电源约2 m 远的60 W电灯泡,该研究小组在实验中使用了2 个直径为60 cm的铜线圈,铜线半径为3 mm,通过调整发射频率使2个线圈在10.56±0.3 MHz 产生共振,效率达到40%。该项技术的发布引起了世界范围内谐振耦合式无线输电装置的研发热潮。

2008 年9 月,北美电力研讨会发布的论文显示,美国内华达州雷电实验室的G.E.Leyh 等继承了Tesla 的衣钵,成功研制电场耦合谐振无线能量传输实验装置,利用2 个空心变压器作为无线能量传输的发射与接收端,变压器与电极连接,成功地将800 W 电力用无线的方式传输到5 m 远的距离。在日本,“非接触充电”方式的巴士已于2008 年2 月在羽田机场、2009 年10 月在奈良分别进行了试行驶。供电线圈埋入充电台的混凝土中,汽车驶上充电台,将车载线圈对准供电线圈就能开始充电。充电方式采用了基于电磁感应的方式。

2012 年,美国斯坦福大学首次提出了“驾驶充电”这一概念,为电动汽车充电提出了新的解决方案,这意味着电动汽车可以不必停下来充电而无限地跑下去。据项目组人员介绍,“当你到达目的地时,可能电池里的电比你出发时还要多。”,斯坦福大学正在设计的无线充电系统有望解决电动汽车接线充电的难题,其长期目标是开发出一种全电动高速公路,

能给行驶在路面上的汽车和货车无线充电,只要在路面下每隔几英尺埋一段金属线圈,就能利用磁场以无线方式传输大量电力。

1.2 国内研究现状

国内在无线输电技术方面研究还处于起步阶段,主要进行一些基础性研究工作,还未曾开展大规模的研究。哈尔滨工业大学朱春波教授采用直径50 cm 螺旋铜线圈串接电容的方式构成谐振器,实现在0.7 m 距离传输23 W 的能量,在传输距离为55 cm 时负载电压获得最大值,其最高传输效率接近50%。重庆大学自动化学院孙跃教授带领的课题组,攻克了无线电力传输的关键技术难题,建立了完整的理论体系,研制出的无线电能传输装置能够输出600 W 到1 000 W 的电能,传输效率为70%,并且能够向多个用电设备同时供电,即使用电设备频繁增加,也不会影响其供电的稳定性。香港理工大学傅为农教授带领的课题组对感应耦合无线电能传输技术和磁谐振耦合无线电能传输技术进行了深入研究,并对2 种无线输电方式进行了比较。他们采用平面薄膜谐振器,实验中,在发射谐振器和接收谐振器相距20 cm 时,传输效率为46%,谐振频率为5.5 MHz。华南理工大学张波教授带领的课题组从电路角度分析谐振耦合无线输电系统传输效率与距离、线圈尺寸等之间的关系,设计制作了多种不同线圈参数的谐振耦合无线输电装置,进行比较实验,以实现系统优化目标,设计频率跟踪系统,解决了由于谐振效率失谐带来的传输效率低下问题。另外,南京航空航天大学航天电源实验室也对电动汽车的无线能量传输技术的几种模式进行了研究。

2 无线输电技术简介

无线电力传输是一种无需通过插座和电线提供电能的技术。根据无线输电在空间不同的传输距离,有3种基本的传输形式:电磁感应短程传输、电磁耦合共振中程传输和微波激光远程传输。

2.1 电磁感应

利用电磁感应可以进行短程的电力传输,其基本工作原理如图1 所示,发射线圈L1和接收线圈L2之间利用磁耦合来传递能量。根据电磁感应原理,若在线圈L1中通以交变电流,该电流将在周围介质中产生一个交变磁场,线圈L2中将产生感应电动势,可供电给外部用电设备。

-----

最早使用电磁感应原理传输能量的是电动牙刷。由于经常和水接触,直接充电比较危险,所以电动牙刷一般使用的是感应式充电。发射线圈位于充电底座,接收线圈在牙刷内部,整个电路消耗的功率约3 W。目前该技术可用于多种电子产品,如对手机、相机、MP3 等进行无线充电,由于充电垫产生的磁场很弱,所以不会对附近的信用卡、录像带等利用磁性记录数据的物品造成不良影响。该解决方案提供商包括英国Splashpower、美国wild Charge 等公司。这种接触式无线电力传输方式的优点是制造成本较低、结构简单、技术可靠,但是传输功率较小、传送距离短,一般只适用于为小型便携式电子设备供电。

2.2 电磁耦合共振

基于电磁共振耦合原理的整个装置必须包含2 个线圈,每一个线圈都是一个自振系统。其中一个是发射装置,与能量源相连,它利用振荡器产生高频振荡电流,通过发射线圈向

外发射电磁波,在周围形成了一个非辐射磁场,即将电能转换成磁场;当接收装置的固有频率与收到的电磁波频率相同时,接收电路中产生的振荡电流最强,完成磁场到电能的转换,从而实现电能的高效传输。在日本,2009 年8 月长野日本无线也宣布开发出基于磁共振的送电系统,如图2 所示。当送电受电部之间的传输距离为40 cm 时,传输的效率达到了95%。

--------

在美国举行的2010 年国际消费电子产品展(CES)上,海尔展出了利用无线供电技术的高清电视,该电视采用美国无线电力公司(Witricity)的电磁共振耦合技术,电视的背面内置有约1 英尺(30.48 cm)的线圈,可在距离1 m 之外的地方供应100 W 的电力。可供电的距离取决于线圈的大小,最远能以线圈直径的3 至5 倍距离供电。另外,Powercast,Fulton,Visteon等公司也利用该技术为手机、MP3、汽车配件、体温表、助听器及人体植入仪器、电动汽车等厂商提供无线输电的解决方案。

