附录四交流毫伏表的使用说明交流毫伏表用来测量正弦交流电压

附录四交流毫伏表的使用说明交流毫伏表用来测量正弦交流电压

附录四 交流毫伏表的使用说明

交流毫伏表用来测量正弦交流电压,电表指针指示的为正弦电压有效值。

一.技术特性

1. 测量电压范围:100μV ~300V 。

测量为:1、3、10、30、100、300mV 、1、3、10、30、300V 共十一档。

2. 测量电平范围:-72dB ~+32dB (阻抗600Ω)

3. 被测电压频率范围:20Hz ~1MHz

4. 固有误差:<±3%(基准频率1kHz )

5. 频率影响误差:100Hz ~100kHz <±3%;20Hz ~1MHz <±5%

6. 工作误差极限:<±8%

7. 输入阻抗:1kHz 时,输入电阻大于1M Ω;输入电容在1mV ~0.3V 各档约为70PF ,1V ~300V 各档约为50PF 。

二.面板及操作说明

1. 表盘及指针

指示所测交流电压有效值 2. 电源开关

3. 电源指示灯

拨动电源开关2,电源指示灯亮。

4. 量程档位开关

用于选择不同的测量量程。

5. 输入端

输入待测信号

6. 校正调零 用于交流毫伏表的调零

三.使用方法

1. 准备

将交流毫伏表垂直放置(面板与台面垂直),接通电源,输入线短接,指针摆动数次至稳定后,调节校正调零旋钮,使指针停在“0”位置,即可进行测量。

2. 根据信号幅度大小转动量程开关,选择合适的测量量程。然后输入被测信号,从表盘读数。

四.注意事项

1. 尽量避免输入过载,否则容易损坏毫伏表。

2. 所测交流电压中所含的直流分量不得大于300V 。3.

3. 由于仪表灵敏度较高,使用时必须正确选择地点,以免造成测试错误。

2134

交流毫伏表的使用

交流毫伏表的使用 实验室提供两种型号的交流毫伏表:一种是上海爱仪电子设备有限公司生产的AS2294D双通道交流毫伏表,测量电压范围:30μ V----300V,共分13档,测量电压频率范围:5Hz----2MHz,测量电平范围-70----50dB;另一种是苏州同创电子有限公司生产的TC2172A单通道交流毫伏表,测量电压范围:30μV----100V,共分12档,测量电压频率范围:5Hz----2MHz,测量电平范围-70----40dB。 一、开机前的准备工作及注意事项 1、测量仪器水平放置 2、指针调零:AS2294D有两条指针需要调零 3、测量量程置最大档,以防开机时打弯指针。AS2294D开机时会自动置于最高档不用设置。仪表暂时不用时应将量程置于较大档位,将输入端短路。 4、接通电源及输入量程转换时,由于电容放电,指针有所晃动,需等指针稳定后读数。 5、交流毫伏表只能用来测量正弦交流信号的有效值,若测量非正弦交流信号要经过换算。 二、使用方法 1、开机预热10秒以上 2、将探头上的红、黑鳄鱼夹断开后与被测电路并联,黑色鳄鱼夹始终接电路的公共地。 3、应使指针指在刻度盘中间偏右的部分再读数,如果指针基本不动或者动得很少,应逐级递减量程。 4、读数方法:刻度盘分为0----1和0----3两种刻度,凡逢一量程直接在0----1刻度线读取,逢三量程直接在0----3刻度线读取。 三、AS2292D的特殊使用 1、AS2292D是双通道交流毫伏表,左通道对应黑色指针,右通道对应桔色指针。SYNC是同步操作,ASYN是异步操作。 2、AS2292D由两个电压表组成,在异步工作时是两个独立的电压表,一般测量两个电压量程相差比较大的情况下,如测量放大器增益,可用异步工作状态。 3、同步工作时,可由一个通道量程控制旋钮同时控制两个通道的量程,特别适用于立体声或者二路相同放大特性的放大器情况下做测量。 4、AS2292D具有输出功能,可作为二独立的放大器用。

