第七章隔振与阻尼减振

第七章隔振与阻尼减振
第七章隔振与阻尼减振

第七章隔振与阻尼减振

第一节隔振原理

一、振动的基本概念

1.单自由度振动

自由振动是振动系统在无外力作用下的振动形式。单自由度振动模型是最简单也是电子学用的振动模型,为了研究方便,把振动系统集成简化成3个参量进行研究:振动系统由质量块m、无质量的理想弹簧K和无质量的阻尼C 组成,位于完全刚性的基础之上,质量块只能在垂直方向上运动,其模型如图所示。

图1单自由度振动模型

该振动系统的微分运动方程为:

&&

C

y

m&

+Ky

y

=

+

其解为:

t j t j Be

Ae

t y ??

? ?

?---??

? ?

?-+-+=2

002

0011)(ζωζωζωζω

ζ-阻尼比,R

R R Km 0

2==

ζ; 0R -系统临界阻尼,Km R 20=;

0ω-系统振动固有频率(角速度),m

K

=0ω; A 、B -与振动系统初始条件有关的常数。

2. 固有频率

上式解式中的固有频率0ω是振动系统的一个重要参量,它是指振动刚体离开平衡位置后自由振动的频率,每个振动系统在每个自由度上都有一个固有振

动频率。振动系统固有频率与振动刚体质量和弹簧刚度有关,单自由度自由振动的固有频率为:

m

k f n π

πω2120=

=

若已知振动系统的静态下沉度,即刚体压在弹簧上后弹簧的压缩量,则系统

的固有频率为:

δ

5

=

n f

δ-弹簧静态下沉度。

3. 阻尼的效应

上述解式说明阻尼比ζ对振动系统的运动状态起到非常重要的影响:

(1)0=ζ,即无阻尼时,解式变为:

)cos()(0θω+=t A t y

A -初始条件确定的最大位移;

θ-初始条件确定的最大初始相位角。

即此时系统振动不受任何阻力作用,一旦受某一初始力作用之后,将以恒定的振幅做简谐振动。

(2)1<ζ,即系统阻尼小于临界时,解式变为:

()

θ

ζωζω+-=-t Ae t y t 201cos )(0

上式说明,阻尼越大或系统固有频率越高,则振动衰减越快,其振动振幅随

时间的衰减如图所示。

图2 欠阻尼振动

(3)1=ζ,即系统阻尼等于临界阻尼时,解式为:

t t Be Ae t y 00)(ωω--+=

则振动系统无法形成周期性振动,而是以指数规律恢复到平衡位置,其振幅与时间关系如图所示。

图3 临界阻尼振动

(4)1>ζ,即系统阻尼大于临界阻尼成为过阻尼,解式为:

t j t j Be

Ae t y ??

? ??---??

? ??-+-+=112

002

00)(ζωζωζωζω

此时振动系统也无法形成周期性振动,振幅呈指数单调衰减,如图所示。

图4过阻尼振动。

二、隔振原理

●隔振器之所以能起到隔振效果,是以弹性支承代替振源与地基之间的刚

性连接,从而在一定频率范围内降低了从振动源传递到地基的激振力。

●振动设备通过隔振器与刚性地基连接,可简化为如图所示的受迫振动系

统。

由于设备的周期性转动而产生周期性的外力激发系统振动,其运动微分

方程为:

t F Ky y

C y m ωcos 0=++&&&

图5 设备振动模型

● 隔振器的效果一般用隔振传递比T 来量化。

● 当质量块受迫振动时,通过弹簧传递到基础的作用力与迫使质量块振动

的驱动力的比值称为传递比T 。

● 传递比是表征隔振器隔振效果的物理量,传递比越小,则减振效果越好。

对于单自由度振动,且振动驱动力为简谐力,则得

2

222

2121????

??+???

????????? ??-????

??+==

n n n T

f f f f f f T T T ζζ T T -通过隔振器传递给基础的力; 0T -质量块受到的驱动力;

n

f f

-频率比,即驱动力频率与系统固有频率的比值。

图6 传递率与频率比的关系曲线

● 由图可知,当n ωω2>时,1

率的增加每倍频程衰减12dB 。

● 当n ωω2<时,1>T ,隔振器处在共振区域,隔振器会增大被隔振体的

振幅。

● 当n ωω2>时,传递率随着阻尼的增大而增大;当n ωω2<时传递率随

着阻尼的增大而减小。

● 但实际隔振系统中,基础的非刚性、被保护对象的非刚性以及隔振器的

质量分布都会降低高频的隔振性能,导致高频传递率比理想隔振器的传递率大,并出现周期性峰值。

● 考虑质量后的隔振模型如图7所示,此时隔振器具有连续分布质量、弹

性和阻尼,其传递率曲线如图8所示。

●当隔振器长度与隔振器中传播的振动的1/2波长的整数倍具有可比性,即

激振频率大于一定数值时,振动以弹性波的形式在其中传播,隔振器自身的质量会降低隔振器的隔振性能,这种被称为内部共振或驻波效应。

●此时,隔振器不再符合无质量假设,而应视为分布质量系统。由图8可

见,内部共振显著增大高频的传递率,并使得传递率出现周期性峰值。

隔振效果还可以用隔振效率来表示,隔振效率定义为:

-

I

=T

1(?

)

%

100

隔振效率比振动传递系数更为直观,因而在实际隔振设计中通常都采用隔振效率描述隔振效果。

第二节隔振设计及应用

一、隔振设计

从隔振原理可以看出,隔振效率主要跟振动源激励频率与系统固有频率之比、阻尼比有关。因此,隔振设计也主要围绕这几个参量进行。常规的隔振设计内容和程度如下。

1.隔振要求的确定

●在进行隔振设计时,首先要明确隔振的要求,即隔振的标准。

●建筑物内设备振动对人的影响主要是由于设备振动传递到建筑物内而激

发起的噪声,因而隔振要求主要与设备振动强度、建筑物内敏感点的位置与噪声允许材料、振动设备的安装位置、建筑结构等有关,需根据这些因素综合考虑确定所需隔振要求。

表1列举了各类建筑和设备所需的振动传递比T的建议值,此建议值是行业内专家经过多年工程经验总结而来,可供设计时作为参考。

表1各类建筑和设备所需的振动传递比的建议值

2. 计算振动源扰力频率

对于转动类设备,扰力频率f (或驱动频率)由设备的振动频率确定,其振动的基频一般即转动轴的转速,因此扰力频率f 为

60n f =

3. 确定隔振系统的固有频率

隔振系统的中由隔振系统的静态下沉度即刚体压在弹簧上后弹簧的压缩量求得:

δ

5

=

n f Hz

隔振设计的一个原则即尽量降低隔振系统有固有频率。

●从隔振原理可看出,只有当扰力频率 大于系统固有频率的2倍时,隔

振系统才起到隔振的作用。系统固有频率越低,隔振效率越高。

●降低隔振系统固有频率的方法一般有两种:一是增加设备的重量M,通

常可采用加混凝土基座(或称混凝土惰性块)的方法实现;二是减小隔振器的刚度K,即选择更柔软的隔振器,使得在同样荷载下产生更大的压缩量。

●通常尽量在振动设备下配置较大的混凝土惰性块,然后再在其下方设置

隔振装置,如图9和10所示。

●采用这种构造有如下优点:

(1)减少设备自身振动的振幅。由于增大了设备总质量,而设备激振力不变,因此可以降低设备振幅,对保护设备自身起到很大的改善作用。

阻尼减振降噪技术

第十章.阻尼减振降噪技术 A、教学目的 1.隔振及其原理(C:理解) 2.阻尼降噪及其原理(C:理解) 3.阻尼降噪的量度(B:识记) 4.阻尼材料和结构的特性及选用(B:识记) B、教学重点隔振原理、阻尼降噪原理及其量度、阻尼材料和结构的特性及选用。 C、教学难点 阻尼降噪原理及其量度、阻尼材料和结构的特性及选用。 D、教学用具 多媒体——幻灯片 E、教学方法 讲授法 F、课时安排 2课时 G、教学过程 声波起源于物体的振动,物体的振动除了向周围空间辐射在空气中传播的声(称”空气声”)外,还通过其相连的固体结构传播声波,简称“固体声”,固体声在传播的过程中又会向周围空气辐射噪声,特别是当引起物体共振时,会辐射很强的噪声。 振动除了产生噪声干扰人的生活、学习和健康外,特别是1~100Hz的低频振动,直接对人有影响。长期暴露于强振动环境中,人的机体将受到损害,机械设备或建筑结构也会受到破坏。 对于振动的控制应从以下两方面采取措施:一是对振动源进行改进以减弱振动强度;二是在振动传播路径上采取隔振措施,或用阻尼材料消耗振动的能量并减弱振动向空间的辐射。从而,直接或间接地使噪声降低。 一. 振动对人体的危害 从物理学和生理学角度看,人体是一个复杂系统。如果把人看作一个机械系统。 振动的干扰对人、建筑物及设备都会带来直接的危害。振动对人体的影响可分为全身振动和局部振动:全身振动是指人直接位于振动体上时所受的振动;局部振动是指手持振动物体时引起的人体局部振动。可听声的频率范围为20~20000 Hz,而人能感觉到的振动频率范围为1~100 Hz。振动按频率范围分为低频振动(30Hz以下)、中频振动(30-100Hz)和高频振动(100 Hz以上)。 实验表明人对频率为2—12 Hz的振动感觉最敏感。对于人体最有害的振动频率是与人体某些器官固有频率相吻合(即共振)的频率。这些固有频率是:人体在6 Hz附近;内脏器官在8Hz附近;头部在25 Hz;神经中枢则在250Hz左右。低于2Hz的次声振动甚至有可能引起人的死亡。人对振动反应的敏感度按频率和振幅大小,大致分为6个等级,见图10-1。(P203) 振动的影响是多方面的,它损害或影响振动作业工人的身心健康和工作效率,干扰居民的正常生活,还影响或损害建筑物、精密仪群和设备等。根据人体对某种振动刺激的主观感觉和生理反应的各项物理量,国际标准化组织(ISO)和一些国家推荐提出了不少标准,主要包括局部振动标准(ISO5349-1981, P203)、整体振动标准(ISO2631-1978, P204)和环境振动标准(GB10070-88, P205)。 局部振动标准(ISO5349-1981):如人的手所感受的振动。

电子设备的隔振技术及减振器选型

电子设备的隔振技术及减振器选型 1、概述 电子设备受到的机械力的形式有多种,其中危害最大的是振动和冲击,它们引起的故障约占80%。它们造成的破坏主要有两种形式,其一是强度破坏:设备在某一激振频率下产生振幅很大的共振,最终振动加速度所引起的应力超过设备所能承受的极限强度而破坏;或者由于冲击所产生的冲击应力超过设备的极限强度而破坏。其二是疲劳破坏:振动或冲击引起的应力虽远低于材料的强度,但由于长时间振动或多次冲击而产生的应力超过其疲劳极限,使材料发生疲劳损坏。系统的振动特性受三个参数的影响,即质量、刚度和阻尼。对于电子设备的振动和冲击隔离来说,隔振系统的质量一般是指电子设备的质量,而刚度和阻尼则由设备的支撑装置提供。在机械环境的作用下,尤其是在舰船、坦克、越野车辆、飞机等运载工具中,设备及其内部的电子器件、机械结构等都难以承受振动冲击的干扰。 表1各种运载工具振动、冲击和离心加速度参数 2

为了减少或防止振动与冲击对电子设备的影响,通常采取两种措施:a) 通过材料选用和合理的结构设计,增强设备及元器件的耐振动耐冲击能力;b) 在设备或元器件上安装减振器,通过隔离振动与冲击,有效地减少振动与冲击对电子设备的影响。 2、隔振技术 2.1 隔振 隔振就是通过在设备或器件上安装减振装置,隔离或减少它们与外界间的机械振动传递。 在电子设备与基础之间安装弹性支承即减振器,以减少基础的振动对电子设备的影响程度,使电子设备能正常工作或不受损坏;这种对电子设备采取隔离的措施,称为被动隔振。一般情况下,仪器及精密设备的隔振都是被动隔振。 被动隔振系数: 振动来自基础,其运动用U=U o Si n(? t)表示,也是周期振动。被动隔振也可用隔振系数n表示其隔振效果,它的含义是被隔离的物体振幅与基础振幅之比(或是振动速度幅值、加速度幅值的比值) ,可用下式计算: n = X。/ U O ={[1+4 E 2(f / f o) 2 f / f o) 2 ] 2 + 4 2(f/f o) 2} °'5 (1) 式中X O——物体的垂向振幅(m); U o——基础的垂向振幅(m)。 式中f――振动力的频率(H z); f o――隔振系统的固有频率(H Z); k——隔振器的刚度(N/ m);

振动的隔离与阻尼减振

振动是造成工程结构损坏及寿命降低的原因,同时,振动将导致机器和仪器仪表的工作效率、工作质量和工作精度的降低。 控制振动的一个重要方法就是隔振。从振动控制的角度研究隔振,不涉及结构强度的计算,它只是研究如何降低振动本身。这里所介绍的隔振方法,就是将振源与基础或连接结构的近刚性连接改成弹性连接,以防止或减弱振动能量的传递,最终达到减振降噪的目的。 隔振的作用有两个方面:一是减少振源振动传至周围环境;二是减少环境振动对物体或设备的影响。原理是在设备和底座之间安装适当的隔振器,组成隔振系统,以减少或隔离振动的传递。有两类隔振,一是隔离机械设备通过支座传至地基的振动,以减少动力的传递,称为主动隔振;另一种是防止地基的振动通过支座传至需保护的精密设备或仪表仪器,以减小运动的传递,称为被动隔振。 在一般隔振设计中,常常用振动传递比T 和隔振率η来评价隔振效果。主动隔振传递比等于物体传递到底座的振动与物体振动之比,被动隔振传递比等于底座传递到物体的振动与底座的振动之比,两个方向的传递比相等。 隔振效率: η=(1- T ) ·100% 传递比T : ]u D )u -/[(1u D (1T 2 2 2 2 2 2 ++= ) 式中D 为阻尼比,0 f u f = 为激振频率和共振频率的比。 只有传递比小于1才有隔振效果。因此T<1的区域称为隔振区。 隔振可以分为两类,一类是对作为振动源的机械设备采取隔振措施,防止振动源产生的振动向外传播,称为积极隔振或主动隔振;另一类是对怕受振动干扰的设备采取隔振措施,以减弱或消除外来振动对这一设备带来的不利影响,称为消极隔振或被动隔振。对于薄板类结构振动及其辐射噪声,如管道、机械外壳、车船体和飞机外壳等,在其结构表面涂贴阻尼材料也能达到明显的减振降噪效果,我们称这种振动控制方式为阻尼减振。