2.3 微波/激光

理论上,无线电波波长越短,其定向性越好,弥散越小,所以,可利用微波或激光形式来实现电能的远程传输,这对于新能源的开发和利用,解决未来能源短缺等问题也有着重要意义。因此,许多国家都没有放弃这方面的研究。1968 年美国学者Glaser 提出了无线传输空间利用太阳能的“Powerbeaming”的概念,利用电磁波接收装置将太阳能转换成电能。1979 年,美国航空航天局NASA 和美国能源部联合提出太阳能计划,建立“SPS 太阳能卫星基准系统”,SPS (Solar Powersatellite)是太阳能发电卫星,处在地球约36 000 km 的静止轨道上,那里太阳的能量约为地球上的1.4 倍。据预测,一个SPS 所装载的太阳电池的直流输出功率为10 GW,电池输出的电力通过振荡器变换成微波电力,从送电的天线向地球表面以微波(2.45 GHz)形式无线送电。地球上的接收天线由半波长的偶极天线、整流二极管、低通滤波器及旁路电容组成,可接收到5 GW 的电力。

目前,SPS 的建设方法、天线的放射特性、微波发送装置的姿态控制、宇宙空间的微波传播特性、为确保故障时安全的保安系统等都是亟待解决的技术问题。日本拟于2020 年建造试验型太空太阳能发电站SPS2000,2050 年进入规模运行。

3 结束语

无线电力传输作为最前沿的电力传输技术,会给人们的生活带来巨大的便利,并将带来电力工业的创新和重大变革,具有广泛的应用前景。未来无线输电技术有望解决电动汽车充电难题,可以给一些难以架设线路或危险的地区供应电能,并且解决新能源电站的电能输送问题。目前在国内,无线输电研究还处于起步阶段,应该认清形势,总结国内外一些已取得的研究成果,在此基础上开展更为深入的研究工作。

高效无线电力传输系统

高效无线电力传输系统 摘要——本文提出了基于自动引导车辆的无线电力传输系统的概念,该系统在车上装有充电电池,并在特定的地方进行充电。当给车辆充电时,要接近蓄电池充电器进行自动充电,因此,蓄电池充电器的初级变压器与车上的次级变压器之间需要较大的间隙,用以防止碰撞损坏。这样的话就要设法预防由于这个较大距离产生的变压器耦合率的降低,传统的无线电力传输技术由于电力需要通过拾波电圈从电线获得,就要装备一个大尺寸的变压器,并且当距离超过车行驶的长度铜的损失也会加大。先进的系统采用一个高频率的应用软开关方法变极器减小变压器尺寸,变压器间隙每10mm耦合率0.88,并且可达到91%的运行效率。 1.引言 最近,研究者对基于诸如自动引导车辆等运动机械的无线电力传输系统进行了测试,自动引导车辆通常使用带台车的供电系统,但好的金属粒子是通过供电时的摩擦产生的,由于无线电力传输系统不产生摩擦,其严格要求在清洁的室内或医院里,并且因为没有磨损从而该系统有减低维修频率的有点。 传统的带有无线电力传输系统的自动引导车辆需要一条与轨道平行的电线并且通过拾波电圈获得电能,但是因为拾波电圈在结构上与变压器的第一圈相似,所以为了在次级变压器端(车辆端)获得足够的电能,在初级变压器一端(电线端)需要超额的电流,特别是当车辆行驶一段长距离,铜损失不能被忽略,并且由于发生磁通量的大量泄漏,耦合率不足,所以拾波线圈也需要大型的变压器和较大的电能供应设备。 本文提出了基于自动引导车辆的无线电力传输系统的概念,在无线变压器见有10mm间隙的情况下,得到不同变压器结构的仿真和实验结果,从这些结果中给出了一种高耦合率的变压器结构,此外采用了0V变换方式的回荡变极器作为供电设备(蓄电池充电器)的变极器,选取100kHz变换频率以减小变压器尺寸。对充电器和变压器的实验评价显示该提出的系统可以高效率运行。 2.无线电力传输系统的概念 图1.表示基于自动引导车辆的无线电力传输系统的新概念,该系统的充电电池装载在车

直流输电技术及其应用论文

直流输电技术及其应用 The Feature Development and Application of Direct CurrentTransmission Techniques 山东农业大学电气工程及其自动化10级 摘要本文介绍了直流输电技术在电力系统联网应用中的必要性,直流输电系统的 结构,直流控制保护技术以及直流输电的特点和应用发展方向;同时认为直流输电技术是新能源发电并网的最佳解决方式。 电力工程是21世纪对人类社会生活影响最大的工程之一,电力技术的发展对城乡人民的生产和生活具有重大的关系,电力工业是关系国计民生的基础产业。电力的广泛应用和电力需求的不断增加,推动着电力技术向高电压、大机组、大电网发展,向电力规模经济发展。电力工业按生产和消费过程可分为发电、输电、配电和用电四个环节。输电通常指的是将发电厂发出的电力输送到消费电能的负荷中心,或者将一个电网的电力输送到另一个电网,实现电网互联。随着电网技术的不断进步,输电容量和输电距离的不断增加,电网电压等级不断提高。电网电压从最初的交流13.8KV,逐步发展到高压35KV、66KV、110KV、220KV、500KV、1000KV。电网发展的经验表明,相邻两个电压等级的级差在一倍以上才是经济合理的。这样输电容量可以提高四倍以上,不仅可与现有电网电压配合,而且为今后新的更高级别电压的发展留有合理的配合空间。我国从20世纪80年代末开始对特高压电网的规划和设备的制造进行研究;进入21世纪后,加快了特高压输电设备、电网研究和工程建设。2005年9月26日,第一条750KV输电实验线路(官亭——兰州东)示范工程投运;2006年12月,云南——广东±800KV特高压直流输电工程开工建设,并于2010年6月18日,通过验收正式投运,该工程输电距离1373KM,额定电压±800KV,额定容量500万KW,和2010年7月8日投运的向家坝——上海±800KV特高压直流示范工程一样,是当今世界电压等级最高的直流输电项目。 1.使用直流输电的原因 随着电力系统规模的不断扩大,输电功率的增加,输电距离的增长,交流输电遇到了一些技术困难。对交流输电来说,在输电功率大,输电导线横截面积较大的情况下,感抗会超过电阻,但对稳定的直流输电,则只有电阻,没有感抗。输电线一般是采用架空线,但跨过海峡给海岛输电时,要用水下电缆,电缆在金属线芯外面包裹绝缘层,水和大地都是导体,被绝缘层隔开的金属线芯和水或大地构成了一个电容器,在交流输电的情况下,这个电容对输电线路的受电端起旁路电容的作用,并且随着电缆的增长,旁路电容会增大到几乎不能通交流的程度。另外,交流电路若要正常工作,经同一条线路供电的所有发电机都要必须同步运行;要使电力网内众多的发电机同步运行,技术上是很困难的,而直流输电不存在同步问题。现代的直流输电,只是输电环节是直流,发电仍是交流,在输电线路的起端有专用的换流设备将交流转换为直流,在输电线路的末端也有专用的换流设备将直流换为交流。 2.直流输电技术的特点 随着电网的不断扩大,输电功率、输电距离迅速增加,交流输电遇到了一些难以克服的技术问题,直流输电所具有的的技术特点,使之作为解决输电技术难题的方向之一而受到重视。 2.1直流输电系统运行稳定性好 为保证电网稳定,要求网上所有发电机都必须同步运行,即所谓系统稳定性问题。对于交流长距离输电,线路感抗远远超过了电阻,并且输电线路越长,电抗越大,系统稳定越困难,

