高三数学高职考专题复习高考函数问题专题复习

高三数学高职考专题复习高考函数问题专题复习
高三数学高职考专题复习高考函数问题专题复习

高考函数问题专题复习

高职考考点归纳:

1. 映射

一般地,设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作:

B A f →:。

注:理解原象与象及其应用。

(1)A 中每一个元素必有惟一的象;

(2)对于A 中的不同的元素,在B 中可以有相同的象; (3)允许B 中元素没有原象。 2. 函数

(1) 定义:函数是由一个非空数集到时另一个非空数集的映射。 (2) 函数的表示方法:列表法、图像法、解析式法。

注:在解函数题时可以画出图像,运用数形结合的方法可以使大部分题目变得更简单。 3. 函数的三要素:定义域、值域、对应法则

(1) ?定义域的求法:使函数(的解析式)有意义的x 的取值范围 主要依据: ① 分母不能为0 ② 偶次根式的被开方式≥0 ③ 特殊函数定义域

0,0≠=x x y

R x a a a y x ∈≠>=),10(,且 0),10(,log >≠>=x a a x y a 且

)(,2

,tan Z k k x x y ∈+

≠=π

π

(2) ?值域的求法:y 的取值范围

① 正比例函数:kx y = 和 一次函数:b kx y +=的值域为R

② 二次函数:c bx ax y ++=2

的值域求法:配方法。如果x 的取值范围不是R 则还需画

图像

③ 反比例函数:x

y 1

=

的值域为}0|{≠y y

④ d cx b ax y ++=

的值域为}|{c a

y y ≠

⑤ c

bx ax n

mx y +++=2的值域求法:判别式法

⑥ 另求值域的方法:换元法、反函数法、不等式法、数形结合法、函数的单调性等等。 (3) 解析式求法:

在求函数解析式时可用换元法、构造法、待定系数法等。 4. 函数图像的变换 (1) 平移

)()

(a x f y a x f y -=→=个单位向右平移 )()(a x f y a x f y +=→=个单位向左平移

a x f y a x f y +=→=)()

(个单位向上平移 a x f y a x f y -=→=)()(个单位

向下平移

(2) 翻折

)()

(x f y x x f y -=→=上、下对折轴沿 |)(|)(x f y x x f y =→=下方翻折到上方轴上方图像

保留

)||()

(x f y y x f y =→=右边翻折到左边

轴右边图像

保留

5. 函数的奇偶性

(1) 定义域关于原点对称

(2) 若)()(x f x f -=-→奇 若)()(x f x f =-→偶 注:①若奇函数在0=x 处有意义,则0)0(=f ②常值函数a x f =)((0≠a )为偶函数 ③0)(=x f 既是奇函数又是偶函数 6. ?函数的单调性

对于],[21b a x x ∈?、且21x x <,若

??

?><上为减函数

在称上为增函数

在称],[)(),()(],[)(),()(2121b a x f x f x f b a x f x f x f 增函数:x 值越大,函数值越大;x 值越小,函数值越小。

减函数:x 值越大,函数值反而越小;x 值越小,函数值反而越大。

复合函数的单调性:))(()(x g f x h =

)(x f 与)(x g 同增或同减时复合函数)(x h 为增函数;)(x f 与)(x g 相异时(一增一减)复

合函数)(x h 为减函数。

注:奇偶性和单调性同时出现时可用画图的方法判断。 7. 二次函数

(1)二次函数的三种解析式

①一般式:c bx ax x f ++=2

)((0≠a )

②?顶点式:h k x a x f +-=2

)()( (0≠a ),其中),(h k 为顶点

③两根式:))(()(21x x x x a x f --= (0≠a ),其中21x x 、是0)(=x f 的两根 (2)图像与性质

? 二次函数的图像是一条抛物线,有如下特征与性质:

① 开口 →>0a 开口向上 →<0a 开口向下 ② ?对称轴:a

b x 2-

= ③ ?顶点坐标:)44,2(2

a b ac a b -- ④ ?与x 轴的交点:??

?