信号发生器和交流电压表实验报告

3.5 仿真信号产生实验 一、实验目的: 1.熟悉LabVIEW中仿真信号的多种产生函数及参数设置。 2.掌握常用测试仿真信号的产生。 3.学会产生复杂的函数波形和任意波形。 二、实验内容: 1.采用Express VI仿真信号发生器,产生规定的附有噪声的正弦信号,并显示波形。 2. 采用波形发生器VI,产生规定的附有噪声的多波形信号,并显示波形。 3. 产生任意波形信号,并显示和存盘。 4. 采用公式节点,产生规定的复杂函数信号。 三、实验器材: 安装有LabVIEW软件的计算机1台 四、实验原理: 1.虚拟仪器中获得信号数据的3个途径: (1)对被测的模拟信号,使用数据采集卡或其他硬件电路,进行采样和A/D变换,送入计算机。 (2)从文件读入以前存储的波形数据,或由其他仪器采集的波形数据。 (3)在LabVIEW中的波形产生函数得到的仿真信号波形数据。 2.测试信号在LabVIEW中的表示 在LabVIEW中测试信号已经是离散化的时域波形数据,表示信号的数据类型有数组、波形数据和动态数据3种。 波形数据是一种特殊的簇结构,它由时间起始值t0、两个采样点的时间间隔值dt以及采样数据一维数组Y组合成的一个簇。它的物理意义是对一个模拟信号x(t)从时间t0开始进行采样和A/D转换,采样率为fs,对应采样时间间隔dt=1/fs ,数组Y为各个时刻的采样值。对周期信号,1个周期的采样点数等于采样频率除以信号频率。 3.仿真信号产生函数 在LabVIEW中产生一个仿真信号,相当于通过软件实现了一个信号发生器的功能。LabVIEW提供了丰富的仿真信号,包括正弦、方波、三角波、多频信号、调制信号、随机噪声信号、任意波形等。针对不同的数据形式(动态数据类型、波形数据和数组),LabVIEW中有3个不同层次的信号发生器(Express VI仿真信号发生器、波形发生器VI和普通信号发生器VI)。 4.公式节点产生仿真信号 用公式节点可以产生能够用公式进行描述的信号,用公式节点可产生经过复杂运算生成的信号。公式波形.Vi产生的信号是波形数据,它的途径是:模板函数→信号处理→波形生成→公式波形.vi。 五、实验步骤: 1.设计一个简易的正弦波发生器,频率、幅值和直流偏值在面板上可调,还可叠加噪声信号,并显示波形。 分析:采用Express VI仿真信号发生器可以完成。 (1)前面板设计:应包括的控件有波形频率、幅度和直流偏值输入设置,噪声的标准偏差设置,显示波形的图形控件,还可用一个选择开关控制程序启动和停止。见图

电压表实验报告

程序: #include #define uchar unsigned char #define uint unsigned int #define ADGO ADCON0bits.GO #define fmq PORTEbits.RE0 #define m1l 57904 //低8度#define m2l 58736 #define m3l 59472 #define m4l 59804 #define m5l 60432 #define m6l 60992 #define m7l 61488 #define m1 61712 //中 #define m2 62168 #define m3 62500 #define m4 62672 #define m5 62984 #define m6 63264 #define m7 63512 #define m1h 63624 //高8度#define m2h 63832 #define m3h 64048 #define m4h 64104 #define m5h 64260

#define m6h 64400 #define m7h 64524 #define p 1000 //节拍时长 #define ph p/2 //半拍 #define pd p*2 //双拍 #define pf p*3/4 #define pg p/4 uint song[]={m6l,m1,m3,m4,m2,m3,m4,m6,m5,m4,m3,m1,m1,m2,m3,m5,m4,m3,m2,m2,m2,m7l,m1, m2,m4,m3,m2,m2,m2,m2,m3,m3,m3,m5,m6,m3,m3,m3,m3,m5,m2,m2,m2,m3,m5,m2,m2,m3,m6 l,m6l};//《手掌心》简谱 uint time[]={p,ph,ph,pf*2,pg,pg,ph,ph,ph,ph,p,ph,pg,pg,ph,ph,ph,pg,pg,p,ph,pg,pg,ph,ph,pg,pg,pg,pg, pg,pf,pd,ph,ph,pg,pg,pg,pg,pg,ph,pg,p,ph,ph,ph,ph,pg,ph,pg,p};//对应的歌曲节拍 uint total = 50; uint counter = 0,num = 0, i = 0; uint flag=0; uint a1=0,a2=0,a3=0,a4=0; uint lednum=0; uchar num_h[]={0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10};//共阳数码管“0.—9.”定义 uchar num_l[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};//共阳数码管“0 --9”定义 void Delay25us(unsigned int x);//延时函数声明 unsigned int AD_Trs();//Ad转换函数声明 void display(void);//数码管显示函数声明 void Tmr_Init(void);//定时器初始化函数声明 void High_Interrupt(void);//定时器中断跳转函数声明 void Stopwatch(void);//定时器中断执行函数声明 void main(void)//主函数 { WDTCONbits.SWDTEN = 0;//关闭看门狗 TRISC=0X00;//输入输出端口初始化 TRISD=0X00; PORTC=0X00; TRISE=0X00; PORTEbits.RE0=0;//用于音乐输出 TRISAbits.TRISA0=1; //AD转换采集电压输入 PORTAbits.RA0=0; ADCON0=0x01;//使能ADC,模拟通道选择AN0(RA0) ADCON1 = 0x00;//正负参考电压从单片机内部获取 ADCON2 = 0xa5;//A/D 转换结果格式为右对齐

数字式交流毫伏表说明书

毕业设计说明书 数字式交流毫伏表电路 的设计 专业电气工程及其自动化 学生姓名姜晓天 班级BM电气082 学号0851402211 指导教师成开友 完成日期2012年5月22日

数字式交流毫伏表电路的设计 摘要:当今社会是数字化的社会,是数字集成电路广泛应用的社会。数字集成电路本身在不断地进行更新换代。它由早期的电子管、晶体管、小中规模集成电路,发展到超大规模集成电路(VLSIC)以及许多具有特定功能的专用集成电路。 本文设计的电路分为模拟和数字两个部分,具有量程自动转换功能。输入信号经过输入通道进入放大器部分,经过放大后,由AC/DC转换电路转换为与交流电压有效值相等的直流电压。该直流电压经过V/F转换电路输出相应的频率量,然后计数器部分在秒脉冲的控制下进行技术测量,最后显示出读数,从而完成电压的测量。 本文所设计的数字式交流毫伏表的显著特点是测量范围宽,可测范围在500V 以下,最大分辨率为0.01mV,且可以实现量程自动转换,操作简单,使用方便。电压表还具有在一定测量范围内自动选择量程的功能,从而可以快速,方便,准确地测量电压。 关键词:A/D转换;V/F转换;量程自动转换;计数器