谐振耦合式无线电力传输系统matlab建模

Modeling Resonant Coupled Wireless Power Transfer System 谐振耦合式无线电力传输系统建模 This example shows how to create and analyze resonant coupling type wireless power transfer(WPT) system with emphasis on concepts such as resonant mode, coupling effect, and magnetic field pattern. The analysis is based on a 2-element system of spiral resonators. 这个例子显示了如何创建和分析谐振耦合式无线电力传输系统(WPT)的概念如谐振模式,强调耦合效应和磁场模式。此分析是基于两螺旋谐振器系统。 This example requires the following product: 这个例子需要以下产品: Partial Differential Equation Toolbox? Design Frequency and System Parameters设计频率和系统参数 Choose the design frequency to be 30MHz. This is a popular frequency for compact WPT system design. Also specify the frequency for broadband analysis, and the points in space to plot near fields. 选择的设计频率为30MHz。这是便携式WPT系统设计的一个流行的频率。还指定了宽带分析的频率,和在附近的空间中的点。 fc=30e6; fcmin = 28e6; fcmax = 31e6; fband1 = 27e6:1e6:fcmin; fband2 = fcmin:0.25e6:fcmax; fband3 = fcmax:1e6:32e6; freq = unique([fband1 fband2 fband3]); pt=linspace(-0.3,0.3,61); [X,Y,Z]=meshgrid(pt,0,pt); field_p=[X(:)';Y(:)';Z(:)']; The Spiral Resonator螺旋谐振器 The spiral is a very popular geometry in resonant coupling type wireless power transfer system for its compact size and highly confined magnetic field. We will use such a spiral as the fundamental element in this example. 螺旋是一种非常流行的几何形状在谐振耦合型无线功率传输系统,其紧凑的尺寸和高度密闭的磁场。我们会使用这样一个螺旋的基本元素在这个例子中。 Create Spiral Geometry The spiral is defined by its inner and outer radius, and number of turns. Express the geometry by its boundary points, then import its boundary points into pdetool. The mesh is generated in pdetool and exported. The mesh is described by points and triangles. 创建螺旋几何形状的螺旋是由它的内部和外部半径定义,和数量的圈数。由边界点的几何表达,那么进口边界点为有效。网格产生有效和出口。网格是由点和三角形描述的。 Rin=0.05; Rout=0.15; N=6.25; [p,t]=createSpiral(Rin,Rout,N);

@高压直流输电关键技术

高压直流输电关键技术 一、国内外技术现状及发展趋势 高压直流(HVDC)技术,自50年代兴起后,已经历了40多年的发展,成为一项日趋成熟的技术。至1995年,世界上已成功投运的HVDC工程已达62项,预计至2002年,世界还将有约20项HVDC工程投入运行。 80年代,随着可控硅技术以及世界电网技术发展,HVDC技术得到一个阶跃性的发展。其一,由于联网的要求,背靠背工程有14项,约占新建工程的一半;其二,建成了目前世界上最长的直流线路.1700KM的扎伊尔英加—沙巴工程以及电压等级最高(士600KV)、输送容量最大(3150MW)的巴西伊太普工程。 90年代,世界第一个复杂的三端HVDC工程(魁北克—新英格兰工程)完成,并建成了世界上最长的海缆(250km)HVDC工程(瑞典—德国的BALTIC工程)。 亚洲地区的HVDC技术开始兴起。菲律宾、南韩、马束西亚、泰围、印度、日本和中国都相继开始HVDC工程的建设和研究,已建和计划中的工程约有15项。 随着电网技术和电力电子技术的发展,HVDC技术将会继续深化其可控性强的特点,同时克服其对电网带来的一些不利因素(如谐波)及投流站造价较高的弱点,加强其在电网发展中的作用。 二、技术开发的总体目标和重点任务 根据葛上和天广HVDC工程及三峡工程、西电东送工程以及全国联网工程的需要,发展我为的HVDC技术;重点开发远距离高压直流输电和背靠背HVDC技术,借鉴国内外的经验,确保三峡HVDC工程的成功建设和运行;实施HVDC主设备国产化工程。 三、主要技术开发内容及指标 (一)制定与国际接轨HVDC技术标准及HVDC工程设计规范。 (二)工程运行技术 1.直流系统控制保护策略研究; 2.直流与交流系统和设备控制保护的协调配合的研究; 3.交直流系统相互影响的研究; 4.换流站交流谐波及其滤波器的研究; 5.新型换流站运行人员监控系统的开发研究; 6.接地极的研究。 (三)HVDC技术研究手段的完善与开发 l.HVDC工程系统研究、设计软件包的完善与规范; 2.HVDC一、二次设备新型数学模型的完善与开发; 3.HVDC接地极研究软件的开发。 (四)背靠HVDC系统的研究,包括电压等级的选择、主设备参数列选、系统及其控制策略的研究等。