??→?无交点交点有有两交点0100

⑤ 一元二次方程根与系数的关系:(韦达定理)

???

??

?

=

?-=+a c

x x a b x x 2121 ⑥ c bx ax x f ++=2

)(为偶函数的充要条件为0=b ⑦ 二次函数(二次函数恒大(小)于0)

?>0)(x f ??

??轴上方图像位于x a 0

轴下方图像位于x a x f ??

??

0)(

⑧ 若二次函数对任意x 都有)()(x t f x t f +=-,则其对称轴是t x =。 ⑨ 若二次函数0)(=x f 的两根21x x 、 ⅰ. 若两根21x x 、一正一负 则??

?<≥?0

021x x

ⅱ. 若两根21x x 、同正(同负)

?????>>+≥?0002121x x x x 若同正,则 ???

??><+≥?0002

121x x x x 若同负,则

ⅲ.若两根21x x 、位于),(b a 内,则利用画图像的办法。

则若,0>a ??

???>>≥?0

)(0)(0b f a f 则若,0

??<<≥?0)(0)(0

b f a f

注:若二次函数0)(=x f 的两根21x x 、;1x 位于),(b a 内,2x 位于),(d c 内,同样利用画图像的办法。

8. 反函数

(1)函数)(x f y =有反函数的条件

y x 与是一一对应的关系

(2)求)(x f y =的反函数的一般步骤:

①确定原函数的值域,也就是反函数的定义域 ②由原函数的解析式,求出?=x

③将y x ,对换得到反函数的解析式,并注明其定义域。 (3) ?原函数与反函数之间的关系 ① 原函数的定义域是反函数的值域 原函数的值域是反函数的定义域

② 二者的图像关于直线x y =对称

③ 原函数过点),(b a ,则反函数必过点),(a b ④ 原函数与反函数的单调性一致

指数函数与对数函数:

1. 指数幂的性质与运算 (1)根式的性质:

①n 为任意正整数,n

n a )(a = ②当n 为奇数时,a a

n

n

=;当n 为偶数时,||a a n n =

③零的任何正整数次方根为零;负数没有偶次方根。 (2) 零次幂:10

=a )0(≠a (3) 负数指数幂:

n n a

a 1=

- ),0(*

N n a ∈≠ (4) 分数指数幂:

n m n

m a a = )1,,0(>∈>+n N n m a 且

(5) 实数指数幂的运算法则:),,0(R n m a ∈> ①n

m n

m

a

a a +=? ②mn

n m a

a =)( ③n

n n b a b a ?=?)(

2. 幂运算时,注意将小数指数、根式都统一化为分数指数;一般将每个数都化为最小的

一个数的n 次方。

3. ?幂函数?

??∞+=<∞+=>=)上单调递减,在(时,当)上单调递增

,在(时,当0000a

a a

x y a x y a x y 4. 指数与对数的互化

b N N a a b =?=log )10(≠>a a 且 、 )0(>N

5. 对数基本性质:

①1log =a a ②01log =a ③N a

N

a =log ④N a N a =log

?⑤互为倒数与a b b a log log a

b a b b a b a log 1

log 1log log =

?=??

?⑥b m

n

b a n a m log log =

6. 对数的基本运算:

?N M N M a a a log log )(log +=? N M N

M

a a a

l o g l o g l o g -= 7. ?换底公式:a

N

N b b a log log log =

)10(≠>b b 且

0,>∈y R 9. 利用幂函数、指数函数、对数函数的单调性比较两个数的大小,将其变为同底、同

幂(次)或用换底公式或是利用中间值0,1来过渡。 10. 指数方程和对数方程

(1) 指数式和对数式互化 (2) 同底法 (3) 换元法 (4) 取对数法

(5) ?超越方程(作图法)

注:?解完方程要记得验证根是否是增根,是否失根。

一、函数基础题

1、在下列四个函数中,定义域为{x ︱x ∈R 且x ≠0}的函数是 ( )

A. x

y sin 1

= B. 2

3-=x

y C. 2

3x y = D.x y lg =

2、设2

34

33=x ,则x= ( ) A.3 B.9 C.8

93 D.4

93

3、函数y=3x 与x

y ??