国产阻尼减振降噪材料

国产阻尼减振降噪材料(潜艇等) 前言 ?nbsp; 随着科学技术的发展和人们环保意识的提高,降低舰船等交通工具的振动和噪声越来越迫切。如何控制舰船的振动和噪声是一个复杂的系统工程,也是衡量一个国家造船水平的重要标志。 ?nbsp; 舰船上存在着多种振源,其产生的振动和噪声会造成严重的危害,如引起铆钉松动,结构破坏;影响船员的舒适性,易造成船员疲劳;影响仪器、仪表的正常工作,降低使用精度等等。对军船而言,振动和噪声还会降低声呐、雷达的作用距离,大大削弱其战斗力。 ?nbsp; 传统的减振降噪方法是结构加强,其主要缺点是振动能没有消耗掉,从而导致噪声向其它部位传播。阻尼材料利用高分子材料的粘弹性将振动能转化为热能耗散掉,从而有效地降低结构振动和噪声。阻尼技术对宽频带随机振动和噪声特别有效,尤其适合于以框架结构为主的造船业。 ?nbsp; 阻尼技术发展简史 ?nbsp; 本世纪50年代初,德国专家H.Oberst 最先提出自由阻尼结构的理论并在飞机上得到应用。50年代末,美国专家Kerwin 和 Ungar等人将Oberst的复刚度法推广至约束阻尼结构,该结构最早应用于核潜艇壳体和主机机座上。理论和应用表明:约束阻尼结构具有更好的减振降噪效果。目前,美国、俄罗斯、英国、法国、日本等发达国家在舰船上广泛使用各类阻尼材料。 ?nbsp; 我国从60年代起开始研究自由阻尼材料,70年代初具规模。80年代末期约束阻尼结构的阻尼材料在舰船上得到应用,主要产品有上海钢铁研究所的阻尼钢板、七二五所的SBⅡ阻尼涂料、化工部海洋化工研究院(青岛)的ZHY-171和T54/T60阻尼涂料等。 ?nbsp; 目前,阻尼材料已广泛应用于航空、航天、舰船、汽车、机械、纺织、建筑、体育等领域,具有重要的社会和经济效益。 ?nbsp; T54/T60阻尼涂料的主要性能 ?nbsp; 阻尼材料的作用原理是将振动能转化为热能耗散掉,使产生噪声的振动能量大大衰减,即从声(振)源上有效地控制振动和噪声。因此阻尼涂料主要用于振动和噪声的产生

阻尼减震橡胶

阻尼减震橡胶 现实生活中振动无处不在,振动的现象是不容忽视也是不可缺少的,人们一直致力于振动的产生,控制和消除的研究,所有的物体的振动都会产生声音,如果没有振动就不会有音乐,人类也无法进行语言交流了.但是振动也会对人们的生活产生许多不利的影响,如:共振会导致装置的损坏,噪音会影响人类的生活环境等.怎样将振动对人们产生的不利影响减到最小,是当前减震技术发展和追求的方向。减震技术的核心是消除干扰性振动或找出解决的方法,现在比较适用和成熟的减震方法是橡胶减震系统,早在橡胶应用于工业之初,人们就使用了橡胶隔离来进行减震。 橡胶是一种很理想的阻尼材料,阻尼减震技术是利用橡胶特有的粘弹性,在震动过程中,在外力作用下导致剧烈的内摩擦,产生了反作用力,将动能转化为热能,实现了能量转换,从而达到降低震幅的目的。 减震橡胶的作用: 代替金属弹簧起到消振,吸振作用.其主要的性能要求在静刚度、动刚度、耐久性能上。 减震橡胶的特点: ①橡胶是由多种材料相组合而成,同一种形状通过材料调整可以拥有不同的性能. ②橡胶内部分子之间的摩擦使它拥有一定的阻尼性能,即运动的滞后性(受力过程中橡胶的变形滞后于橡胶的应力). ③橡胶在压缩、剪切、拉伸过程中都会产生不同的弹性系数 减震橡胶的性能特征: 静刚度的定义:指减震橡胶在一定的位移范围内,其所受压力(或拉伸力) 变化量与其位移变化量的比值. 动刚度的定义:指减震橡胶在一定的位移范围内, 一定的频率下, 其所受压力(或拉伸力)变化量与其位移变化量的比值. 动倍率的定义指减震橡胶在一定的位移范围内所测定的动刚度与静刚度的比值,即:Kd/Ks 损耗系数: 在减震橡胶的受力过程中,橡胶的变形与橡胶的应力之间存在着一定的相位差,而橡胶的应力一般要超前于橡胶的变形一定的相位角δ 扭转刚度: 指减震橡胶在一定的扭转角范围内,其扭转力矩与扭转角之间的比值. 耐久性能: 指减震橡胶在一定的方向一定的预加载荷、振幅、振动频率下,经往复振动n次后产品完好或将产品往复振动直至破坏时的振动次数, 耐久性能是衡量一个减震橡胶件的安全性能和综合性能的重要指标.

隔振与阻尼的关系

隔振与阻尼的关系 隔振是利用振动元件间阻抗的不匹配,以降低振动传播的措施。隔振技术常应用在振动源附近,把振动能量限制在振源上,不向外界扩散,以免激发其他构件的振动;也应用在需要保护的物体附近,把需要低振动的物体同振动环境隔开,避免物体受振动的影响。采取隔振措施主要是设计合适的隔振器。隔振的原理是把物体和隔振器(主要是弹簧)系统的固有频率设计得比激发频率低得多(至少低3倍);但对高频振动要注意把隔振器的特性阻抗设计得与连结构件的特性阻抗有很大变化(至少差3倍)。为此,隔振器如用钢丝弹簧,还要垫上橡皮、毛毡等作的垫子。在隔振器的设计中,还应该考虑阻尼的作用。对启动过程中变速的机械,设计隔振器时应加阻尼措施,以免经过共振频率时振动过大。 阻尼是通过粘滞效应或摩擦作用把振动能量转换成热能而耗散的措施。阻尼能抑制振动物体产生共振和降低振动物体在共振频率区的振幅,具体措施就是提高构件的阻尼或在构件上铺设阻尼材料和阻尼结构。如近年来研制成的减振合金材料,具有很大的内阻尼和足够大的刚性,可用于制造低噪声的机械产品。另外,在振动源上安装动力吸振器,对某些振动源也是有效的降低振动措施。对冲击性振动,吸振措施也能有效地降低冲击激发引起的振动响应。电子吸振器是另一种类型的吸振设备。它的吸振原理与上述隔振、阻尼不同,它是利用电子设备产生一个与原来振动振幅相等、相位相反的振动,来抵销原来振动以达到降低振动的目的(见有源降噪)。 隔振和阻尼的关系一般情况下,隔振设备和阻尼设备的功能是差不多的,两者是相辅相成的,所以在选型的时候,一定要挑选合理的平衡点。 阻尼的作用 1 / 2