无线供电技术简介

无线供电技术发展简介 第一章无线供电技术概述 电能传输和信号传递是电力电子技术所涉及的两个主要方面,两者往往共存于同一个电力电子应用系统当中,电能用来给系统运行提供动力或能量,而信号用来检测系统操作状态或传递控制指令。如今,信号传输以移动手机和无线INTERNET为例,以空气为媒介已经实现了长距离的非接触传递,极大地方便人们的生存生活;而电能的传输仍然主要有导线直接接触进行传输,电工电子设备的供电通过插头和插座来进行,其发展远远滞后于信号传输的发展。长期以来,利用磁耦合原理实现电能传输只是在传统变压器和感应电机当中得到了运用,基于此原理以空气为磁介质实现高等级电能传输最开始认为是不可能的,更不用提通过空气实现远距离的电能传送了。近年来,很多新的方法应用,无线供电又受到了热捧。在给移动设备进行供电采用无线供电技术(Wireless Power Technology),简称WPT,越来越成为人们关心的课题。 无线供电技术(WPT)是一种新型的电能传输技术,其具备两大优点:一是让电器与电源完全隔离,使电器的灵活性、美观性、安全性、密封性的表现更好;二是WPT可以通过非导体来传播电能,如水、空气、土壤、玻璃等,因此可以实现隔物供电。 第二章无线供电的历史、发展与现状 实际上无线供电的设想早在一百多年前就已经出现。在1890年,尼古拉·特斯拉,这位现代交流电系统的奠基者就开始构想无线供电方法,最后提出了一个非常宏大的方案——把地球作为内导体、距离地面约60 km的电离层作为外导体,在地球与电离层之间建立起大约8 Hz的低频共振,再利用环绕地球的表面电磁波来远距离传输电力。 到了20世纪20年代中期,日本的H.Yagi和s.Uda论述了无线供电概念的可行性;20世纪30年代美国的学者开始研究不利用导线去点亮电灯的输电方案。随着大功率、高效率真空电子管微波源的研制成功,20世纪60-70年代,Raytheon公司的William C.Brown 做了大量的无线供电方面的研究工作,使得这一概念变成实验结果,奠定了现代无线供电的实验基础。他所演示的直流—直流转换效率在54%左右。 2000年以后,无线充供电新技术越来越频繁地在各大通信技术展、电源新技术展上露面,各大公司也纷纷推出自己的研究成果。2007年6月,麻省理工大学的Marin Sohjacic和他的研究团队公开做了一个演示,他们给一个直径60 cm的线圈通电,点亮了大约2 m之外连接在另一个线圈上的60 w灯泡。在2008年8月的英特尔开发者论坛上,西雅图实验室的约书亚·史密斯(Joshua R.Smith)领导的研究小组再次向公众展示了这项基于“磁耦合共振”原理的无线供电技术,在展示中成功地点亮了一个1米开外的60 w灯泡,而在电源和灯泡之间没有使用任何电线,此次系统中无线电力的传输效率达到了75%。在2009年Windows 7的发布会上,微软CEO鲍尔默更是带来了最新的无线视频输出和无线供电技术。 目前广泛应用的主要有以下4中无线供电方式:电磁耦合、光电耦合、电磁共振、微波

无线充电原理图文详解

无线充电原理图文详解 支持无线充电的智能手机从2011年夏季前后开始上市。任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。停车即可充电的EV(电动汽车)用充电系统也在推进研发。 无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。 NTT DoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。这些手机无需在手机上插上充电线缆,只需放置在充电座上即可为电池充电。今后NTT DoCoMo 将在电影院、餐厅、酒店、机场休息室等公共场所设置充电座,便于用户在外出时使用。 软银移动也预定2012年1月上市支持无线充电的智能手机。KDDI正在开发车载式智能手机的无线充电座。 未来无线充电的应用范围将有望扩大到EV的充电系统。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”,以松下、

韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。 19世纪发现的物理现象 电磁感应方式采用了19世纪上半期发现的物理现象。众所周知,电流流过线圈时,周围会产生磁场。1820年,丹麦物理学家汉斯·奥斯特(Hans Oersted)发现了这种电磁效应。

用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。1831年,英国物理学家迈克尔·法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。

无线电能传输实验报告

实验报告 1.实验原理 与无线通信技术一样摆脱有形介质的束缚,实现电能的无线传输是人类多年的一个美好追求。无线电能传输技术 (Wireless Power Transfer, WPT )也称之为非接触电能传输技术(Contactless PowerTransmission, CPT ),是一种 借于空间无形软介质(如电场、磁场、微波等)实现将电能由电源端传递至用电设备的一种供电模式,该技术是集电磁场、电力电子、高频电子、电磁感应和耦合模理论等多学科交叉的基础研究与应用研究,是能源传输和接入的一次革命性进步。 无线电能传输技术解决了传统导线直接接触供电的缺陷,是一种有效、安全、便捷的电能传输方法,因而它被美国技术评论》杂志评选为未来十大科研方向之一。该技术不仅在军事、航空航天、油田、矿井、水下作业、工业机器人、电动汽车、无线传感器网络、医疗器械、家用电器、RFID识别等领域具有重要的应用价值,而且对电磁理论的发展亦具有重要科学研究价值和实际意义。在中国科协成立五十周年的系列庆祝活动中,无线能量传输技术被列为“0 项引领未来的科学技术”之一。 到目前为止,根据电能传输原理,无线电能传输大致可以分为三类:感应耦合式、微波辐射式、磁耦合谐振式。作为一个新的无线电能传输技术,磁耦合谐振式是基于近场强耦合的概念,基本原理是两个具有相同谐振频率的物体 学习参之间可以实现高效的能量交换,而非谐振物体之间能量交换却很微弱。

磁耦合谐振式无线电能传输的传输尺度介于前两者之间,因此也被称之为中尺度(mid-range)能量传输技术,其尺度为几倍的接收设备尺寸(可扩展到几米到几十米)。 除了较大的传输距离,还存在以下优势:由于利用了强耦合谐振技术,可以实现较高的功率(可达到kW)和效率;系统采用磁场耦合(而非电场,电场会发生危险)和非辐射技术,使其对人体没有伤害;良好的穿透性,不受非金属障碍物的影响。因此该技术已经成为无线电能传输技术新的发展方向。 基于磁耦合谐振技术的无线电能传输技术主要利用的是近场磁耦合共振技术,共振系统由多个具有相同本征频率的物体构成,能量只在系统中的物体间 传递,与系统之外的物体基本没有能量交换,在达到共振时,物体振动的幅度达到最大。 基于磁耦合谐振技术的无线电能传输系统一般由高频发射源、发射系统、接收系统、负载等部分组成,其中发射系统和电磁接收系统,是无线电能传输系统的关键部分。 其典型模型如下图所示。由下图可知发射系统包括励磁线圈和发射线圈,它们之间是通过直接耦合关系把能量从励磁线圈传到发射线圈,励磁线圈所需能量直接从高频电源处获得。电磁接收系统包括接收线圈和负载线圈,它们之间也是通过直接耦合关系把能量从接收线圈传到负载线圈。发射线圈与接收线圈之间通过空间磁场的谐振耦合实现电能的无线传输。 学习参