Digital AC millivoltmeter circuit design Abstract:Today's society is the digital society , the society of a wide range of applications of digital integrated circuits . Digital integrated circuits constantly upgrading . By the early tubes, transistors , small - scale integrated circuits developed to ultra - LSI ( VLSIC ) as well as many ASIC has a specific function . In this paper, the design of the circuit is divided into analog and digital two parts , with a range automatic conversion . After the input channel , the input signal into the amplifier section, after amplification by AC / DC converter circuit to convert the DC voltage equal to the AC voltage rms . The output frequency of the DC voltage conversion circuit through the V / F , then the counter part of the second pulse control techniques to measure , and finally show the reading , thus completing the measurement of the voltage . Designed digital AC millivoltmeter notable feature is the wide measuring range can be measured in the range below 500V , the maximum resolution of 0.01mV , and can realize automatic range conversion , simple operation, easy to use . The voltmeter also has automatically selected range in a certain measuring range of functions , which can be fast , convenient and accurate measurement of voltage . Key Words: A / D converter ; V / F conversion ; automatic conversion range ; counter

数字电压表的设计实验报告

课程设计 ——基于51数字电压表设计 物理与电子信息学院 电子信息工程 1、课程设计要求 使用单片机AT89C52和ADC0832设计一个数字电压表,能够测量0-5V之间的直流电压值,两位数码显示。在单片机的作用下,能监测两路的输入电压值,用8位串行A/D转换器,8位分辨率,逐次逼近型,基准电压为 5V;能用两位LED进行轮流显示或单路选择显示,显示精度0.1伏。 2、硬件单元电路设计 AT89S52单片机简介 AT89S52是一个低功耗,高性能CMOS 8位单片机,片内含8k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存

储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS -51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S52可为许多嵌入式控制应用系统提供高性价比的解决方案。 AT89S52具有如下特点:40个引脚,8k Bytes Flash片内程序存储器,256 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级,2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 ADC0832模数转换器简介 ADC0832 是美国国家半导体公司生产的一种8 位分辨率、双通道A/D转换芯片。由于它体积小,兼容性强,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。学习并使用ADC0832 可是使我们了解A/D转换器的原理,有助于我们单片机技术水平的提高。 图1 芯片接口说明: 〃 CS_ 片选使能,低电平芯片使能。 〃 CH0 模拟输入通道0,或作为IN+/-使用。

测量电压实验报告

测量电压实验报告 篇一:基于Labview的电压测量仿真实验报告 仿真实验一基于Labview的电压测量仿真实验 一、实验目的 1、了解电压测量原理; 2、通过该仿真实验熟悉虚拟仪器技术——LABVIEW的简单编程方法; 3、通过本次实验了解交流电压测量的各种基本概念。 二、实验仪器 微机一台、LABVIEW8.5软件三、实验原理 实验仿真程序如下(正弦波、三角波、锯齿波、方波(占空比30%、50%、60%): 四、实验内容及步骤 (1)自己编写LABVIEW仿真信号源实验程序,要求可以产生方波(占空比 可调)、正弦波、三角波、锯齿波等多种波形,而且要求各种波形的参数可调、可控。 (2)编写程序对各种波形的有效值、全波平均值、峰

值等进行测量,在全波平均值测量时要注意程序编写过程。同时记录各种关键的实验程序和实验波形并说明。 实验所得波形如下:(正弦波、三角波、锯齿波、方波(占空比30%、50%、60%): 正弦波: 三角波: 锯齿波: 方波(占空比30%): 方波(占空比50%): 方波(占空比60%): (3)对各种波形的电压进行测量,并列表记录。如下表: 五、实验小结 由各波形不同参数列表可知,电压量值可以用峰值、有效值和平均值表征。被测电压是非正弦波的,必须根据电压表读数和电压表所采用的检波方法进行必要地波形换算,才能得到有关参数。 篇二:万用表测交流电压实验报告1

万用表测交流电压实验报告 篇三:STM32 ADC电压测试实验报告 STM32 ADC电压测试实验报告 一、实验目的 1.了解STM32的基本工作原理 2. 通过实践来加深对ARM芯片级程序开发的理解 3.利用STM32的ADC1通道0来采样外部电压值值,并在TFTLCD模块上显示出来 二、实验原理 STM32拥有1~3个ADC,这些ADC可以独立使用,也可以使用双重模式(提高采样率)。STM32的ADC是12位逐次逼近型的模拟数字转换器。它有18个通道,可测量16个外部和2个内部信号源。各通道的A/D转换可以单次、连续、扫描或间断模式执行。ADC的结果可以左对齐或右对齐方式存储在16位数据寄存器中 接下来,我们介绍一下执行规则通道的单次转换,需要用到的ADC寄存器。第一个要介绍的是ADC控制寄存器(ADC_CR1和ADC_CR2)。ADC_CR1的各位描述如下: ADC_CR1的SCAN位,该位用于设置扫描模式,由软件

