差分方程基本概念和方法

差分方程基本概念和方法
差分方程基本概念和方法

差分方程基本概念和方法

考察定义在整数集上的函数,(),,2,1,0,1,2,

n x f n n ==--

函数()n x f n =在n 时刻的一阶差分定义为:

1(1)()n n n x x x f n f n ?+=-=+-

函数()n x f n =在n 时刻的二阶差分定义为一阶差分的差分:

21212n n n n n n x x x x x x ???+++=-=-+

同理可依次定义k 阶差分

k n x ?

定义1.含有自变量n ,未知函数n x 以及n x 的差分2,,

n n x x ??的函数方程, 称为常

差分方程,简称为差分方程。出现在差分方程中的差分的最高阶数,称为差分方

程的阶。

k 阶差分方程的一般形式为

(,,,

,)0k n n n F n x x x ??=

其中(,,,,)k n n n F n x x x ??为,,,

k n n n n x x x ??的已知函数,且至少k n x ?要在式中出

现。

定义2.含有自变量n 和两个或两个以上函数值1,,

n n x x +的函数方程,称为(常)

差分方程,出现在差分方程中的未知函数下标的最大差,称为差分方程的阶。

k 阶差分方程的一般形式为

1(,,,

,)0n n n k F n x x x ++=

其中1(,,,,)n n n k F n x x x ++为1,,,

n n n k n x x x ++的已知函数,且n x 和n k x +要在式中一定

要出现。

定义3.如果将已知函数()n x n ?=代入上述差分方程,使其对0,1,2,

n =成为恒

等式,则称()n x n ?=为差分方程的解。如果差分方程的解中含有k 个独立的任意

常数,则称这样的解为差分方程的通解,而通解中给任意常数以确定值的解,称为差分方程的特解。

例如: 设二阶差分方程 21

n n n F F F ++=+,

可以验证12n

n

n F c c =+????

是其通解,其满足条件121F F ==

的特解为:n n n F ???=-??????

。 这里n F 即为著名的Fibonacci 数列。

定义 形如:()1122n k n k n k k n x b x b x b x f n ++-+-+++

+=

(1,

,k b b 为常数,()0,0,k b f n n k ≠≠≥)

的差分方程称为k 阶常系数线性非齐次差分方程。

常系数线性非齐次差分方程

()1122n k n k n k k n x b x b x b x f n ++-+-+++

+=

对应的齐次差分方程为

11220n k n k n k k n x b x b x b x ++-+-+++

+=

定理4 非齐次差分方程的通解等于对应齐次差分方程的通解加上非齐次方程的特解,即

*

n n n x x x =+

其中 *

n x 是对应齐次差分方程的通解,

n x 是非齐次差分方程的特解

对于线性齐次差分方程

11220n k n k n k k n x b x b x b x ++-+-+++

+=

定义其特征方程为

1110k k k k b b b λλλ--++++=,称该特征

方程的k 个根为特征根,若此k 个特征根互异,分别为12,,k λλλ,

则齐次差分方程的通解可表为

1122n n

n n k k x c c c λλλ=++

差分方程的平衡点及稳定性

一阶线性差分方程的平衡点及稳定性

一阶线性常系数差分方程 1,0,1,2,k k x ax b k ++== (1)

的平衡点由x ax

b +=解得,为

*

1b

x a

=

+ 当k →∞时,若

*k x x →,则平衡点*x 是稳定的,否则是不稳定的。

容易看出,可以用变量代换方法将方程(1)的平衡点的稳定性问题转换为

10,0,1,2,

k k x ax k ++== (2)

的平衡点*

0x

= 的稳定性问题。

对于方程(2),因为其解可表为

()0,1,2,

k

k x a x k =-=

所以当且仅当1a <时,方程(2)的平衡点(从而方程(1)的平衡点)才是稳定的。

对于二阶线性常系数差分方程,我们考查

21120k k k x a x a x ++++= (3)