无线电能传输系统报告.doc

摘要 随着电子产品的快速发展,越来越多的电源连接线开始困扰人们的生活,为改善传统导线电路电能传输的弊端,给出了一种基于近距离无线电能传输原理的传输系统,而电磁谐振耦合无线电能传输技术正可以很好解决对距离有较高要求的这类问题。 本设计主要包括发射模块、传输模块和接收模块三大部分。首先由有源晶振产生1MHZ的方波,通过驱动IR2110及MOS管提高了交流信号,加强后的信号源经发送线圈通过磁耦合谐振感应到接收线圈,再经过半波整流和滤波后得到稳定直流电压,带动负载工作,即实现了无线电能的传输。在本实验中,我们采用单片机STC89C52控制液晶屏LC1602来显示负载短的的实时电压和电流值。 关键字:无线电能有源晶振驱动电路谐振半波整流 Abstract In this paper, With the rapid development of electronic products, more and more power cables on people's lives, to improve the disadvantages of traditional power transmission conductor circuit, presents a transmission system based on can close radio transmission principle, and the electromagnetic resonance coupling can radio transmission technology is very good to solve this kind of problem have higher request for the distance. This design mainly includes the transmitting module, transmission module and receiving module three parts. First 1 MHZ square wave generated by the active crystals, driven by IR2110 and MOS tube improve the signal communication, strengthen the signal source approved by the sending coil magnetic coupling resonant induction to the receiving coil, and after a half-wave rectifier and filter get steady dc voltage, drive the work load, which can realize the radio transmission. In this experiment, we adopt LC1602 STC89C52 MCU LCD screen to display the real-time voltage and current value of load short. Key words: radio can active vibration crystal driver circuit resonance half-wave rectifier

直流输电技术

直流输电技术课程报告柔性直流输电在城市配电网中的应用 院系:电气工程及自动化学院姓名: 学号: 导师: 时间:

1.城市配电网交流供电存在问题 城市电网是城市现代化建设的重要基础设施之一,是电力系统的主要负荷中心,具有用电量大、负荷密度高、安全可靠和供电质量要求高等特点。随着城市化进程的不断推进和社会经济的高速发展,城市负荷不仅持续快速增长,并且对供电可靠性以及电能质量的要求越来越高,因此,向城市负荷中心供给大量优质可靠的电能将面临越来越大的困难和挑战。一,随着城市发展建设的日趋成熟,从环境保护以及土地资源的限制考虑,不仅制约了大容量电源的建设,而且造成向城市供电的线路走廊越来越拥挤,甚至出现缺少必要线路走廊的供电瓶颈;二,由于增加城市供电能力的投资成本越来越高,人们对于健康和居住环境的要求增高,因此需要采取合适的供电方式以节约资金、减少电网建设运行对城市居住环境的影响;三,随着城市供电容量的增加,系统的短路电流增大,这对于开关设备以及其他网络元件的安全运行造成极大的威胁;还有,城市负荷对于供电可靠性以及电能质量的要求越来越高,这就需要向城市负荷中心供电应该满足运行灵活、可控性高的要求,以满足各种运行情况的需求。 目前城市电网的供电方式依然采用高压交流供电,特别是大城市或者中小城市中心区域采用地下电缆供电,高压交流电缆供电在一定程度上解决了城市供电中架空线走廊缺乏、电力设施与城市景观不和谐等问题,但依然受到供电距离、无功消耗较大等问题的限制。 2.城市配电网采用柔性直流输电的优点 柔性直流输电能瞬时实现有功和无功的独立解耦控制,结构紧凑、占地面积小、易于构成多端直流系统;能向系统提供有功和无功的紧急支援,在提高系统的稳定性和输电能力等方面具有优势。利用这些特点不仅可以解决目前城市电网存在的问题,而且可以满足未来城市电网的发展要求,改善系统的安全稳定运行。主要表现在以下几个方面: (1)增强城市电网的供电能力,满足城市日益增长的负荷需求 VSC-HVDC 采用新型的直流电缆,不仅占用空间小、输电能力强,而且可以安装在现有的交流电缆管或线路走廊,这样可以充分利用输电走廊,增强城市电网的供电能力,满足城市负荷需求。 (2)为城市负荷中心提供必要的无功支撑,克服电压稳定性所构成的限制VSC-HVDC 不仅能实现有功和无功的独立快速控制,还能动态补偿交流母线的无功,稳定母线的电压。这不仅可以有效缓解城市中心区大量的地下交流电缆以及空调负荷比例的日益增大造成的无功缺乏问题,还可以为城市负荷中心提供必要的无功支撑,维持城市电网的安全稳定运行。 (3)提高城市电网可控性和安全可靠性 VSC-HVDC 具有快速多目标控制能力,可实现正常运行时潮流的优化调节故障时交流系统之间的快速紧急支援和故障隔离。此外,还可增强系统的可控性和抗扰动能力,从而达到提高稳定性、运行可靠性和不增加短路容量、改善电能质量的目的。 (4)增强城市电网建设的可实施性,节省电力建设成本 VSC-HVDC 结构紧凑、占用空间小,模块化的设计使得设计、生产、安装和调试周期大为缩短。采用新

直流输电技术

直流输电技术

直流输电技术课程报告柔性直流输电在城市配电网中的应用 院系:电气工程及自动化学院姓名: 学号: 导师: 时间:

1.城市配电网交流供电存在问题 城市电网是城市现代化建设的重要基础设施之一,是电力系统的主要负荷中心,具有用电量大、负荷密度高、安全可靠和供电质量要求高等特点。随着城市化进程的不断推进和社会经济的高速发展,城市负荷不仅持续快速增长,并且对供电可靠性以及电能质量的要求越来越高,因此,向城市负荷中心供给大量优质可靠的电能将面临越来越大的困难和挑战。一,随着城市发展建设的日趋成熟,从环境保护以及土地资源的限制考虑,不仅制约了大容量电源的建设,而且造成向城市供电的线路走廊越来越拥挤,甚至出现缺少必要线路走廊的供电瓶颈;二,由于增加城市供电能力的投资成本越来越高,人们对于健康和居住环境的要求增高,因此需要采取合适的供电方式以节约资金、减少电网建设运行对城市居住环境的影响;三,随着城市供电容量的增加,系统的短路电流增大,这对于开关设备以及其他网络元件的安全运行造成极大的威胁;还有,城市负荷对于供电可靠性以及电能质量的要求越来越高,这就需要向城市负荷中心供电应该满足运行灵活、可控性高的要求,以满足各种运行情况的需求。 目前城市电网的供电方式依然采用高压交流供电,特别是大城市或者中小城市中心区域采用地下电缆供电,高压交流电缆供电在一定程度上解决了城市供电中架空线走廊缺乏、电力设施与城市景观不和谐等问题,但依然受到供电距离、无功消耗较大等问题的限制。 2.城市配电网采用柔性直流输电的优点 柔性直流输电能瞬时实现有功和无功的独立解耦控制,结构紧凑、占地面积小、易于构成多端直流系统;能向系统提供有功和无功的紧急支援,在提高系统的稳定性和输电能力等方面具有优势。利用这些特点不仅可以解决目前城市电网存在的问题,而且可以满足未来城市电网的发展要求,改善系统的安全稳定运行。主要表现在以下几个方面: (1)增强城市电网的供电能力,满足城市日益增长的负荷需求VSC-HVDC 采用新型的直流电缆,不仅占用空间小、输电能力强,而且可以安装在现有的交流电缆管内或线路走廊内,这样可以充分利用输电走廊,增强城市电网的供电能力,满足城市负荷需求。 (2)为城市负荷中心提供必要的无功支撑,克服电压稳定性所构成的限制VSC-HVDC 不仅能实现有功和无功的独立快速控制,还能动态补偿交流母线的无功,稳定母线的电压。这不仅可以有效缓解城市中心区大量的地下交流电缆以及空调负荷比例的日益增大造成的无功缺乏问题,还可以为城市负荷中心提供必要的无功支撑,维持城市电网的安全稳定运行。 (3)提高城市电网可控性和安全可靠性VSC-HVDC 具有快速多目标控制能力,可实现正常运行时潮流的优化调节故障时交流系统之间的快速紧急支援和故障隔离。此外,还可增强系统的可控性和抗扰动能力,从而达到提高稳定性、运行可靠性和不增加短路容量、改善电能质量的目的。 (4)增强城市电网建设的可实施性,节省电力建设成本VSC-HVDC 结构紧凑、占用空间小,模块化的设计使得设计、生产、安装和调试周期大为缩短。采用新型的直流电缆不仅安装容易、快速,而且机械强度和柔韧性好、重量轻,更重要的是无油、电磁辐射和无线电干扰小,利于实现与市政设施和环境的协调。不仅增强城市电网建设的可实施性,而且可节省征地、赔偿等建设成本。

无线输电技术

无线输电技术.txt25爱是一盏灯,黑暗中照亮前行的远方;爱是一首诗,冰冷中温暖渴求的心房;爱是夏日的风,是冬日的阳,是春日的雨,是秋日的果。无线输电 求助编辑百科名片 无线输电 无线输电技术是一种利用无线电技术传输电力能量的技术,目前尚在实验阶段。技术上,无线输电技术与无线电通讯中所用发射与接收技术并无本质区别。但是前者着眼于传输能量,而非附载于能量之上的信息。无线输电技术的最大困难在于无线电波的弥散与不期望的吸收与衰减。对于无线电通讯,无线电波的弥散问题甚至不一定是件坏事,但是却可能给无线输电带来严重的传输效率问题。一个办法是使用微波甚至激光传输,理论上,无线电波波长越短,其定向性越好,弥散越小。有人担心此技术可能给人带来健康风险,虽然尚无太多证据证实这种风险。 目录 概念的提出 方法的发明 沃登克里弗计划 编辑本段 概念的提出 无线输电的提出最早要追溯到1889年尼古拉·特斯拉这位大师 作为科学上的巨匠,特斯拉本人并未获得与之相称的荣耀。但特斯拉是开启电与磁之门的人,是现代电子工程的先驱,并带起了第二次工业革命,撇开他在电无线输电磁学和工程上的成就,特斯拉也被认为对机器人、弹道学、资讯科学、核子物理学和理论物理学上等各种领域有贡献。包括我们使用的互联网,也是其贡献之一。抛开这些伟大的贡献,我们来谈谈现在仍未被应用的一个伟大发明。 编辑本段 方法的发明 1889年他发明了「无线传电方法」。于是在美国科罗拉多泉(Colorado Spring)建设实验室开发及研究此项「无线传电」技术,即是将现时的低频(5060Hz)高压电流转化为「高频电流」,然后再经由空气作为传送媒介来输电。此项「无线传电」技术不单省却了输电电缆的成本,更可以免去输电时因电阻所致的损耗。经过八个月的研究后,特斯拉便决定在长岛(Long Island)试建首座名为「特斯拉线圈」(Tesla Coil)的电力发射塔。 该「线圈」其一特性,是能够生产出既高频又低电流的「高压交流电」。这种「高频电流」可经由空气作远距离的「无线传电」达至另一个「接收器」处,并且对人体绝无不良影响。特斯拉发现了「高压电流」原来转化为「高频的高压电流」后,则可以无限地将电力输送。「特斯拉线圈」(Tesla Coil)正是运用了这种「无线传电」技术的发明,甚至它就是一种人类一直梦寐以求的「免费能源」了。 编辑本段 沃登克里弗计划