单纯从隔振观点来说,阻尼的增加会降低隔振效果,但是在机器的实际工作过程中,外界的激励,除简谐型外还可能包含一些不规则的冲击,由于冲击会引起设备较大振幅的自由振动,增加阻尼的目的就是能使自由振动很快消失,尤其是当隔振对象在起动及停车而经过共振区时,阻尼就显得更加重要。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

隔震与减震技术介绍

隔震与减震 一、概述 二、基底隔震 三、悬挂隔震 四、耗能减震 五、冲击减震 六、吸振减震 七、主动控制减震 一、概述 ?地震引起结构振动的全过程是:由震源产生地震动,通过传播途径传递到结构上,从而引起结构的振动反应。 ?通过在不同部分采取振动控制措施,就成为不同的积极的抗震方法。

1、消震 通过减弱震源振动强度达到减小结构振动的方法。 2、隔震 通过某种装置,将地震动与结构隔开,减弱或改变地震动对结构作用的强度或方式,达到减小结构振动的目的。 隔震方法:基底隔震 悬挂隔震 3、被动减震 通过采用一定的措施或附加子结构,吸收或消耗地震传递给主结构的能量,达到减小结构振动的目的。 被动减震方法: 耗能减震 冲击减震 吸震减震 4、主动减震 根据结构的地震反应,通过自动控制系统的执行机,主动给结构施加控制力,达到减小结构振动的目的。 ? 两大类减震方法: (1)被动控制方法。这种方法无外部能源供给,也称无源控制技术。包括隔震技术和被动减震技术。 (2)主动控制方法。这种方法有外部能源供给,也称有源控制技术。 ? 与传统的消极抗震方法相比,减震方法优点: (1)减小地震作用,降低结构造价,提高结构抗震可靠度。隔震方法能够控制传到结构上的地震力,克服确定荷载的困难。 (2)减小结构在地震作用下的变形,保证非结构构件不破坏,减小震后维修费用,对现代建筑,非结构构件的造价占总造价的80%以上。 (3)隔震、减震装置的更换或维修比更换、维修结构构件方便、经济。 (4)精密加工设备、核工业设备等结构物,只能用隔震、减震的方法满足严格的抗震要求 二、基底隔震 1、原理 ? 基底隔震是在结构物地面以上部分的底部设置隔震层,限制地震动向结构物的传递。 ? 基底隔震,主要用于隔离水平地震作用。隔震层的水平刚度显著低于上部结构的侧向刚度。此时可近似为上部结构是一个刚体,如图8.18所示。设结构的总质量为m ,绝对水平位移为y ,地震动的水平位移为xg ,隔震层的水平刚度为k ,阻尼系数为c ,则底部隔震系统的运动平衡方程为: ? ? 上部结构绝对位移(加速度)振幅与地震动位移(加速度)振幅的比值R 为 g g kx x c ky y c y m +=++ 222222 2max max max max ]4)1[(41βξββξ+-+===g g x y x y R

振动隔离

振动隔离 4.1.1隔振概述 振动隔离是采用附加子系统将振源与需减振的对象隔开,以减少振源对隔振对象的影响。 隔振分第一类隔振(隔力)与第二类隔振(隔幅)。振源产生力激励时为第一类隔振,如连于基础的各种动力机械的隔振就是减小振源的激励方向基础的力传递,基础是隔离对象。振源产生运动激励时的隔振为第二类隔振,入震动着的飞机机体会引起连于其上的电子设备的振动,这是的隔振就是减小作为基础的飞机机体的运动激励向以表、电子设备等的运动传递,隔离对象是以表、电子设备等。 作为附加子系统的隔振装置通常称为隔振器,它可由弹性元件、阻尼元件、惯性元件以及它们的组合构成 根据振源的频率特性,隔振可分为单频隔振、多频隔振和随机激励隔振;根据隔振对象的自由度,隔振可分为单自由度系统隔振、多自由度系统隔振及无限多自由度系统隔振;依隔振对象的特性,隔振可分为线性系统隔振及非线性系统隔振。这里只讨论线性系统。 隔振技术有正过程与逆过程两种途径。正过程是先根据振源选定隔振器的布置方式及特性参数,然后计算隔振效果,不满足要求时,修改上次的选择,重新进行计算,知道满足要求为止,逆过程是在振源特性及其参数已知的条件下,利用最优化技术,直接确定满足预定隔振器布置的方式及其特性参数[11]。 本文将主要讨论的是单自由度系统的隔振,采用的技术是逆过程。 4.1.2单自由度系统的隔振 对力激励,研究的力学模型为弹性元件与阻尼元件并联的隔振器。设振源质量m 远小于基础质量,振源只有x 向自由度,基础为绝对刚体,则可得质量m 的运动方程: t F x c kx x m ωsin 0=++ (4—1) 式中 m -----------质量; c ------------阻尼系数; k ------------弹簧常数; x ------------对平衡位置的位移。 上式x 的通解为: ()?ω-=t x x sin 0 (4—2)