的平衡点*

0x

=的稳定性。其特征方程为:2

120a a λ

λ++=,记特征根为

12,λλ,则(3)的通解为1122k k k x c c λλ=+。不难验证当且仅当12,λλ满足

121,1λλ<<

时方程(3)的平衡点才是稳定的。

消费者均衡

习题详解-第10章微分方程与差分方程初步

习题10-1 1. 指出下列方程的阶数: (1)4620x y y x y '''''-+=. (2)2 2 d d 0d d Q Q Q L R t c t ++=. (3)2d cos d ρ ρθθ +=. (4)2()d 2d 0y x y x x y -+=. 解:(1)三阶(2)二阶(3)一阶(4)一阶 2. 验证下列给出的函数是否为相应方程的解: (1)2x y y '=, 2y Cx =. (2)2(+1)d d x y y x =, +1y x =. (3)20y y y '''++=, x y x e -=. (4)22d 0.4d s t =-, 2120.2s t c t c =-++. 解:(1)是,代入即可. (2)是,代入即可; (3)是,因为 ,2x x x x y e xe y e xe ----'''=-=-+,满足20y y y '''++=; (4)是,代入,2 12d d 0.4,0.4d d s s t C t t =-+=-,显然满足. 3. 验证:函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程 222d 0d x k x t += 的通解. 解:221212()sin cos ,()cos sin ,x t C k kt C k kt x t C k kt C k kt '''=-+=--满足2 22 d 0d x k x t +=,所以是解,又因为含有两个任意常数12,C C ,且方程是二阶的,故是通解. 4. 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程222d 0d x k x t +=的通解,求满足初始条件 x | t 2 x | t 的特解. 解:上题可知是微分方程通解,且12()sin cos ,x t C k kt C k kt '=-+代入初值条件0|02,|0t t x x ='===,得122,0C C ==,所以特解为2cos (0).x kt k =≠ 习题10-2 1. 求下列微分方程的通解: (1)()2 310y y x '++=; (2) 2 +'=x y y ; (3) d d sin xcos y y sin y cos x x =; (4) 2 d d d d x xy y y x y y +=+; (5) 22 d d d d y y y x xy x x +=; (6) d d y x y x x y -= +; (7) 22 d d y y x xy x =+; (8) )2(tan 21 2y x y +='. 解:(1)这是可分离变量方程,分离变量得 () 2 31d =d y y x x +- 两端分别积分:

常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院 《常微分方程和偏微分方程的数值解法》教学大纲 一、课程基本信息 课程名称(中文):常微分方程和偏微分方程的数值解法 课程名称(英文):Numerical Methods for Ordinary and Partial Differential Equations 课程代码:MA300 学分 / 学时:4学分 / 68学时 适用专业:致远学院与数学系相关专业 先修课程:偏微分方程,数值分析 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周二19:00—21:00,地点:数学楼1204 二、课程性质和任务 本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 第一部分:常微分方程数值解法 1 引论 1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