高压直流输电技术的发展与应用

高压直流输电技术的发展与应用 1 绪论 1.1 课题来源及研究的目的和意义 高压直流输电(高压直流输电),是利用稳定的直流电具有无感抗,容抗也不起作用,无同步问题等优点而采用的大功率远距离直流输电。输电过程为直流。常用于海底电缆输电,非同步运行的交流系统之间的连络等方面。 高压直流输电技术被用于通过架空线和海底电缆远距离输送电能;同时在一些不适于用传统交流联接的场合,它也被用于独立电力系统间的联接。世界上第一条商业化的高压直流输电线路1954年诞生于瑞典,用于连接瑞典本土和哥特兰岛,由阿西亚公司(ASEA, 今ABB集团)完成。 在一个高压直流输电系统中,电能从三相交流电网的一点导出,在换流站转换成直流,通过架空线或电缆传送到接受点;直流在另一侧换流站转化成交流后,再进入接收方的交流电网。直流输电的额定功率通常大于100兆瓦,许多在1000-3000兆瓦之间。 高压直流输电用于远距离或超远距离输电,因为它相对传统的交流输电更经济。 应用高压直流输电系统,电能等级和方向均能得到快速精确的控制,这种性能可提高它所连接的交流电网性能和效率,直流输电系统已经被普遍应用。 高压直流输电是将三相交流电通过换流站整流变成直流电,然后通过直流输电线路送往另一个换流站逆变成三相交流电的输电方式。它基本上由两个换流站和直流输电线组成,两个换流站与两端的交流系统相连接。 1.2主要研究内容、研究方法及思路 (1)经济性三大特性突出节能效果 从经济方面看,直流输电有以下三个主要优点: 首先,线路造价低,节省电缆费用。直流输电只需两根导线,采用大地或海水作回路只用一根导线,能够节省大量线路投资,因此电缆费用省得多。 其次,运行电能损耗小,传输节能效果显著。直流输电导线根数少,电阻发热损耗小,没有感抗和容抗的无功损耗,且传输功率的增加使单位损耗降低,大大提高了电力传输中的节能效果。 最后,线路走廊窄,征地费省。以同级500千伏电压为例,直流线路走廊宽仅40米,对于数百千米或数千千米的输电线路来说,其节约的土地量是很可观的。 除了经济性,直流输电的技术性也可圈可点。直流输电调节速度快,运行可靠。在正

浅析无线充电技术的发展历史与最新趋势

浅析无线充电技术的发展历史与最新趋势 摘要:文章主要追溯了国内外无线充电技术在近一百年里的发展历史。通过对无线充电技术最新发展现状的解读,浅析其当今发展的四大趋势,即发展领域扩展化、发展动力多重化、实现方式多样化与智能化以及发展瓶颈明朗化,并就该技术未来的发展进行展望。 关键词:无线充电;历史;发展现状;趋势 随着科技与社会的进步,人们对充电方式也提出了新的要求,无线充电,顾名思义,就是在不借助金属导线以及其他物理连接的条件下,以空气为介质实现电能传输,为设备进行充电。现阶段无线充电技术主要实现方式有三种,第一种是利用变化的电流通过线圈产生磁场实现电能传输的电磁感应式,第二种是利用电磁耦合共振效应的电磁共振式,第三种是将电力以微波的形式辐射到接收端的电磁波辐射式。目前,无线充电技术是国内外研究的热点问题之一,具有很好的发展前景。 1 发展历史与现状 1.1 国外发展历史与现状 无线充电技术(Wireless Charging Technology,WCT)并不是一项新兴的技术,早在1890年,克罗地亚的发明家、物理学家——尼古拉·特斯拉(Nikola Tesla)就提出一个大胆的构想:把地球作为导体,在地球与电离层之间建立起低频共振,利用环绕地球的表面电磁波来远距离传输电力,并且将这一设想付诸于实践。虽然这项研究最终因经费被撤、危险系数过高等原因终止,但却为人们打开了无线充电技术梦想的大门。在随后的几十年中,研究人员沿着特斯拉的脚步,对该技术有了非常多的探索,也取得了一些成就。 2007年6月,美国麻省理工学院研究团队利用电磁共振器和电源隔空点亮了一盏2 m开外的60 W电灯泡。日本昭和飞机工业公司在2009年At International 会展上展出了基于电磁感应原理无线传输电力的非接触式电源供应系统。2010年9月,日本富士通公司利用磁共振技术实现设备无线充电。2011年7月第一辆无线充电电动车在韩国首尔公园试运。2012年9月,诺基亚发布的两款智能手机:Lumia920和Lumia 820,可实现无线充电,引发公众热议。2013年芬兰首都机场,为乘客免费提供无线充电器。2013年3月,苹果公司的一项名为“保护外套综合感应充电技术”的发明专利申请书曝光。在各经济大国的研究团队与企业的共同努力下,无线充电技术有了质的飞跃,它已经从最初的概念设想发展到如今的生活实用地步。 1.2 国内发展历史与现状 我国在无线充电技术领域的起步滞后于国外,目前还处于研究的初级阶段。在国外市场旋风般的影响下,近十年来我国的无线充电技术取得了一些进展。

无线电力传输技术

无线电力传输技术 无线电力传输技术 人类追逐自由的本能,在现实面前屡屡受挫。自从广泛使用电能以来,许多人都为了那些电器拖着的长长电线而绞尽脑汁,但无线供电却一直只能作为一个在前方远远招手的梦想。现在,我们也许看到了一线曙光。 在2008年8月的英特尔开发者论坛(IDF,Intel Developer Forum)上,西雅图实验室的约书亚·史密斯(Joshua R. Smith)领导的研究小组向公众展示了一项新技术——基于“磁耦合共振”原理的无线供电,在展示中成功地点亮了一个一米开外的60瓦灯泡,而在电源和灯泡之间没有使用任何电线。他们声称,在这个系统中无线电力的传输效率达到了75%。 大刘在《三体II·黑暗森林》中描绘了一个两百年后的世界。因为人们掌握了可控核聚变技术,可以提供极大丰富的能源,无线供电的损失在可接受范围之内,所以大部分电器都可以采用无线方式来供电,从电热杯一直到个人飞行器都是如此。电像空气一样无处不在,人类再也不用受电线的拖累了。 正如书中所提到的那样,无线供电技术现在也已经出现了。实际上,近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。也许不远的未来,我们还会看到远距离和室内距离的无线供电产品,而不会看到电线杆和高压线,“插头”也将会变成一个历史名词。 好兆头 英特尔的这种无线供电技术,是基于麻省理工大学的一项研究成果而开发的。 2007年6月,麻省理工大学的物理学助理教授马林·索尔贾希克(Marin Soljacic)和他的研究团队公开做了一个演示。他们给一个直径60厘米的线圈通电,6英尺(约1.9米)之外连接在另一个线圈上的60瓦灯泡被点亮了。这种马林称之为“WiTricity”技术的原理是“磁耦合共振”,而他本人也因为这一发明获得了麦克阿瑟基金会2008年的天才奖。 新技术所消耗的电能只有传统电磁感应供电技术的百万分之一,不由让人们对室内距离的无线供电重新燃起了希望。而它的关键在于“共振”。 科学家们早就发现,共振是一种非常高效的传输能量方式。我们都听过诸如共振引起的铁桥坍塌、雪崩或者高音歌唱家震碎玻璃杯的故事。无论这些故事可信度如何,但它们的基本原理是正确的:两个振动频率相同的物体之间可以高效传输能量,而对不同振动频率的物体几乎没有影响。在马林的这种新技术中,将发送端和接收端的线圈调校成了一个磁共振系统,当发送端产生的振荡磁场频率和接收端的固有频率相同时,接收端就产生共振,从而实现了能量的传输。根据共振的特性,能量传输都是在这样一个共振系统内部进行,对这个共振系统之外的物体不会产生什么影响。这就像是几个厚度不同的玻璃杯不会因为同一频率的声音而同时炸碎一样。 最妙的就是这一点了。当发射端通电时,它并不会向外发射电磁波,而只是在周围形成一个非辐射的磁场。这个磁场用来和接收端联络,激发接收端的共振,从而以很小的消耗为代价来传输能量。在这项技术中,