? ??=31的图象之间的关系是 ( ) A.关于原点对称 B.关于x 轴对称 C.关于直线y=1对称 D.关于y 轴对称 4、函数f(x)=x ︱x ︱是 ( ) A.偶函数,又是增函数 B.偶函数,又是减函数 C.奇函数,又是增函数 D.奇函数,又是减函数

5、设函数f(2x)=㏒3(8x 2+7),则f(1)= ( ) A.2 B.㏒3 39 C. 1 D.㏒3 15

6、设4

5

24log =

x ,则x 等于 ( ) A.2 B.2 C. 2

1

D.4

7、函数2

1])12lg([-=x

y 的定义域是 ( )

A.(0, +∞)

B.(1,+ ∞)

C.[0,+∞)

D.[1,+ ∞)

8、已知函数f(x)=log 2(ax+b),f(2)=2,f(3)=3,则 ( ) A.a=1,b= -4 B.a=2,b= -2 C.a=4,b=3 D.a=4,b= -4

9、函数y=x 2+2x 与y=x 2-2x 的图象 ( ) A.关于x 轴对称 B.关于y 轴对称

C.关于原点对称

D.关于x 轴和y 轴都不对称

10、已知关于x 的方程x 2+ax -a=0有两个不等的实根,则 ( ) A.a <-4或a >0 B.a ≥0 C.-4<a <0 D.a >-4

11、函数y=x 2-x 和y=x -x 2的图象关于 ( ) A.坐标原点对称 B.x 轴对称 C.y 轴对称 D.直线y=x 对称 12、函数x

x

y -+=11log 2

( ) A.是偶函数 B.既是奇函数,又是偶函数 C.是奇函数 D.既不是奇函数,也不是偶函数

13、关于x 的方程x 2

-(a+3b)x-2b=0的两根之和为8,两根之积为-4,则 ( ) A.a=-2,b=-2 B.a=-2,b=2 C.a=2,b=-2 D.a=2,b=2

14、设x,y 为实数,则x 2=y 2的充分必要条件是 ( )

A.x=y

B.x=-y

C.x 3=y 3

D.|x|=|y|

15、点(2,1)关于直线y=x 的对称点的坐标为 ( ) A.(-1,2) B.(1,2) C.(-1,-2) D.(1,-2)

16、函数1

31

3)(+-=x x x f ( )

A.是偶函数

B.是奇函数

C.既是奇函数,又是偶函数

D.既不是奇函数,也不是偶函数 17、使函数2

1

)(x x f =

为增函数的区间是 ( ) A.(0,+∞) B.(-∞,0) C.(- ∞,+ ∞) D.(-1,1)

18、设a=log 0. 5 6.7,b=log 24.3,c=log 25.6,则a,b,c 的大小关系为 ( ) A.b <c <a B.a <c <b C.a <b <c D.c <b <a 19、如果指数函数y=-a x 的图象过点(3,-

8

1),则a 的值为 ( ) A.2 B.-2 C.2

1

- D.21

20、使函数y=log 2(2x-x 2

)为增函数的区间是 ( )

A. [1,+∞)

B.[1,2)

C.(0,1]

D.(-∞,1]

21、函数2

655)(x

x f x x +-=- ( )

A.是奇函数

B.是偶函数

C.既是奇函数,又是偶函数

D.既不是奇函数,也不是偶函数

22、设甲:x>3,乙:x>5,则 ( ) A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件

C.甲是乙的充分必要条件

D.甲不是乙的必要条件,也不是乙的充分条件 23、点P (3,2)关于y 轴的对称点的坐标为 ( ) A.(3,-2) B.(-3, 2) C.(0,2) D.(-3,-2)

24、设log 32=a ,则log 29等于 ( ) A.a 1 B.a 2 C.223a D.23

2a 25、

函数)(x f y =在[a ,b]上单调,则使得)3(+=x f y 必为单调函数的区间是( )

A.[a ,b+3]