【标准】gb-9b型真空管毫伏表使用说明书

3.2 GB-9B 型真空管毫伏表使用说明书 一、用途 GB-9B型真空管毫伏表可用于制造厂或实验室作测量正弦波电压的有效值之用。仪器并有分贝标尺,可用来作电平指示。仪器可被用来对无线电收讯机、放大器和其他设备的电路进行测量。 GB-9B型真空管毫状表使用条件如下: 1.环境温度:-10°~+40℃。 2.环境相对湿度不大于:85% 。 3.正常的大气压力:750±30毫米水银柱。 4.以50赫,110伏或220伏交流市电供电。 二、主要技术特性 1.测量电压范围:1毫伏至300伏 量程为:0~10/30/100/300毫伏 0~1/3/10/30/100/300伏 2.测量电平范围:一40分贝至十50分贝 -40/-30/-20/-10/0/ +10/+20/+30/+4o/+50分贝。 仪器分贝刻度是以1毫瓦功率消耗于600欧的纯电阻为零分贝。 3.被测电压频率范围:25赫~200千赫。 4.测量的基本误差:在环境温度+20℃±5℃,信号频率50赫时,不超过各量程满度值的±2.5% 。 5.频率响应特性:在环境温度+20℃±5℃时以1千赫为基准的不均匀性:25赫~45赫≤±2.5% >45赫~50千赫≤±1.5% >50千赫~200千赫≤±17.5%。 6.仪器的输入阻抗:在1千赫时,输入电阻不低于500千欧,输入电容不大于40PF。 7.供电电源电压变化±10 %时,仪器示值改变不超过±2.5% 8.温度附加误差:以50赫信号输入时,在-10℃~+15℃和+25℃~+40℃范围内,每变动1℃所致附加误差不大于各量程满度值的±0.25%

9.仪器消耗功率不大于30瓦。 10.仪器重量不超过8公斤。 11.仪器最大外形尺寸约312×2O0×215毫米3。 三、仪器的结构 GB-9B型真空管毫状表为手提式仪器。其所有零部件均安装在垂直的金属面板及水平底座上,置于金属箱中。借助于面板上的两只手攀,可将它自金属箱中提出。 在其面板上配置有: 两个输入接线柱; 量程转换开关的旋钮; 指示电表; 零位调节旋钮; 电源指示灯; 电源开关; 保险丝插座(注意:有些型号 兼有110/220V选择功能,严 禁转至110V位置); GB-9型真空管毫伏表 电源输入线。 四、使用说明: 将两个接线柱短路。在核对仪器电源正确后,接通电源,待2-3分钟,此时电表指针将稍微偏转,着它是否回到零点,若指针不返回零点,则调节面板上的“零点校准”旋钮,调到零位,随后将面板上量程转换开关扳至所需的测量范围,再过十分钟后重调零点一次,即可进行测量。为降低测量误差和干扰, 连接导线应使毫伏表的“地线接线柱”与被测电路的“零电位点”(公共地线)可靠相连。 在仪器的满度指示偏差较大时,在有标准输入电压的情况下,可借电位器R19来进行调整。R19的调节柄位于仪器面板上名牌后面,调整时需先取下名牌。 注:在调换电子管6H2时;必须先对新的6H2进行老化处理。一般可将新的6H2在其正常工作状态下老化48小时。

高电压技术实验实验报告(二)

----高电压技术实验报告 高电压技术实验报告 学院电气信息学院 专业电气工程及其自动化

实验一.介质损耗角正切值的测量 一.实验目的 学习使用QS1型西林电桥测量介质损耗正切值的方法。 二.实验项目 1.正接线测试 2.反接线测试 三.实验说明 绝缘介质中的介质损耗(P=ωC u2 tgδ)以介质损耗角δ的正切值(tgδ)来表征,介质损耗角正切值等于介质有功电流和电容电流之比。用测量tgδ值来评价绝缘的好坏的方法是很有效的,因而被广泛采用,它能发现下述的一些绝缘缺陷: 绝缘介质的整体受潮; 绝缘介质中含有气体等杂质; 浸渍物及油等的不均匀或脏污。 测量介质损耗正切值的方法较多,主要有平衡电桥法(QS1),不平衡电桥法 及瓦特表法。目前,我国多采用平衡电桥法,特别是 工业现场广泛采用QS1型西林电桥。这种电桥工作电 压为10Kv,电桥面板如图2-1所示,其工作原理及操 作方法简介如下: ⑴.检流计调谐钮⑵.检流计调零钮 ⑶.C4电容箱(tgδ)⑷.R3电阻箱 ⑸.微调电阻ρ(R3桥臂)⑹.灵敏度调节钮 ⑺.检流计电源开关⑻.检流计标尺框 ⑼.+tgδ/-tgδ及接通Ⅰ/断开/接通Ⅱ切换钮 ⑽.检流计电源插座⑾.接地 ⑿.低压电容测量⒀.分流器选择钮⒁.桥体引出线 1)工作原理: 原理接线图如图2-2所示,桥臂BC接入标准电容C N (一般C N =50pf),桥臂BD由固定的无感电阻R 4 和可调电 容C 4并联组成,桥臂AD接入可调电阻R 3 ,对角线AB上接 QS1西林电桥面板图