噪声和振动控制中阻尼技术的理解

噪声和振动控制中阻尼技术的理解 侯永振 (天津市橡胶工业研究所,天津 300384) 摘要:简要介绍了阻尼材料以自由阻尼、约束阻尼两种阻尼处理方式构成结构阻尼,以及阻尼技术用于振动隔离,通过降低共振可传递性,从而使振动和噪声得到控制的基本原理。 关键词:结构阻尼;振动隔离;阻尼处理;噪声降低 1 导论 机械运转产生的振动现象随处可见,飞机、舰船、机床、汽车、轨道交通(如城市轻轨火车)、水暖管道、纺织机械、空调器、电锯、升降机等机械发出较强的振动和噪声,不仅污染环境,还会影响设备的加工精度,加速结构的疲劳损坏和失效,缩短机器寿命,影响交通车辆的舒适性。 不论怎样的应用,通常都需要几种技术对噪声和振动进行有效控制,而每一种技术都有助于环境的更加安静。对于大多数应用来说,可以采用四种控制噪声和振动的方法:(1)吸收;(2)使用障板和罩子;(3)结构阻尼;(4)隔振。在这些分类中虽然有一定程度的相互交叉,但通过对问题的恰当分析和减振降噪技术的合理应用,每种方法都能够产生显著的减振降噪效果。仅次于吸收材料和大块障板层的应用,通常还要弄明白减振降噪的原理。因此,本文将集中介绍涉及降低结构振动的第(3)和第(4)种方法。 2 结构阻尼 结构阻尼降低振源处由冲击产生的稳态的噪 作者简介:侯永振(1957-),男,天津市橡胶工业研究所高级工程师,主要从事橡胶阻尼材料、橡胶减振材料及制品、橡胶防腐衬里、橡胶吸声材料及制品、乳胶手套、胶粘剂、橡胶杂品等研究和开发工作。 声,它所消耗的是在结构阻尼构成之前并以声的形式在结构中辐射的振动能。然而阻尼仅抑制共振。尽管有时由于敷设阻尼材料从而提高了系统的刚度和质量而对于强迫振动的非共振振动的衰减有点效果,但靠阻尼则衰减很少。 阻尼处理由为了提高阻尼结构消耗机械能能力而被应用于阻尼元件的任何材料(或材料组合)组成。当用于强迫振动结构时,在其固有(共振)频率或其附近,它常是最有用的。该固有(共振)频率受由许多频率成份构成的激振力的振动频率的影响,而这许多频率成份受冲击或其它瞬态力或传递到噪声辐射的结构表面的振动的影响。 尽管所有材料都呈现一定量的阻尼,然而许多材料(如钢、铝、镁和玻璃)有如此小的内部阻尼,是传递振动和噪声的良好介质,几乎不具备降低振动和噪声的能力,以致于它们的共振性能使其成为了有效的声辐射器。但钢材等金属材料强度高,常作为结构材料使用;而橡胶等高分子材料,由于本身的化学结构特性,使得它们具有较高的阻尼性能,具备很强的降低振动和噪声的能力,是最主要的减振降噪材料之一,代表着减振降噪材料的发展方向,尤其是近十几年发展起来的高阻尼橡胶或其它高分子阻尼材料,具备非常突出的减振降噪性能,几乎是目前从科学意义上讲最理想的减振降噪材料。但这类阻尼材料

06第六讲 振动的隔离

噪声治理课程 第六讲 振动的隔离 1 振动及传递 1.1 转动设备的振动 转动的设备产生振动,振动通过基础向四周结构传递。对于旋转的转动设备,如风机、水泵和某些机床等,主要以旋转频率为主导振动频率。如某风机的转动频率为3000转/分钟,那么它正常工作时,振动频率主要在50Hz 。对于往复运动的设备,如气泵、活塞泵、压缩机、内燃机和蒸汽机等,因其运动形式不但包括旋转,还包括曲柄连杆的来回运动,往复发生冲力和撞击,振动形式复杂,存在各种频率分量的振动频率。如气泵的振动,每次活塞的往复冲击相当于在设备上使用锤子敲打,从低频到高频都有很大的振动。 设备产生的某一频率的振动在建筑结构中传播过程中,频率将保持不变,振动的强度可能发生不同变化,既可能增大,也可能降低。降噪工程中总是希望尽可能降低振动的传播,减少结构辐射噪声。但是,当振动发生共振时,振动被增大,严重时会损坏设备和结构。 1.2 固有频率 转动设备和其支撑结构是一个振动单体,振动通过支撑结构传递给基础。每一个振动单体都存在固有频率,即设备在该频率上振动时,发生共振,振动传递给基础的幅度最大。固有频率是物体的自然属性,只与物体的重量和支撑的弹性有关,不受外界作用的影响,与设备运转的状态无关。物体重量越大,支撑结构弹性越软,固有频率越低。发生共振时,能量在固有频率上无穷止地叠加,理论上传递到基础的振动幅度将达到无穷大,基础将被破坏,无坚不摧。曾经发生士兵列队行进时步伐的频率与大桥共振频率一致,发生共振,大桥坍塌。一般情况下,发生共振的时间很短,能量有限,而且,振动时由于阻尼消耗了能量,共振不会达到无限大。但是,共振时,能量叠加到原来的10倍、100倍、1000倍或更大也是常见的事情。 设备启动时,转动频率会由静止逐渐增大到稳态频率,设备停止时,转动频率会从稳态频率逐渐降低到静止。如果发生共振的频率低于稳态频率,那么,设备启停时,转动频率将在某一小段时间内和共振频率相同或近似而发生共振,共振的频率区域被称为共振区。设备启停应尽量迅速通过共振区,防止因共振产生过大的振动。 弹簧系统固有频率与弹簧静态下沉量有关。弹簧静态下沉量 是指,在静态荷载状态下,弹簧被压缩的长度。经验计算公式为:delt f ?=21 0,其中0f 是固有频率,单位Hz ;delt 为静 态压缩量,单位为m 。 1.3 撞击振动 使用手指敲击桌面时,会发出“当当”的声音,其原因是, 手指撞击使桌面发生了振动,振动向外辐射了声音。撞击振动 的特点,作用时间短,振动冲击能量大,频率分量丰富。我们 听到的“当当”声音与桌面的固有频率有关,手指撞击到桌面 在桌面上产生了各种频率分量的振动,固有频率附近的振动被 加强,较多地辐射到空气中,形成空气声被人听闻。锣鼓等由 于缺少阻尼,敲击后,共振非常强烈,能量消耗比较持久,声 音很大,如果将其粘上胶皮,阻尼增大,共振减弱,声音变小。

8.阻尼与隔振

9.隔振技术与阻尼减振 课程教学基本要求: 了解振动的传播及危害,振动控制的基本方法,理解隔振原理,隔振的力传递率,隔振元件,具备隔振设计及应用的能力。 课程内容: 振动的传播及危害,振动控制的基本方法,隔振原理,隔振的力传递率,隔振元件,隔振设计及应用,阻尼减振原理,阻尼材料,阻尼减振结构。振动的危害及其控制的基本方法。环境振动,机械振动,隔振的力传递率,隔振效率。固体声隔绝,隔振技术,阻尼减振。 9.1振动概述 一、振动的来源 振动是自然界中普遍存在的现象,其来源可分为自然振源和人工振源两大类:自然振源如地震、海浪和风等;人工振源如运转的各种动力设备、运行的交通工具、电声系统中的扬声器、人工爆破等。 凡是运转的机器设备,如锻压冲压机械、电机、风机、空压机、内然机等等,由于机械部件之间力的传递,总是产生一定的振动。这些振动的能量一部分由振动的机器直接向空中辐射,称之为空气声,另一部分能量则通过承载机器的基础向地层或建筑物结构传递,这种通过固体传导的声叫做固体声。 振源的振动除了向周围空间辐射在空气中传播的声音(称“空气声”)外,还通过与其相连的固体结构传播声波,简称“固体声”。固体声在传播的过程中又会通过固体表面的振动向周围空气辐射噪声,特别是当引起物体共振时,会辐射很强的噪声。固体声的隔绝与空气声隔绝在技术上是完全不同的。 二、振动的影响及危害 振动不仅能激发噪声,而且还能通过固体直接作用于人体,振动也是危害身体健康,降低工作效率,影响居民生活的环境物理因素。同时,振动会影响精密仪器正常工作,强烈的振动有损于机器结构和建筑物结构。 振动特别是l一100Hz的低频振动,直接对人有影响,长期暴露于强振动环境中,人的机体将受到损害,振动产生的噪声会干扰人的生活、学习和工作;振动也会影响设备特别是精密仪器的正常工作,有时甚至破坏设备和建筑结构。 在振动环境中劳动和工作的人不但身心健康受到损害,而且由于振动使他们的视觉受到干扰,手的动作受妨碍和精力难以集中,造成操作速度下降、生产效率降低,并且可能出现质量事故。生产性振动引起的疾病已成为常见的职业病。 振动能沿介质传播到居民的住宅内,使居民感受到振动。一般来说,传播到居民室内的振动速度不是很大,但由于居民需要较好的睡眠、休息、学习环境,因而环境振动干扰居民的正常生活,心理上受到压抑、精神不安等,久而久之会使居民的身体健康受到影响。 三、振动控制的基本方法 振动控制与噪声控制一样,也是从振源、振动传递途径和振动所影响的地点三个环节进行治理。降低振动设备振源馈入支撑结构的振动能量称为积极隔振,减少来自支撑结构或外界环境的振动传入某一机器设备称为消极隔振,两者采用的控制方法是相同的。