B.[a+3,b+3]

C.[a-3,b-3]

D.[a+3,b] 26、已知3

10

4log )2(2

+=x x f ,则)1(f 等于 ( ) A.314log 2 B.2

1 C.1 D.2

27、下列函数中为偶函数的是 ( )

A.y=cos(x+1)

B.y=3x

C.y=(x -1)2

D.y=sin 2x

28、函数x

y 21-=的定义域是 ( ) A.),(+∞-∞ B.),0[+∞ C.),0(+∞ D.]0,(-∞

33、若函数),3

1

(26log )(4>-=x x x f 则=)1(f ( )

A.

21 B. 4

1

C.2

D.4 34、偶函数)(x f 在(﹣∞,0)上是减函数,那么 ( ) A.)2()3()1(f f f <<- B.)3()2()1(f f f <<- C.)1()3()2(-<

35、点M(1,﹣1)关于点N(3,2)的对称点M ′的坐标是 ( ) A.(5,5) B.(4,1) C.(6,4) D.(5,4)

36、若函数)(x g y =的图象与x

y ??

?

??=31的图象关于直线x y =对称,则=)(x g ( )

A.x 3log

B.﹣x 3log

C.x 3

D.x -3 37、函数)11(11lg

)(<<-+-=x x

x x f 是 ( )

A.奇函数且是增函数

B.奇函数且是减函数

C.非奇非偶的增函数

D.非奇非偶的减函数 *38、实系数方程012222=-++a ax x 有两个相异正实根的充分必要条件是 ( ) A.22>

a B.122<

2<

<<-a 39、31

02

1

125.0)9.3(94-+-+??

?

??=________.

40、函数y=log 2(6-5x-x 2

)的定义域是_______ _____.

41、若2441=??

?

??x

,则x=__________.

42、已知2log 3

=x ,则x=__________.

43、函数232x x y +-=

的定义域是_____ _______.

44、设x 1和x 2为x 2+8x+7=0的两个根,则(x 1-x 2)2=____ ______. 45、函数)34(log 3

1-=

x y 的定义域是__ ___________.

46、设x 1和x 2为方程x 2+ax+b=0 (a >0)的两个根,且x 12+x 22=4,x 1x 2=

3

2

,则a 等于______ ___. 47、函数2

1

2-

=

x y 的定义域是__ ___________. 48、已知函数b x x f +=3)(的图象与函数13

)(-=x

x g 的图象关于直线x y =对称,则b 的值等于 . 49、函数)0()11)(4(>++=x x

x y 的最小值等于 .

二、二次函数及其应用

50、二次函数y=x 2+4x+1的最小值是 ( ) A.1 B.–3 C. 3 D. –4

51、二次函数y=-x 2

+4x-6的最大值是 ( ) A.-6 B.-10 C.-2 D.2

52、设函数f(x)=(m -1)x 2+2mx+3是偶函数,则它在 ( ) A.区间(-∞,+∞)是增函数 B.区间(-∞,+∞)是减函数 C.区间[0,+∞)是增函数 D.区间(-∞,0]是增函数

53、设函数f(x)=2ax 2+(a -1)x+3是偶函数,则a 等于 ( ) A.-1 B.0 C.1 D.2

54、点P (0,1)在函数y=x 2+ax+a 的图象上,则该函数图象的对称轴方程为 ( ) A.x=1 B.21=

x C.x=-1 D.2

1-=x 55、函数y= -x(x -1) ( ) A.有最小值1 B.有最小值-1 C.有最大值41 D.有最大值4

1

- 56、函数3212

-+=

x x y 的最小值为 ( ) A.25- B.2

7

- C.-3 D.-4

57、已知二次函数的图象以点(1,3)为顶点,并通过点(2,5),则此二次函数的解析式为y=_______________.

三、函数综合题

58、(8分) 计算 3

272

3

2271343log 21125-

-?

?

?

??-+??

? ??+

59、(8分) 计算 ()0

22

11sin )6

13sin(256log 259--

++??

?