入检流计G ,剩下一个桥臂AC 就接被试品C X 。 高压试验电压加在CD 之间,测量时只要调节R 3和C 4就可使G 中的电流为零,此时电桥达到平衡。由电桥平衡原理有: BD CB AD CA U U U U = 即: BD CB AD CA Z Z Z Z = (式2-1) 各桥臂阻抗分别为: X X X X CA R C j R Z Z ?+= =?1 44441R C j R Z Z BD ?+==? 33R Z Z AD == N N CB C j Z Z ?1= = 将各桥臂阻抗代入式2-1,并使等式两边的实部和虚部分别相等,可得: 3 4 R R C C N X ? = 44R C tg ??=?δ (式2-2) 在电桥中,R4的数值取为=10000/π=3184(Ω),电源频率ω=100π,因此: tg δ= C 4(μf ) (式2-3) 即在C 4电容箱的刻度盘上完全可以将C 4的电容值直接刻度成tg δ值(实际上是刻度成tg δ(%)值),便于直读。 2)接线方式: QS1电桥在使用中有多种接线方式,如下图所示的正接线、反接线、对角接线,低压测量接线等。 正接线适用于所测设备两端都对地绝缘的情况,此时电桥的D 点接地,试验高电压在被试品及标准电容上形成压降后,作用于电桥本体的电压很低,测试操作很安全也很方便,而且电桥的三根引出线(C X 、C N 、E )也都是低压,不需要与地绝缘。 反接线适用于所测设备有一端接地的情况,这时是C 点接地,试验高电压通过电桥加在被试品及标准电容上,电桥本体处于高电位,在测试操作时应注意安全,电桥调节手柄应保证具有15kv 以上的交流耐压能力,电桥外壳应保证可靠接地。电桥的三根引出线为高压线,应对地绝缘。 对角接线使用于所测设备有一端接地而电桥耐压又不够,不能使用反接线的情况,但这种接线的测量误差较大,测量结果需进行校正。 低压接线可用来测量低压电容器的电容量及tg δ值,标准电容可选配0.001μf (可测C X 范围为300pf ~10μf )或0.01μf (可测C X 范围为3000pf ~100μf ) 3.分流电阻的选择及tg δ值的修正:

简易数字显示交流毫伏表(最终定稿)

简易数字显示交流毫伏表 摘要: 本系统由高级模拟器件、CPLD,可实现具有自动量程转换功能地真有效值测量、交流频率测量和标准幅度可控地正弦波输出等功能.测量部分具有高输入阻抗(R ≥2M,C<2.5pF),宽频带范围(10 HZ-5M HZ),宽电压范围(1mV-250V),高精度(有效值≤1%,频率<10-6)地优越性能.可满足多方位地需要. 关键词:静电计频率计高频放大真有效值 1.系统方案选择与论证 1.1设计要求 设计并制作一个简易数字显示地交流毫伏表,示意图如图-1所示. 图-1 简易数字显示交流毫伏表示意图 1.1.1基本要求 (1)电压测量 a、测量电压地频率范围100Hz~500KHz. b、测量电压范围100mV~100V(可分多档量程). c、要求被测电压数字显示. d、电压测量误差±5%±2个字.

e、输入阻抗≥1MΩ,输入电容≤50pF(本项可不做测试,在电路设计中给予保证) f、具有超量程自动闪烁功能. (2)设计并制作该仪表所需要地直流稳压电源. 1.1.2发挥部分 (1)将测量电压地频率范围扩展为10Hz~1MHz. (2)将测量电压地范围扩展到10mV~200V. (3)交流毫伏表具有自动量程转换功能. (5)其他. 1.2系统基本方案及框图 根据题目要求及适当地发挥,我们地硬件电路主要包括输入信号地有效值测量、输入信号地频率测量.其中前两者构成一个测量系统.测量系统包括:信号调理模块、A/D,D/A模块、信号真有效值转换模块、CPLD频率测试模块、算法控制器模块、键盘显示模块、语音播报及打印模块、电源模块等.图-3所示.为实现各模块地功能,分别作了几种不同地设计方案并进行了论证,我们选取了较好地方案实现. 图-3 测量系统框图

RLC正弦交流电路参数测量实验报告(001)

RLC正弦交流电路参数测量实验报告

【RLC正弦交流电路参数测量】实验报告 【实验目的】 1.熟悉正弦交流电的三要素,熟悉交流电路中的矢量关系; 2.学习用示波器观察李萨尔图形的方法; 3.掌握R,L,C元件不同组合时的交流电路参数的基本测量方法。 【实验摘要(关键信息)】 1.在面包板上搭接R、L、C的并联电路; 2、将R、L并联,测量电压和电流的波形和相位差,计算电路的功率因素。 3、将R、C并联,测量电压和电流的波形和相位差,计算电路的功率因素。 4、将R、L、C并联,测量电压和电流的波形和相位差,由相位差分析负载性质。计算功率因素。 【实验原理】 1.正弦交流电的三要素 初相角:决定正弦量起始位置; 角频率:决定正弦量变化快慢 幅值:决定正弦量的大小。 2.电路参数 在正弦交流电路的负载中,可以是一个独立的电阻器、电感器或电容器,也可以由他们相互组合(以串联为例)。电路里元件的阻抗特性为 当采用交流电压表、电流表和有功功率表对电路 测量时(三表法),可用下列计算公式来表述Z与 P、U、I相互之间的关系: 负载阻抗的模︱Z︱;负载回路的等效电阻 ; 负载回路的等效电抗; 功率因数cosφ;电压与电流的相位差φ 当φ>0时,电压超前电流;当φ<0时,电压滞后电流。 3.矢量关系:基尔霍夫定律在电路电路里依然成立,有和,可列出回路方程与节点方程。 【电路图】