第四章 电子设备的减振与缓冲

第四章电子设备的减振与缓冲 4.1振动与冲击对电子设备的危害 4.1.1 机械作用的分类 电子设备在使用和运输过程中,不可避免地会受到振动、冲击等机械力的作用,具体有以下四种类型。 1.周期性振动 这是指机械力的周期性运动对设备产生的振动干扰,并引起设备作周期性往复运动。 表征周期性振动的主要参数有:振动幅度和振动频率。 2.非周期性干扰——碰撞和冲击 这是指机械力在作非周期性扰动对设备的作用。其特点是作用时间短暂,但加速度很大。根据对设备作用的频繁程度和强度大小,非周期性扰动力又可分为: (1)碰撞设备或元件在运输和使用过程中经常遇到的一种冲击力。这种冲击作用的特点是次数较多,具有重复性,波形一般是正弦波。 (2)冲击设备或元件在运输和使用过程中遇到的非经常性的、非重复性的冲击力。。其特点是次数较少,不经常遇到但加速度大。 表征碰撞和冲击的参数:波形、峰值加速度、碰撞或冲击的持续时间、碰撞时间、碰撞次数等。 3.离心加速度 这是指运载工具作非直线运动时设备受到的加速度。 4.随机振动 这是指机械力的无规则运动对设备产生的振动干扰。随机振动在数学分析上不能用确切的函数来表示,只能用概率和统计的方法来描述其规律。随机振动主要是外力的随机性引起的, 4.1.2 振动与冲击对电子设备的危害 上述四种机械作用均会对电子设备造成影响,其中危害最大的是振动与冲击,如果结构设计不当,就会导致电子设备的损坏或无法工作。 它们造成的破坏主要有两种形式,其一是强度破坏:设备在某一激振频率下产生振幅很大的共振,最终振动加速度所引起的应力超过设备所能承受的极限强

度而破坏;或者由于冲击所产生的冲击应力超过设备的极限强度而破坏。其二是疲劳破坏:振动或冲击引起的应力虽远低于材料的强度,但由于长时间振动或多次冲击而产生的应力超过其疲劳极限,使材料发生疲劳损坏。 振动和冲击电子对电子设备造成的危害具体表现在: 1.没有附加锁紧装置的接插装置会从插座中跳出来,并碰撞其他元器件而造成破坏。 2.电真空器件的电极变形、短路、折断;或者由于各电极作过多的相对运动而产生噪声,不能正常工作。 3.振动引起弹性元件产生变形,使具有触点的元件(电位器、波段开关、插头座等)产生接触不良或开路。 4.指示灯忽亮忽暗,仪表指针不断抖动(或指针脱落),使观察人员读数不准,视觉疲劳。 5.当零部件的固有频率和激振频率相同时,会产生共振现象。例如,可变电容器极片共振时,会使电容量发生周期性变化等。 6.安装导线变形及位移,使其相对位置改变,引起电感量和分布电容发生变化,从而使电感电容的耦合发生变化。 7.机壳和基础变形,脆性材料(如玻璃、陶瓷、胶木、聚苯乙烯)断裂。 8.防潮和密封措施受到破坏。 9.锡焊和熔焊处断开,焊锡屑掉落在电路中间而造成短路故障。 10.螺钉、螺母松开甚至脱落,并撞击其它零部件,造成短路和破坏。有些用来调整电气特性的螺丝受振后会产生偏移。 由此看出,振动与冲击对电子设备的影响是多方面的,一般振动引起的是元器件或材料的疲劳损坏,而冲击则是由于瞬时加速度很大而造成元器件或材料的强度破坏;振动引起的故障约占80%,冲击引起的故障约占20%。 4.2减振和缓冲基本原理 为了减少或防止振动与冲击对电子设备的影响,通常采取两种措施:a) 通过材料选用和合理的结构设计,增强设备及元器件的耐振动耐冲击能力;b) 在设备或元器件上安装减振器,通过隔离振动与冲击,有效地减少振动与冲击对电子设备的影响。 4.2.1隔振的基本原理

粘弹性阻尼减振的基本概念

第一章粘弹性阻尼减振的基本概念 1.1振动控制和阻尼的概念 1.1.1振动与噪声的危害 振动是一种普遍的物理现象,我们这里讨论涉及到的震动问题主要是机械结构的振动及由此产生的物理现象。 大多数情况下,机械振动会造成严重危害,必须采用各种有效的方法加以控制,振动与噪声的危害主要包括: 1)振动造成机械结构的损坏,破坏工作条件。如建筑物在地震中受到随机 激励后,其强度承受不了共振响应造成损坏。 2)振动降低机器、仪器或工具的精度。如运载工具(火箭等)的命中精度 和控制装置如仪器、计算的抗振能力直接有关。 3)振动引起噪声,严重污染环境。如一些大型的振动设备工作过程中会产 生严重的噪声污染。 4)振动增加机械磨损,降低及其寿命。如在常高在低不平的路面上行驶, 汽车的寿命会严重减少。 1.1.2振动与噪声控制的主要方法 振动控制的工程含义有两层:振动利用和振动抑制。前者指利用系统的振动以实现某种工程目的;后者则指抑制系统的振动以保证系统正常工作,延长其使用寿命,本文主要讨论的是后面一个问题。 振动控制的方法很多,就机械产品设计和结构改进的角度上作分析和研究,振动和噪声控制主要是从消除振源或噪声源;隔离振源(及声源)与受影响机构间的传递和联系;以及减少结构本身响应这三个方面采取措施。 1)消除振动源或噪声源。 2)隔离振源(或声源)与受影响机构(或环境)之间的联系及能量传输。 3)结构的抗振及抗噪设计。 1.2阻尼减振降噪技术的定义以及工程应用实例 1.2.1阻尼技术的定义 从减振降噪的角度上来看,阻尼是指损耗振动能量的能力、也就是将机械振动及声振的能量,转变成热能或其它可以损耗的能量,从而达到减振及降噪的目的。 阻尼减振、降噪技术就是充分运用阻尼耗能的一般规律,从材料、测量、