??-

π

60、(9分)实数m 取何值时,关于x 的方程x 2+(m -2)x -(m+3)=0的两根的平方和最小?并求出该最小值.

61、(8分) 已知二次函数y=ax 2+bx+c 的图象过点(1,-12),且它的顶点为(-1,-16),求a,b,c 的值.

62、(9分) 已知二次函数f(x)=ax 2+bx+c 的图象C 与x 轴有两个交点,它们之间距离为6,C 的对称轴方程为x=2,且f(x)有最小值-9,求

(ⅰ)a,b ,c 的值; (ⅱ)如果f(x)不大于7,求对应x 的取值范围.

64、(11分) 假设两个二次函数的图象关于直线x=1对称,其中一个函数的表达式为y=x 2+2x -1,求另一个函数的表达式.

65、(11分) 已知二次函数y=x 2+bx+3的图象与x 轴有两个交点,且这两个交点间的距离为2,求b 的值.

附:参考答案(一)

39.323

40. (-6,1) 41.4

5

- 42.81 43.{x ︱x ≤1或x ≥2} 44.36 45.

]1,4

3

( 46.

334 47. [-1,+∞] 48.3 49.9 50-56.BCDCD CB

57.y=2x 2 -4x+5 58.23 59.6

1

8

60.当m=1时,最小值为9 61.a=1,b=2,c= -15 62.(1) a=1,b= -4,c= -5 ; (2) -2≤x≤6 63.2

5

3+=a 64.y=x 2

-6x+7 65.b=±4

2015高考数学专题复习:函数零点

2015高考数学专题复习:函数零点 函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图像与x 轴交点的横坐标. ()x g x f y -=)(的零点(个数)?函数()x g x f y -=)(的图像与x 轴的交点横坐标(个数) ?方程()()0=-x g x f 即()x g x f =)(的实数根(个数) ?函数)(x f y =与)(x g y =图像的交点横坐标(个数) 1.求下列函数的零点 1.232-+=x x y 2.x y 2log = 3.62 -+=x x y 4.1ln -=x y 5.2 1sin + =x y 2.函数22()(2)(32)f x x x x =--+的零点个数为 3.函数()x f =???>-≤-+) 0(2ln ) 0(322x x x x x 的零点个数为 4.函数() () ???>+-≤-=13.41.44)(2x x x x x x f 的图像和函数()ln g x x =的图像的交点个数是 ( ) .A 1 .B 2 .C 3 .D 4 5.函数5 ()3f x x x =+-的零点所在区间为 ( ) A .[0,1] B .[1,2] C .[2,3] D .[3,4] 6.函数1()44x f x e x -=+-的零点所在区间为 ( ) A. (1,0)- B. (0,1) C. (1,2) D. (2,3) 7.函数()2ln(2)3f x x x =--的零点所在区间为 ( ) A. (2,3) B. (3,4) C. (4,5) D. (5,6) 8.方程2|2|lg x x -=的实数根的个数是 9.函数()lg ()72f x x g x x ==-与图像交点的横坐标所在区间是 ( ) A .()21, B .()32, C .()43, D .()54, 10.若函数2 ()4f x x x a =--的零点个数为3,则a =______

高考数学函数专题习题集复习资料

函数专题练习 (一) 选择题(12个) 1.函数1 ()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1 a a x a x f x x x -+?是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11[,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠, 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2 ()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()lg .f x x =设 63(),(),52a f b f ==5(),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1(,)3-+∞ B . 1(,1)3- C . 11(,)33- D . 1(,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ D 7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 )

2021高考数学专题复习:基本函数一

2021高考数学专题复习:二次函数 (1)已知函数()x f 满足()(),x a f x a f -=+则()x f y =对称轴为 ()()?-=+x f x f 22对称轴=x ()()?--=+-x f x f 11对称轴=x ()()220f f x =?= ?=0x ()()131f f x =?= ?=1x ()()042f f x =?= ?=2x (2)已知函数()x f 满足()(),x b f x a f -=+则()x f y =对称轴为 ()()?-=+x f x f 62对称轴=x ()()?-=+x f x f 51对称轴=x ?=0x ?=0x ?=1x ?=1x ?=2x ?=2x (3)已知函数()x f 满足()(),x a f x f -=则()x f y =对称轴为 ()()?-=x f x f 6对称轴=x ()()?-=x f x f 2对称轴=x ?=0x ?=0x ?=1x ?=1x ?=2x ?=2x