电路图1 电路图2

电路图3 【实验环境(仪器用品等)】 面包板,示波器,1KΩ电阻,47Ω电阻,导线,函数发生器,10mH电感,0.1μF 电容 【实验操作】 1.分别按照电路图1、2、3在面包板上连接电路; 2.调节函数发生器,使其通道1输出频率为1KHz,峰峰值为5V的正弦波; 3.示波器校准,通道1接入函数发生器输出的信号,通道2接入通过47Ω小 电阻的信号,两通道地线要接在一起; 4.调节示波器,使其为李萨尔图形,观察两波形相位差,记录数据并分析。【实验数据与分析】 1.R、L并联

电位电压的测定实验报告范文

2020 电位电压的测定实验报告范文 Contract Template

电位电压的测定实验报告范文 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 篇一:电极电位的测量实验报告 一.实验目的 1.理解电极电位的意义及主要影响因素 2.熟悉甘汞参比电极的性能以及工作原理 3.知道电化学工作站与计算机的搭配使用方法 二.实验原理 电极和溶液界面双电层的电位称为绝对电极电位,它直接反应了电极过程的热力学和动力学特征,但绝对电极电位是无法测量的。在实际研究中,测量电极电位组成的原电池的电动势,而测量电极电位所用的参考对象的电极称为参考电极,如标准氢电极、甘汞电极、银-氯化银电极等,该电池的电动势为: E=φ待测-φ参比 上述电池电动势可以使用高阻抗的电压表或电位差计来计量在该实验中,采用甘汞电极为研究电极,铁氰、化钾/亚铁

氰、化钾为测量电极。在1mol的KCl支持电解质下,分别用10mM 摩尔比1:1和1:2的铁氰、化钾/亚铁氰、化钾溶液在常温(27℃)以及45℃下测量,收集数据,可得到相同温度不同浓度的两条开路电位随时间变化曲线、相同浓度不同温度的两条开路电位随时间变化曲线。可以用电极电势的能斯特方程讨论温度对于电极电势的影响 三.实验器材 电化学工作站;电解池;甘汞电极;玻碳电极;水浴锅 铁氰、化钾/亚铁氰、化钾溶液(摩尔比1:1和1:2)(支持电解质为1MKCl); 砂纸;去离子水 四.实验步骤 1.在玻碳电极上蘸一些去离子水,然后轻轻在细砂纸上打磨至光亮,最后再用去离子水冲洗。电化学工作站的电极也用砂纸轻轻打磨 2.在电解池中加入铁氰、化钾/亚铁氰、化钾溶液至其1/2体积,将玻碳电极和甘汞电极插入电解池中并固定好,将两电极与电化学工作站连接好,绿色头的电极连接工作电极,白色头的电极连接参比电极。 3.点开电化学工作站控制软件,点击setup―技术(technique)―开路电压―时间,设置记录时间为5min,记录数据时间间隔为0.1s,开始进行数据记录,完成后以txt形式保存实验结果。

毫伏表操作规程标准范本

操作规程编号:LX-FS-A73018 毫伏表操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

毫伏表操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 使用注意事项 1、避免仪器过冷或过热,仪器的工作温度为0—40℃。 2、仪器不可遭到强烈的撞击。 3、不可将物体放置在仪器上,注意不要堵塞仪器通风孔。 4、不可将磁铁靠近表头。 5、表面长期倒置存放和运输。 6、检查表针位置,若不在零点先调零。 7、仪器工作电压为AC220V,不可高于规定的最大输入电压。

使用方法 1、开机前,应将量程旋钮调到最大量程处,然后打开电源。 2、将输入信号由输入端口(INPUT)送入交流毫伏表。 3、调节量程旋钮,使表头指针指示位置在大于或等于满刻度的1/3处。 4、量程的使用方法:表头有两种刻度。其中1V作为0dB的dB刻度值,0.755V作为0dBm (1mW)的dBm刻度值。 5、功率或电压的电平由表面读出的刻度值与量程开关所在的位置相加而定。 保养和维护 1、本仪器由高精度的元器件及精密部件构成,

51单片机数字电压表实验报告

微控制器技术创新设计实验报告 姓名:学号:班级: 一、项目背景 使用单片机AT89C52和ADC0808设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码显示。在单片机的作用下,能监测两路的输入电压值,用8位串行A/D转换器,8位分辨率,逐次逼近型,基准电压为 5V;显示精度伏。 二、项目整体方案设计 ADC0808 是含8 位A/D 转换器、8 路多路开关,以及与微型计算机兼容的控制逻辑的CMOS组件,其转换方法为逐次逼近型。ADC0808的精度为 1/2LSB。在AD 转换器内部有一个高阻抗斩波稳定比较器,一个带模拟开关树组的256 电阻分压器,以及一个逐次通近型寄存器。8 路的模拟开关的通断由地址锁存器和译码器控制,可以在8 个通道中任意访问一个单边的模拟信号。