考研数学三(常微分方程与差分方程)-试卷4

考研数学三(常微分方程与差分方程)-试卷4 (总分:58.00,做题时间:90分钟) 一、选择题(总题数:3,分数:6.00) 1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数: 2.00) __________________________________________________________________________________________ 解析: 2.设函数y 1 (x),y 2 (x),y 3 (x)线性无关,而且都是非齐次线性方程(6.2)的解,C 1,C 2为任意常数,则该非齐次方程的通解是 (分数:2.00) A.C 1 y 1 +C 2 y 2 +y 3. B.C 1 y 1 +C 2 y 2 -(C 1 +C 2 )y 3. C.C 1 y 1 +C 2 y 2 -(1-C 1 -C 2 )y 3. D.C 1 y 1 +C 2 y 2 +(1-C 1 -C 2 )y 3.√ 解析:解析:对于选项(D)来说,其表达式可改写为 y 3 +C 1 (y 1 -y 3 )+C 2 (y 2 -y 3 ),而且y 3是非齐次方程(6.2)的一个特解,y 1 -y 3与y 2 -y 3是(6.4)的两个线性无关的解,由通解的结构可知它就是(6.2)的通解.故应选(D). 3.已知sin 2 x,cos 2 x是方程y""+P(x)y"+Q(x)y=0的解,C 1,C 2为任意常数,则该方程的通解不是(分数:2.00) A.C 1 sin 2 x+C 2 cos 2 x. B.C 1 +C 2 cos2x. C.C 1 sin 2 2x+C 2 tan 2 x.√ D.C 1 +C 2 cos 2 x. 解析:解析:容易验证sin 2 x与cos 2 x是线性无关的两个函数,从而依题设sin 2 x,cos 2 x为该方程的两个线性无关的解,故C 1 sin 2 x+C 2 cos 2 x为方程的通解.而(B),(D)中的解析式均可由C 1 sin 2 x+C 2 cos 2 x恒等变换得到,因此,由排除法,仅C 1 sin 2 2x+C 2 tan 2 x不能构成该方程的通解.事实上,sin 2 2x,tan 2 x都未必是方程的解,故选(C). 二、填空题(总题数:1,分数:2.00) 4.当y>0时的通解是y= 1. (分数:2.00) 填空项1:__________________ (正确答案:正确答案:[*]) 解析:解析:将原方程改写成,然后令y=ux,则y"=u+xu".代入后将会发现该变形计算量较大.于 是可转换思维方式,将原方程改写成分离变量,然后积分得 三、解答题(总题数:25,分数:50.00) 5.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00) __________________________________________________________________________________________ 解析: 6.求微分方程x(y 2 -1)dx+y(x 2 -1)dy=0的通解. (分数:2.00) __________________________________________________________________________________________ 正确答案:(正确答案:用(x 2 -1)(y 2 -1)除方程的两端,则原方程化为由此可见这是一个变量可

差分方程模型的稳定性分析分析解析

分类号 学号密题 目 (中、英文) 作者姓名 指导教师 学科门类 提交论文日期专业名称 成绩评定 数学与应用数学 理 学

咸阳师范学院2016届本科毕业设计(论文) 摘要 微分方程是研究数学的一个重要分支,是本科期间我们必须掌握的基本知识,而本文我们研究的是一个递推关系式,也称差分方程。它是一种离散化的微分方程,是利用描述客观事物的数量关系的一种重要的数学思想来建立模型的。而利用差分方程建立模型解决问题的方法在生活中随处可见,比如在自由竞争市场经济中的蛛网模型是利用差分方程分析经济何时趋于稳定,又如金融问题中的养老保险也是利用差分方程来分析保险品种的实际投资价值。而差分方程模型是描述客观世界中随离散时间变量演化规律的有力建模工具。本文首先给出差分方程的定义以及求解过程并给出判断差分方程稳定性的判断方法,随后以同一环境下的羊群和草群的相互作用为模型分析其种群的数量变化过程,进而研究线性差分方程的稳定性,最后用一个实际模型来更好的说明差分方程的稳定性对解决实际问题有非常大的帮助。 关键字:差分方程;差分方程模型;平衡点;稳定性

差分方程模型的稳定性分析 Abstract Difference equation is also called recursive equation, it is to describe the relationship between the number of objective things of a kind of important mathematical model. And the use of the differential equation model of the solution can be found everywhere in life. Such as cobweb model in the free market economy is to use the difference equation analysis when the economic stability, and as the financial problem of pension insurance breed difference equation is used to analysis the actual investment value. This paper gives the judge the stability of difference equation to judge method, then in the same group of sheep and grass under the environment of interaction analysis for the model a process, the number of the population change, in turn, study the stability of the linear difference equation. In the end, one practical model to better explain the stability of difference equation. Key words:Difference equation;Difference equation model ; Balance point; Stability

常微分方程的初等解法与求解技巧

师大学本科毕业论文(设计) 常微分方程的初等解法与求解技巧 姓名娟 院系数学与计算机科学学院 专业信息与计算科学 班级12510201 学号1251020126 指导教师王晓锋 答辩日期 成绩

常微分方程的初等解法与求解技巧 容摘要 常微分方程在数学中发挥着举足轻重的作用,同时它的应用在日常生活里随处可见,因此掌握常微分方程的初等解法与求解技巧是非常必要的.本论文主要论述了其发展、初等解法与求解技巧,前者主要有变量分离、积分因子、一阶隐式微分方程的参数表示,通过举例从中总结出其求解技巧,目的是掌握其求解技巧. 【关键词】变量分离一阶隐式微分方程积分因子求解技巧

Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameter-order differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve. 【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques

常微分方程解题方法总结.docx

常微分方程解题方法总结 来源:文都教育 复习过半,课本上的知识点相信大部分考生已经学习过一遍 . 接下来,如何将零散的知识点有机地结合起来,而不容易遗忘是大多数考生面临的问题 . 为了加强记忆,使知识自成体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴,他强调读 书要 “由薄到厚、由厚到薄 ”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 dy P ( x)dx P ( x) dx Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程解法:令 dy P( x) y Q( x) y n(n≠0,1) 代入得到dx —u y1 n,有 du(1 n) y n dy , du(1 n) P(x)u(1 n)Q(x) dx 求解特征方程: 2pq 0三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程y p x y q x y f ( x) (1)两个不等实根: 1 ,2 通解: y c1 e 1x c2 e 2x (2)两个相等实根:12 通解: y c1c2 x e x (3)一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x] 当i不是特征值时,令 欢迎下载2

(整理)常微分方程(含解答)

第八章 常微分方程 【教学要求】 一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。 二、熟练掌握一阶可分离变量微分方程的解法。 三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+' 的解法——常数变易法和公式法。 四、理解线性微分方程解的性质和解的结构。 五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。 会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。 六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'' )(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。 所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数 或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。 关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。 【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。 【典型例题】 。的阶数是微分方程例)(e )(12x y y y =-'+'' 2.1.B A 4. 3.D C 解:B 。的特解形式是微分方程例)( e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++ x x c b ax D cx b ax C e ).(e ).(++++ 解:C 是一阶线性微分方程。下列方程中例)( ,3 x x y y x B y A y x cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0 . 解:B ???=='++1)1(0)1(4y y x y y 求解初值问题例 ??-=+x x y y y d )1(d 解:由变量可分离法得 c x y y ln ln 1ln +-=+∴ 代入上式得通解为由21ln ln 1)1(=?=c y x y y 211=+ 的特解。满足求解微分方程例1)0(e 252==-'y x y y x 解:由公式法得 ]d e e 2[e d 12d 1c x x y x x x +???=---?

微积分(B)常微分方程与差分方程 练习题

For personal use only in study and research; not for commercial use 2013-2014(2) 大学数学(B) 练习题 第六章 For personal use only in study and research; not for commercial use 一、选择题 1. 微分方程xy y 2='的通解为 ( ) A. C e y x +=2 ; B. 2 x Ce y =; For personal use only in study and research; not for commercial use C. 2 C x y e =; D. x Ce y =. 2. 函数221x c y c e +=是微分方程20y y y '''--=的 ( ) A. 通解; B. 特解; C. 不是解; D. 是解, 但既不是通解, 也不是特解. 3. 设线性无关的函数321,,y y y 都是二阶非齐次线性微分方程)()()(x f y x q y x p y =+'+''的解, 21,C C 是任意常数,则该方程的通解是 ( ) A. 32211y y C y C ++; B. 3212211)(y C C y C y C +-+; C. 3212211)1(y C C y C y C ---+; D. 3212211)1(y C C y C y C --++. 4. 微分方程22y x y y x += +'是 ( ) A. 可分离变量的微分方程; B. 齐次微分方程; C. 一阶线性齐次微分方程; D. 一阶线性非齐次微分方程. 二、填空题 1. 微分方程y y y x ln ='的通解是 . 2. 方程x y y sin 2='的奇解为_______________.