阻尼减振材料滞弹性位移场模型参数寻优及计算

阻尼减振材料滞弹性位移场模型参数寻优及计算* 曹友强1邓兆祥1,2李军1 (1.重庆大学机械传动国家重点实验室,重庆400030 2.汽车NVH及安全控制国家重点实验室,重庆400039) 摘要:针对阻尼材料滞弹性位移场模型多参数、多目标、非线性优化问题,给出了一种粒子群算法与序列二次规划法相结合的多参数变量寻优解法,并将模型优化结果与标准流变学模型、分数导数模型及试验结果进行了比较。基于ADF 数学模型建立了粘弹性集中参数系统及阻尼夹芯板结构的动力学方程,并进行了结构模态响应分析及阻尼预测。计算结果表明:该组合寻优解法不仅能得到较好的最优解,而且确定出的模型参数准确可信,优化后的ADF模型能很好的再现阻尼材料的本构特征。 关键词:阻尼材料;ADF模型;混合算法;多参数优化;动力特性 中图分类号:TH113.1文献标识码:A 在工程实践中,含阻尼材料的复合结构常被广泛用于抑制结构的振动和噪声[1]。粘弹性阻尼材料的本构模型决定了这类结构的动力学方程形式,由此可见阻尼材料本构模型的选用和计算尤为重要。由于粘弹性材料的本构关系随时间、频率和温度的变化而变化,使得粘弹性材料本构模型变得复杂多样,其参数优化计算也变得比较繁琐。目前大多数文献[2-5]都是直接采用经验参数代入本构模型进行计算,缺少对模型参数的优化选取。 由Lesieutre[6-7]于1995年提出的滞弹性位移场(Anelastic Displacements Fields,ADF)模型从位移场的角度出发,将总的位移场分为弹性部分和滞弹性部分。ADF模型的辅助坐标在单元之间是连续的,体现了其位移场的特点,它能直接进行有限元解算,能很容易融入有限元动力学方程,因此受到众多学者的青睐[6-8]。但是,ADF模型各参数的确定是一个非线性、多变量、多目标规划,具有约束条件的优化问题,解决这一问题难度较大。针对此类问题的全局最优解没有任何数学条件可以表征,基于传统数学规划的优化方法因其优化结果易陷入局部极值而难以处理[9],现代优化算法如遗传算法容易出现早熟状态,导致收敛时间长,优化失败[10]。 基于此,本文详细给出了基于粒子群算法(PSO)与序列二次规划法(SQP)相结合的求解方法。首先利用PSO算法的全局优化功能开展全局搜索,确定全局最优解的可行位置,再用SQP算法的局部精细搜索能力确定其局部最优解。文中建立ADF模型的优化模型,获取了ADF模型的各参数优化结果,并与标准流变模型、分数导数模型两种典型形式的松弛函数曲线进行拟合比较,由此验证了优化算法的可行性;通过 *基金资助项目:国家高技术研究发展计划(863计划)项目(2006AA110102)第一作者:曹友强男,博士研究生,1982年7月生。对悬臂阻尼夹芯板结构的动力特性分析进一步验证了本文优化结果的准确性。这可为阻尼类材料本构模型的参数优化问题提供参考。 1阻尼材料结构ADF数学模型 ADF材料模型[6-8]是基于热不可逆原理的连续场模型,用于描述粘弹性材料作一维剪切运动时的频率特性和温度特性。ADF模型将粘弹性材料在频域内的复模量模型表示为: ?? ? ? ?? ? ? + + + =∑ = ? n i i i i A j G G 1 2 2 2 1 ) ( ? ω ? ω ω ? ω(1) ) (*ω G是粘弹性材料的复剪切模量, A G对应于 松弛弹性模量, i ?, i ?,代表第i阶ADF模型的材料参数。n是的非弹性位移场的个数的总数目。如果有n 阶摄动量,则需要确定2n+1个参数。 粘弹性材料ADF模型中弹性部分和滞弹性部分的 关系可以通过引入一系列耗散辅助变量 ) ,..., 1 (n i x a i =表示: ∑ ? = n i a i e x x x(2)式子中,x是总的位移场,e x是弹性位移场,a i x是第i个滞弹性位移场。 考虑到粘弹性材料频变和温变特性,并假定粘弹性 材料的泊松比为定值,则由虚功原理可获得含有粘弹 性材料复合结构的动力学模型[8]为 } {F x G K x K x M v e = + +) (*ω ??(3)

汽车减振降噪的不同阻尼材料

主营:汉高乐泰瓦克Dymax EDISON-LIU 汉高给汽车减振降噪的不同阻尼材料 汽车行驶的过程中,总有多种噪声存在,它们通过空气传播和结构振动被传递到汽车客舱。噪声源主要包括发动机和变速箱、进排气系统、传动和转向系统、风、路况和轮胎等。 根据噪声性质的不同,汽车降噪分为吸音降噪、隔音降噪、阻尼(减振)降噪和主动降噪等不同方法。 发动机噪声、路噪、胎噪等都是受激励振动或者振动传递所产生的噪声属于汽车结构噪声,大多属于中低频噪声。低频噪声通常超出人的听力范围不易被察觉,对生理的直接影响没有高频噪声明显。但低频噪声却接近人体器官的共振频率,会对心血管系统、神经系统、消化系统以及代谢功能产生损害影响健康。对于降低结构噪声,我们可以从阻尼降噪入手。

按主要分布位置分类的汽车阻尼 阻尼和阻尼材料 阻尼(Damping)是指阻碍物体的相对运动、把振动能转化为热能或其他可以耗散能量的一种作用。材料的阻尼越大,结构振动越弱、噪声越小。汽车车身由多种金属材料组成,但一般金属材料(例如钢板)的固有阻尼都很小。 阻尼材料是将机械振动能和声能转变为热能耗散以达到减振降噪目的的材料。在汽车、机械、兵器、航空航天、舰船等领域中,常用阻尼减振技术将外加的(高)阻尼材料附着在结构件表面得到复合阻尼,通过耗散结构件的振动能量有效控制其振动水平从而降噪。 加入阻尼材料以后,复合阻尼因子越大、温域(阻尼材料工作温度范围)越宽,减振降噪的效果就越好。 通过隔音阻尼材料获得 复合阻尼因子以增加振动能量的损耗 汽车阻尼材料 汽车阻尼材料包括粘弹阻尼材料、高阻尼涂料、高阻尼合金、复合型阻尼钢板、高聚物阻尼材料等。在这些阻尼材料中,使用的比较成熟是粘弹阻尼材料和高阻尼涂料。