三、硬件设计 四、软件设计#include<> #include""

#define uchar unsigned char #define uint unsigned int sbit OE = P2^7; sbit EOC=P2^6; sbit START=P2^5; sbit CLK=P2^4; sbit CS0=P2^0; sbit CS1=P2^1; sbit CS2=P2^2; sbit CS3=P2^3; uint adval,volt; uchar tab[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8, 0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x8E}; void delayms(uint ms) {

交流毫伏表使用说明

交流毫伏表使用说明 常用的单通道晶体管毫伏表,具有测量交流电压、电平测试、监视输出等 三大功能。交流测量范围是100mV?300V、5Hz?2MHz,共分 1 、3、 10、30、 100、300mV, 1 、3、 10、30、 100、300V共12档。现将其基本使用方法介绍如下: 1 、开机前的准备工作: (1)将通道输入端测试探头上的红、黑色鳄鱼夹短接; (2)将量程开关置于最高量程(300V)。 2、操作步骤: (1)接通220V电源,按下电源开关,电源指示灯亮,仪器立刻工作。为了保证仪器稳定性,需预热10秒钟后使用,开机后 1 0秒钟内指针无规则摆动属正常; (2)将输入测试探头上的红、黑鳄鱼夹断开后与被测电路并联(红鳄鱼夹接被测电路的正端,黑鳄鱼夹接地端),观察表头指针在刻度盘上所指的位置,若指针在起始点位置基本没动,说明被测电路中的电压甚小,且毫伏表量程选得过高,此时用递减法由高量程向低量程变换,直到表头指针指到满刻度的左右即可; (3)准确读数。表头刻度盘上共刻有四条刻度。第一条刻度和第二条刻度为测量交流电压有效值的专用刻度,第三条和第四条为测量分贝值的刻度。当 量程开关分别选1mV、10mV、100mV、IV、10V、100V档时,就从第一条刻度读

数;当量程开关分别选3mV、30mV、300mV、3V、30V、300V 时,应从第二条刻度读数(逢 1 就从第一条刻度读数,逢 3 从第二刻度读数)。例如: 将量程开关置“ 1V”,就从第一条刻度读数。若指针指的数字是在第一条刻度的0.7处,其实际测量值为0.7V;若量程开关置“3V”,就从第二条刻度读数。若指针指在第二条刻度的“2处,其实际测量值为2V。以上举例说明,当量程开关选在哪个档位,比如,1V档位,此时毫伏表可以测量外电路中电压的范围是0?1V,满刻度的最大值也就是IV。当用该仪表去测量外电路中的电平值时,就从第三、四条刻度读数,读数方法是,量程数加上指针指示值,等于实际测量值。 3 、注意事项: (1)仪器在通电之前,一定要将输入电缆的红黑鳄鱼夹相互短接。防止仪器在通电时因外界干扰信号通过输入电缆进入电路放大后,再进入表头将表针打弯。 (2)当不知被测电路中电压值大小时,必须首先将毫伏表的量程开关置最高量程,然后根据表针所指的范围,采用递减法合理选档。 (3)若要测量高电压,输入端黑色鳄鱼夹必须接在“地”端 (4)测量前应短路调零。打开电源开关,将测试线(也称开路电缆)的红黑夹子夹在一起,将量程旋钮旋到1mv 量程,指针应指在零位(有的毫伏表可通过面板上的调零电位器进行调零,凡面板无调零电位器的,内部设置的调零电位器已调好)。若指针不指在零位,应检查测试线是否断路或接触不良,应更换测试线。 (5)交流毫伏表灵敏度较高,打开电源后,在较低量程时由于干扰信号(感应信号)的作用,指针会发生偏转,称为自起现象。所以在不测试信号时应将量程旋钮旋到较高量程档,以防打弯指针。 (6)交流毫伏表接入被测电路时,其地端(黑夹子)应始终接在电路的地上(成为公共接地),以防干扰。 (7)交流毫伏表表盘刻度分为0—1和0—3两种刻度,量程旋钮切换量程分为逢一量程(1mv、10mv、0.1v ?…)?和逢三量程(3mv、30mv、0.3v ????)?, 凡逢一的量程直接在0—1 刻度线上读取数据,凡逢三的量程直接在0—3 刻度线上读取数据,单位为该量程的单位,无需换算。

交流电压测量实验报告

交流电压测量 姓名 学号 日期 一、实验目的: 了解交流电压测量的基本原理,分析几种典型电压波形对不同检波特性电压表的响应,以及它们之间的换算关系,并对测量结果做误差分析。 二、实验原理: 一个交流电压的大小,可以用峰值U ?,平均值U ,有效值U ,以及波形因数K F ,波峰因数K P 等表征,若被测电压的瞬时值为)(t u ,则 全波平均值为 ? = T dt t u T U 0 )(1 有效值为 ?= T dt t u T U 02 )(1 波形因数为 U U K F = 波峰因数为 U U K P ?= 而用来测量电压的指针式电压表中的检波器有多种形式,一般来说,具有不同检波特性的电压表都是以正弦电压的有效值来定度的,但是,除有效值电压表外,电压表的示值本身并不直接代表任意波形被测电压的有效值。因此,如何利用不同检波特性的电压表的示值(即 读数)来正确求出被测电压的均值U ,峰值U ?,有效值U ,这便是一个十分值得注意的问题。 根据理论分析,不同波形的电压加至不同检波特性的电压表时,要由电压表读数确定被 测电压的U ?、U 、U ,一般可根据表1的关系计算。 从表1可知,用具有有效值响应的电压表和平均值响应的电压表分别对各种波形的电压测量时,若读数相同,只分别表示不同波形的被测电压有效值U 相同和平均值U 相同,而其余的并不一定相同。