作函数图像: (1)322--=x x y (2) 432-+=x x y (3)x x y 32+-= (4)32+-=x y (5)x x y 22--= (6)432-+-=x x y (7)x x y 22+= (8)x x y 22--= (9)432-+-=x x y (10)x x y 42-= (11)x x y 22+= (12)432-+=x x y

(13)()()?????<+≥-=0.20.222x x x x x x y (14)()()?????<--≥+-=0.20.222x x x x x x y (15)()() ?????<-+≥--=0.320.3222x x x x x x y (16)()()?????<-≥+=0.0.22x x x x x x y (17)()()?????<--≥--=0.430.4322x x x x x x y (18)()() ?????<+≥-=0.20.222x x x x y 1.函数()2 f x x px q =++对任意的x 均有()()11f x f x +=-,()()()1,1,2f f f -的大小关系为 2.函数()x f 满足()(),31x f x f -=+在区间(]2,∞-上单调递增,设()()(),5,2,5.1f c f b f a ==-= 则,,a b c 的大小顺序为

高考文科数学函数专题讲解及高考真题精选含答案

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是

汇总高考数学函数专题习题及详细答案.doc

函数专题练习 1.函数1 ()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1 (0,)3 (C )11[,)73 (D )1[,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠, 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2 ()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()lg .f x x =设 63(),(),52a f b f ==5(),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1(,)3-+∞ B . 1(,1)3- C . 11(,)33- D . 1(,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ D 7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

高考数学(理科)二轮复习【专题2】函数的应用(含答案)

第2讲函数的应用 考情解读(1)函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以填空题的形式出现.(2)函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题. 1.函数的零点与方程的根 (1)函数的零点 对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点. (2)函数的零点与方程根的关系 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标. (3)零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.注意以下两点: ①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.函数模型 解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答. 热点一函数的零点 例1(1)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是________.

(2)(2014·辽宁改编)已知f (x )为偶函数,当x ≥0时,f (x )=??? cos πx ,x ∈[0,1 2 ], 2x -1,x ∈(1 2 ,+∞),则不等式 f (x -1)≤1 2 的解集为________. 思维升华 (1)根据二分法原理,逐个判断;(2)画出函数图象,利用数形结合思想解决. 答案 (1)1 (2)[14,23]∪[43,7 4 ] 解析 (1)先判断函数的单调性,再确定零点. 因为f ′(x )=2x ln 2+3x 2>0, 所以函数f (x )=2x +x 3-2在(0,1)上递增, 且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0, 所以有1个零点. (2)先画出y 轴右边的图象,如图所示. ∵f (x )是偶函数,∴图象关于y 轴对称,∴可画出y 轴左边的图象,再画直线y =1 2.设与曲线交 于点A ,B ,C ,D ,先分别求出A ,B 两点的横坐标. 令cos πx =12,∵x ∈[0,1 2], ∴πx =π3,∴x =1 3 . 令2x -1=12,∴x =34,∴x A =13,x B =34 . 根据对称性可知直线y =12与曲线另外两个交点的横坐标为x C =-34,x D =-1 3. ∵f (x -1)≤12,则在直线y =1 2上及其下方的图象满足, ∴13≤x -1≤34或-34≤x -1≤-1 3, ∴43≤x ≤74或14≤x ≤23 . 思维升华 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同