差分方程的解法分析及MATLAB实现(程序)

差分方程的解法分析及MATLAB 实现(程序) 摘自:张登奇,彭仕玉.差分方程的解法分析及其MATLAB 实现[J]. 湖南理工学院学报.2014(03) 引言 线性常系数差分方程是描述线性时不变离散时间系统的数学模型,求解差分方程是分析离散时间系统的重要内容.在《信号与系统》课程中介绍的求解方法主要有迭代法、时域经典法、双零法和变换域 法[1]. 1 迭代法 例1 已知离散系统的差分方程为)1(3 1)()2(81)1(43)(-+=-+--n x n x n y n y n y ,激励信号为)()4 3()(n u n x n =,初始状态为21)2(4)1(=-=-y y ,.求系统响应. 根据激励信号和初始状态,手工依次迭代可算出24 59)1(,25)0(==y y . 利用MATLAB 中的filter 函数实现迭代过程的m 程序如下: clc;clear;format compact; a=[1,-3/4,1/8],b=[1,1/3,0], %输入差分方程系数向量,不足补0对齐 n=0:10;xn=(3/4).^n, %输入激励信号 zx=[0,0],zy=[4,12], %输入初始状态 zi=filtic(b,a,zy,zx),%计算等效初始条件 [yn,zf]=filter(b,a,xn,zi),%迭代计算输出和后段等效初始条件 2 时域经典法 用时域经典法求解差分方程:先求齐次解;再将激励信号代入方程右端化简得自由项,根据自由项形 式求特解;然后根据边界条件求完全解[3].用时域经典法求解例1的基本步骤如下. (1)求齐次解.特征方程为081432=+-αα,可算出4 1 , 2121==αα.高阶特征根可用MATLAB 的roots 函数计算.齐次解为. 0 , )4 1()21()(21≥+=n C C n y n n h (2)求方程的特解.将)()4 3()(n u n x n =代入差分方程右端得自由项为 ?????≥?==-?+-1,)4 3(9130 ,1)1()43(31)()43(1n n n u n u n n n 当1≥n 时,特解可设为n p D n y )4 3()(=,代入差分方程求得213=D . (3)利用边界条件求完全解.当n =0时迭代求出25)0(=y ,当n ≥1时,完全解的形式为 ,)4 3(213 )41()21()(21n n n C C n y ?++=选择求完全解系数的边界条件可参考文[4]选)1(),0(-y y .根据边界条件求得35,31721=-=C C .注意完全解的表达式只适于特解成立的n 取值范围,其他点要用 )(n δ及其延迟表示,如果其值符合表达式则可合并处理.差分方程的完全解为

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

常微分方程和差分方程解法归纳

常微分方程解法归纳 1. 一阶微分方程部分 ① 可分离变量方程(分离变量法) 如果一阶微分方程),(y x f dx dy =中的二元函数),(y x f 可表示为) ()(),(y h x g y x f =的形式,我们称)()(y h x g dx dy =为可分离变量的方程。 对于这类方程的求解我们首先将其分离变量为 dx x g y h dy )() (=的形式,再对此式两边积分得到 C dx x g y h dy +=??)()(从而解出)()(y h x g dx dy =的解,其中C 为任意常数。 具体例子可参考书本P10—P11的例题。 ②一阶线性齐次、非齐次方程(常数变易法) 如果一阶微分方程),(y x f dx dy =中的二元函数),(y x f 可表示为 y x P x Q y x f )()(),(-=的形式,我们称由此形成的微分方程)()(x Q y x P dx dy =+为一阶线 性微分方程,特别地,当0)(≡x Q 时我们称其为一阶线性齐次微分方程,否则为一阶线性非齐次微分方程。 对于这类方程的解法,我们首先考虑一阶线性齐次微分方程 0)(=+y x P dx dy ,这是可分离变量的方程,两边积分即可得到?=-dx x P Ce y )(,其中C 为任意常数。这也是一阶线性 非齐次微分方程的特殊情况,两者的解存在着对应关系,设)(x C 来替换C ,于是一阶线性 非齐次微分方程存在着形如?=-dx x P e x C y )()(的解。将其代入)()(x Q y x P dx dy =+我们就可 得到)()()()()()()()()(x Q e x C x P e x C x P e x C dx x P dx x P dx x P =?+?-?'---这其实也就是 ? ='dx x P e x Q x C )()()(,再对其两边积分得C dx e x Q x C dx x P +? =? )()()(,于是将其回代入 ? =-dx x P e x C y )()(即得一阶线性微分方程)()(x Q y x P dx dy =+的通解? ? ? ??+??=?-C dx e x Q e y dx x P dx x P )()()(。 具体例子可参照书本P16—P17的例题。