三、实验设备: 1、数字毫伏表1台; 2、函数信号发生器1台; 3、双踪示波器, 1台。 4、真有效值万用表 1个 四、实验内容: 调节函数信号发生器的输出幅度,使示波器的峰值读数为1V,观测各种电压表的读数 六、思考题: 1、实验过程中为了仪器的安全,电压表量程是否应尽量选大一些(如3V,10V甚至 30V档)?

用电压表和电流表测电阻实验报告

用电压表和电流表测电阻实验报告(人教版) 1、实验目的:_______________________________________________________ 2、实验器材:__________、__________、__________、__________、__________、 __________、_________________。 3、实验电路图:(如右图所示) 4、实验原理:______________________ 5、实验注意事项: 压表都应处于最大量程,滑动变阻器的电阻处于电阻最大的状态,开关应断开。 ②连接完毕,能够试触一下,闭合开关,如发现指针摆动过大,指针反向偏转等情况,应立即断开电源,避免损坏电表。 ③用滑动变阻器改变电路中电流时,电表的量程要恰当,选择电表的量程过大,指针偏转过小,会影响读数的精确度,电表每次的读数相差要尽量大些,以减小实验误差。 ④数据处理可采用计算法,即根据每一组的电压和电流强度值,根据R U I 计算电阻 值,再取平均值。 6、实验步骤: A.按电路图连接线,此时电键应处于断开状态,且让滑动变阻器,处于最大电阻值。 B.估算或用试触确定所选伏特表和安培表量程是否恰当,若不当,则调整。 C.检查电路无误后,接通电路,开始实验。 D.闭合开关,观察和记录安培表,伏特表的示数填入下面表格中(或自己设计表格)。 E.改变滑动变阻器滑动片的位置,重复步骤D,并根据欧姆定律计算出三次测量的 平均值。 数据 次数 U(伏)I(安)Rx(欧) Rx的平均值(欧) 1 2 3 (3)计算出Rx的三次阻值,求出Rx的平均值。Rx=(Rx1+Rx2+Rx3)/3 7、实验结果:Rx=(R1+R2+R3)/3=_______________________=________欧姆 8、整理器材:实验完毕要整理好仪器。 ☆☆☆(实验要求:积极动手,按要求操作,记录数据、计算结果要实事求是。实 验完毕后,将导线取下捆成一捆,并将仪器排放整齐。) ☆☆☆ 1.★串联、并联电路的特点: 在使用欧姆定律对电路实行判定和计算时必须要充分利用串联,并联电路的特点。 1、串联电路的特点: ⑴在串联电路中,电流强度处处相等 用公式写出为I总=I1=I2=I3=…… ⑵在串联电路中,总电压等于各段电压之和

交流毫伏表

交流毫伏表是一种用来测量正弦电压有效值的电子仪表,可对一般放大器和电子设备进行测量。毫伏表类型较多,本小节主要介绍wYx94交流毫伏表的主要特性并说明它的使用方法。 1拖述 wY2294双通道交流毫伏表是由两组相同的高稳定的放大器电路及表头指示电路等组成。其表头采用同轴双指针式电表。可十分清晰、直观的进行双路交流电压的测量和比较。该仪表输入端RJ设置于浮置状态,并且两通道的量程可同步选择。这样使该仪表的测量应用范围扩大,特别是立体声双通道的测量带来极大的方便。 该仪表具有频率响应范围宽(5H”1MH2)、灵敏度高(300Pv满刻度)、输入阻抗高(10M11)、本机噪声低、精确度高(‘2%)的优点,并具有相当好的线性度。 该仪表的外形美观,由于采用先进的电控衰减电路。使开关手感舒适。内部结构紧凑,可靠性好,可广泛应用于学校实验室、设计开发等领域。 (5)输入阻抗:1MO/40PE(不也括双央电缆线电容)。 (6)闭合误差:以1kIIz为基准。 ①电压测量误效:*2%。 ②频率响应误差:20Hz—l00kHzl3%;5Hz—1MHz』5% (7)工作误差。 ①电压测旦误差:15% ②频率影8自洪差:20Hz—100LH2*5% (8)输出特性。 ①输69l电压:1凹mv(当指小满刻度时)。 ②输出阻抗:约6000。 ②失克:事3%。 3下作原理 本机出输入衰减器、前置放大器、电子衰减器、主放大器、线性检波器、输出放大器及电源组 成,其力框图见图A11。前省放大器是由高输入阻抗及低输出阻抗的复合放大电路构成。由于采 用厂低噪声器件及]:艺措施,因此具有很小的本机暇声。输人端还具有过载保护电路。 低压电机电子衰减器有集成电路构成,受控制开关控制,因此具有较高的可靠性及

相关文档
最新文档