特高压直流输电技术现状及在我国的应用前景

特高压直流输电技术现状及在我国的应用前景 发表时间:2018-11-17T14:55:25.480Z 来源:《基层建设》2018年第28期作者:朱振伟李天轩 [导读] 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 国网江苏省电力有限公司宿迁供电分公司江苏宿迁 223800 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 关键词:特高压;直流输电;技术现状;应用前景 1 引言 特高压直流输电技术起源于20 世纪60年代,瑞典Chalmers大学1966年开始研究±750kV导线。1966年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20世纪80年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV是合适的直流输电电压等级,2002 年 Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 2 特高压直流输电现状 20 世纪 80 年代前苏联曾动工建设长距离直流输电工程,输送距离为2400km,电压等级为±750kV,输电容量为 6GW。该工程将哈萨克斯坦的埃基巴斯图兹的煤炭资源转换成电力送往前苏联欧洲中部的塔姆包夫斯克,设计为双极大地回线方式,每极由两个 12 脉动桥并联组成,各由 3×320Mvar Y/Y 和 3×320Mvar Y/Δ单相双绕组换流变压器供电;但由于 80 年代末到90年代前苏联政局动荡,加上其晶闸管技术不够成熟,该工程最终没有投入运行。由巴西和巴拉圭两国共同开发的伊泰普工程采用了±600kV 直流和 765kV 交流的超高压输电技术,第一期工程已于 1984 年完成,1990 年竣工,运行正常。 3 特高压直流输电技术的特点及适用范围 特高压直流输电无需复杂的系统设计,基本可以采用±500kV 和±600kV 直流输电系统类似的设计方法,需要考虑的关键问题是外部绝缘和套管的设计等问题。特高压直流输电的输送容量大,输电距离长,输电能力主要受导线最高允许温度的限制。交流线路的无功补偿对远距离大容量输电系统至关重要;而直流输电线路本身不需要无功补偿,在换流站利用站内的交流滤波器和并联电容器即可向换流器提供所需的无功功率。一般来讲,对于远距离大容量输电直流方案优于交流方案,特高压方案优于超高压方案。表 1 为输送功率为 10GW 输送距离为 2000km 时交、直流以及不同电压等级直流的投资及线路走廊占用情况比较。 表1 10GW 电力输送 2000km 的交、直流输电方案 由表 1 可见,特高压直流输电适用于远距离大容量的电力输送。 4 我国能源和负荷的分布特点 水能资源和煤炭作为我国发电能源供应的两大支柱,今后的开发多集中在西南、西北和晋陕蒙地区,并逐渐向西部和北部地区转移,而东部沿海地区和中南地区的国民经济的持续快速发展导致能源产地与能源消费地区之间的距离越来越大,使得我国能源配置的距离、特点和方式都发生了巨大变化,并决定了能源和电力跨区域大规模流动的必然性。 (1)水电东送规模 三峡水电站(包括地下电站)的总装机容量为22.4GW,“十二五”初期将全部建成投产。综合分析一次能源平衡、输电距离及资源使用效率等因素,可知金沙江下游水电站主送华中、华东电网是合理的。 (2)煤电基地的电力外送规模 各煤电基地的电力外送规模有望得到较大发展。现已建成和规划采用 500kV 交流和±500kV 直流跨区送电的坑口电站的电力外送规模总计15GW。2020 年煤电外送将新增 84GW,主要送往华中东部四省、华东地区和华北京津冀鲁四省市以及广东地区。 (3)东部电力市场空间 华中东部四省。按低负荷水平预测,2020 年需电量将为 600TWh,负荷将为 110GW,装机容量缺额将为 138GW。扣除本地水电和必要的气电以外,2020 年之前尚有 47GW 的市场空间,其中2010~2020 年约为 32GW。华北的京津冀鲁。按低负荷水平预测,2020年需电量将为 840TWh,负荷将为 140GW,装机容量缺额将为 168GW。扣除本地核电、蓄能电站以外,2020 年之前尚有 90GW 的市场空间,其中2010~2020 年约为 45GW。初步测算,到 2020 年水电跨区送电规模总计约 70GW,煤电外送约 84GW,而东部受电地区的市场空间约为 127GW;而能源与负荷的距离大多数超过了 1000km,采用特高压直流输电技术比较合适。 5 特高压直流输电的初步发展规划 2020 年前后西部水电的大部分电力通过直流特高压通道向华中和华东地区输送,其中金沙江一期溪洛渡和向家坝水电站、二期乌东德和白鹤滩水电站向华东、华中地区送电,锦屏水电站向华东地区送电,宁夏和关中煤电基地向华东地区送电、呼伦贝尔盟的煤电基地向京津地区送电大约需要 9 条输电容量为 6GW 的±800kV 级特高压直流输电线路。根据 10 年发展规划,特高压直流输电工程的建设进度如

相关文档
最新文档