时间序列分析讲义 第01章 差分方程

第一章 差分方程 差分方程是连续时间情形下微分方程的特例。差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。 §1.1 一阶差分方程 假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程: t t t w y y ++=-110φφ (1.1) 在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。在下面的分析中,我们假设t w 是确定性变量。 例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为: ct bt t t t r r I m m 019.0045.019.072.027.01--++=- 上述方程便是关于t m 的一阶线性差分方程。可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。 1.1.1 差分方程求解:递归替代法 差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。 由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程: 0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφ t t =:t t t w y y ++=-110φφ 依次进行叠代可以得到: 1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ 0111122113121102)1(w w w y y φφφφφφφ++++++=- i t i i t t i i t w y y ∑∑=-=++=0 111 1 0φφφφ (1.2) 上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。上述通过叠代将 t y 表示为前期变量和初始值的形式,从中可以看出t y 对这些变量取值的依赖性和动态变化 过程。 1.1. 2. 差分方程的动态分析:动态乘子(dynamic multiplier) 在差分方程的解当中,可以分析外生变量,例如0w 的变化对t 阶段以后的t y 的影响。假设初始值1-y 和t w w ,,1 不受到影响,则有:

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

微分方程与差分方程详细讲解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+?? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

微分方程与差分方程 详解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点内容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点内容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+? ? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

双曲方程基于matlab的数值解法

双曲型方程基于MATLAB 的数值解法 (数学1201,陈晓云,41262022) 一:一阶双曲型微分方程的初边值问题 0,01,0 1.(,0)cos(),0 1. (0,)(1,)cos(),0 1. u u x t t x u x x x u t u t t t ππ??-=≤≤≤≤??=≤≤=-=≤≤ 精确解为 ()t x cos +π 二:数值解法思想和步骤 2.1:网格剖分 为了用差分方法求解上述问题,将求解区域{}(,)|01,01x t x t Ω=≤≤≤≤作剖分。将空间区间[0,1]作m 等分,将时间[0,1]区间作n 等分,并记 1/,1/,,0,,0j k h m n x jh j m t k k n ττ===≤≤=≤≤。分别称h 和τ为空间和时 间步长。用两簇平行直线,0,,0j k x x j m t t k n =≤≤=≤≤将Ω分割成矩形网格。 2.2:差分格式的建立 0u u t x ??-=?? 2.2.1:Lax-Friedrichs 方法 对时间、空间采用中心差分使得 2h 1 1111)(2 1u u x u u u u u t u k j k j k j k j k j k j -+-++-= +=-= ????τ τ 则由上式得到Lax-Friedrichs 格式 1 11111()202k k k k k j j j j j u u u u u h τ+-+-+-+-+=

截断误差为 ()[]k k k j h j j R u L u Lu =- 1 11111()22k k k k k k k j j j j j j j u u u u u u u h t x τ+-+-+-+-??=+-+?? 23222 3 (),(0,0)26k k j j u u h O h j m k n t x ττ??= -=+≤≤≤≤?? 所以Lax-Friedrichs 格式的截断误差的阶式2()O h τ+ 令/s h τ=:则可得差分格式为 1111 11(),(0,0)222 k k k k k j j j j j s s u u u u u j m k n +--++=-+++≤≤≤≤ 0cos()(0)j j u x j m π=≤≤ 0cos(),cos(),(0)k k k m k u t u t k n ππ==-≤≤ 其传播因子为: ()()()e e G h i h i s h i h i σσσστσ---=-+e e 221, 化简可得: ()()()()()h s G h is h G στσσστ σsin 11,sin cos ,2 2 2--=-= 所以当1s ≤时,()1,≤τσG ,格式稳定。 * 2.2.2:LaxWendroff 方法 用牛顿二次插值公式可以得到LaxWendroff 的差分格式,在此不详细分析,它的截断误差为() h 2 2 +O τ ,是二阶精度;当2s ≤时,()1,≤τσG , 格式稳定。在这里主要用它与上面一阶精度的Lax-Friedrichs 方法进行简单对比。 2.3差分格式的求解

相关文档
最新文档