减振与隔振的概念

一、减振与隔振的概念 减振是工程上防止振动危害的主要手段。减振可分为主动减振和被动减振。主动减振是在设计时就考虑消除振源或减小振源的能量或频率,在精密仪器、航空航天设备、大型汽轮发电机组及高速旋转机械中应用较多,但费用昂贵,普通工程机械中应用较少。被动减振有隔振和吸振等。隔振又可分为主动隔振和被动隔振。 为了防止或限制振动带来的危害和影响,现代工程中采用了各种措施,归纳起来有以下几条原则: 1.减弱或消除振源(主动减振) 这是一项积极的治本措施。如果振动的原因是由于转动部件的偏心所引起的,可以用提高动平衡精度的办法来减小不平衡的离心惯性力。对往复式机械如空气压缩机等也需要注意惯性力的平衡。 2.远离振源(被动隔振) 这是一种消极的防护措施。如精密仪器或设备要尽可能远离具有大型动力机械、压力加工机械及振动机械的工厂或车间,以及运输繁忙的铁路、公路等。 3.提高机器本身的抗振能力(主动减振) 衡量机器结构抗振能力的常用指标是动刚度,动刚度在数值上等于机器结构产生单位振幅所需的动态力。动刚度越大,则机器结构在动态力作用下的振动量越小。 4.避开共振区 根据实际情况尽可能改变系统的固有频率(主动减振)或改变机器的工作转速(被动减振),使机器不在共振区内工作。

5.适当增加阻尼(阻尼吸振) 阻尼吸收系统振动的能量,使自由振动的振幅迅速衰减,对于强迫振动的振幅有抑制作用,尤其在共振区内甚为显著。 6.动力吸振(被动吸振) 对某些设备上的测量或监控仪表,采用在仪表下安装动力吸振器的方法可稳定仪表的指针,提高测量精度。 7.采取隔振措施 用具有弹性的隔振器,将振动的机器(振源)与地基隔离,以便减少振源通过地基影响周围的设备,这就是主动隔振或积极隔振;或将需要保护的精密设备与振动的地基隔离,使不受周围振源的影响,这就是被动隔振。 下面介绍隔振的基本理论。 被隔振的机器或设备与隔振器相比,可认为前者只有质量而不计弹性,后者是只有弹性和阻尼而不计质量,这样在只考虑单方向振动的情形下,可简化为单自由度隔振系统,如图14-16所示。图中m为机器或设备及底座的质量,k和c为隔振器的刚性系数和粘滞阻尼系数。

(完整word版)建筑消能减震-阻尼器

一、消能减震结构的发展与应用: 利用阻尼器来消能减震并不是什么新技术,在航天航空、军工枪炮等行业中早已得到应用。从20世纪70年代后,人们开始逐步地把这些技术专用到建筑、桥梁、铁路等工程中。 在美国,20世纪80年代开始,美国东西两个地震研究中心等单位做了大量试验研究,发表了几十篇有关论文。90年代美国科学基金会和土木工程协会组织了两次大型联合,给出了权威性的试验报告,供工程师参考。 在我国,1997年,沈阳市政府大楼的抗震加固中首次采用了摩擦耗能装置,其后北京饭店、北京火车站和北京展览馆等多座建筑中应用消能减震技术。 在日本,目前已有超过100多栋的建筑物采用消能减震技术。 现代高层建筑日益增多,结构受地震和风振影响十分明显,减小结构所受的地震和风振反应,成为结构设计的一个重要方面。消能减震阻尼器,通过增加结构阻尼,耗散结构的振动能量来达到减小结构所受振动。 (1)“阻尼”是指任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的振动幅度逐渐下降的特性,以此一特性的 量化表征。 (2)《高层建筑混凝土结构技术规程》JGJ3-2010中: 2.1.1 高层建筑:10层及10层以上或房屋高度大于28m的住宅 建筑和房屋高度大于24米的其他高层民用建筑。

(3)《民用建筑设计通则》GB50352-2005中: 3.1.2建筑高度大于1OOm的民用建筑为超高层建筑。 二、阻尼器耗能减震原理: 耗能减震的原理可以从能量的角度来描述。 传统结构:Ei =Er+Ed+Es 耗能结构:Ei =Er+Ed+Es+Ea Ei为地震时输入结构的总能量; Er为结构在地震过程中存储的动能和弹性应变能; Ed为结构本身阻尼消耗的能量; Es为结构产生弹塑性变形吸收的能量; Ea为耗能装置消耗的能量; (其中Er为能量转换,并不是能量的消耗。) (1)传统结构中: 构件在利用其自身弹塑性变形消耗地震能量的同时,构件本身将遭到损伤甚至破坏。 (2)在消能减震结构中: 耗能(阻尼)装置在主体结构进入耗能状态前率先进入耗能工作状态,耗散大量输入结构体系的地震、风振能量,则结构本身需消耗的能量很少,主体结构反应将大大减小,从而有效地保护了主体结构,使其不再受到损伤或破坏。 三、阻尼器的种类: 阻尼器种类繁多,我国将其分为位移相关型和速度相关型。

粘弹性阻尼减振的基本概念

第一章粘弹性阻尼减振的基本概念 振动控制和阻尼的概念 1.1.1振动与噪声的危害 振动是一种普遍的物理现象,我们这里讨论涉及到的震动问题主要是机械结构的振动及由此产生的物理现象。 大多数情况下,机械振动会造成严重危害,必须采用各种有效的方法加以控制,振动与噪声的危害主要包括: 1)振动造成机械结构的损坏,破坏工作条件。如建筑物在地震中受到随机 激励后,其强度承受不了共振响应造成损坏。 2)振动降低机器、仪器或工具的精度。如运载工具(火箭等)的命中精度 和控制装置如仪器、计算的抗振能力直接有关。 3)振动引起噪声,严重污染环境。如一些大型的振动设备工作过程中会产 生严重的噪声污染。 4)振动增加机械磨损,降低及其寿命。如在常高在低不平的路面上行驶, 汽车的寿命会严重减少。 1.1.2振动与噪声控制的主要方法 振动控制的工程含义有两层:振动利用和振动抑制。前者指利用系统的振动以实现某种工程目的;后者则指抑制系统的振动以保证系统正常工作,延长其使用寿命,本文主要讨论的是后面一个问题。 振动控制的方法很多,就机械产品设计和结构改进的角度上作分析和研究,振动和噪声控制主要是从消除振源或噪声源;隔离振源(及声源)与受影响机构间的传递和联系;以及减少结构本身响应这三个方面采取措施。 1)消除振动源或噪声源。 2)隔离振源(或声源)与受影响机构(或环境)之间的联系及能量传输。 3)结构的抗振及抗噪设计。 阻尼减振降噪技术的定义以及工程应用实例 1.2.1阻尼技术的定义 从减振降噪的角度上来看,阻尼是指损耗振动能量的能力、也就是将机械振动及声振的能量,转变成热能或其它可以损耗的能量,从而达到减振及降噪的目的。 阻尼减振、降噪技术就是充分运用阻尼耗能的一般规律,从材料、测量、

相关文档
最新文档