2021高考数学专题复习:周期函数

2021高考专题复习(1)周期函数定义 一、定义: 1.对于函数(),x f 如果存在一个大于零的实数,T 使当x 取定义域内的每一个值时,都有()(),x f T x f =+ 则函数()x f y =的最小正周期为 ()()2f x f x T +=?= ()()4f x f x T -=?= ()()6f x f x T =+?= 2.若()(),b x f a x f +=+则函数()x f y =的最小正周期为 ()()27f x f x T +=+?= ()()720f f x =?= ( )()f f x =?=1 ?=2x ?=3x ()()36f x f x T -=+?= ( )()f f x =?=0 ?=1x ?=2x ?=3x 3.对于非零常数,A 若函数()x f y =满足()(),x f A x f -=+则函数()x f y =的最小正周期为 ()()()()?=-??? ? ??= +?-=+x f A x f x f A x f =?T ()()2f x f x T +=-?= ()()1f x f x T -=-?=

4.对于非零常数,A 函数()x f y =满足()() ,1 x f A x f = -则函数()x f y =的最小正周期为 ()() ()()?=????? ???? ?= -?= -x f A x f x f A x f 11 =?T ()() 1 1f x T f x += ?= ()() 1 2f x T f x -= ?= 5.对于非零常数,A 函数()x f y =满足()() ,1 x f A x f - =+则函数()x f y =的最小正周期为 ()() ()()?=- ????? ? ????= +- =+x f A x f x f A x f 11 =?T ()() 1 4f x T f x +=- ?= ()=?2020f , ()=2021f ()() 1 5f x T f x --= ?= ()=?2020f , ()=2019f 6.对于非零常数,A 函数()x f y =满足()()() ,11x f x f A x f +-=+则函数()x f y =的最小正周期为

高三数学函数图像与性质专题

2020高三数学培优专练1:函数的图像与性质 例1:对于函数()f x ,若a ?,b ,c ∈R ,都有()f a ,()f b ,()f c 为某一三角形的三条边,则称 ()f x 为“可构造三角形函数”,已知函数()1 x x e t f x e +=+(e 为自然对数的底数)是“可构造三角形函数”, 则实数t 的取值范围是( ) A .[0,)+∞ B .[0,2] C .[1,2] D .1,22 ?????? 【答案】D 【解析】由题意可得:()()()f a f b f c +>,对a ?,b ,c ∈R 恒成立, 1 ()111 x x x e t t f x e e +-==+++,当10t -=时,()1f x =,()()()1f a f b f c ===,满足条件, 当10t ->时,()f x 在R 上单调递减,∴1()11f a t t <<+-=, 同理:1()f b t <<,1()f c t <<, ∵()()()f a f b f c +>,所以2t ≥,∴12t <≤. 当10t -<时,()f x 在R 上单调递增,∴()1t f a <<, 同理:()1t f b <<,()1t f c <<,∴21t ≥,12t ≥ .∴1 12 t ≤<. 综上可得:实数t 的取值范围是1,22?????? . 培优一 函数的图象与性质 一、函数的单调性 二、函数的奇偶性和对称性

例2:设函数()f x 、()g x 分别是定义在R 上的奇函数和偶函数,且()()2x f x g x +=,若对[1,2]x ∈, 不等式()(2)0af x g x +≥恒成立,则实数a 的取值范围是( ) A .[ )1,-+∞ B .) 22,?-+∞? C .17,6?? - +∞???? D .257,60?? - +∞???? 【答案】C 【解析】∵()f x 为定义在R 上的奇函数,()g x 为定义在R 上的偶函数, ∴()()f x f x -=-,()()g x g x -=, 又∵由()()2x f x g x +=,结合()()()()2x f x g x f x g x --+-=-+=, ∴1()(22)2x x f x -= -,1 ()(22)2 x x g x -=+, 又由()(2)0af x g x +≥,可得 221 (22)(22)022 x x x x a ---++≥, ∵12x ≤≤,∴ 315 2224 x x -≤-≤, 令22x x t -=-,则0t >,将不等式整理即得:2a t t ? ?≥-+ ?? ? . ∵31524t ≤≤,∴172257660t t ≤+≤,∴176 a ≥-.故选C . 例3:定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[0,2)x ∈时,2()48f x x x =-+.若在 区间[,]a b 上,存在(3)m m ≥个不同的整数i x (1i =,2,L ,m ),满足1 11 ()()72m i i i f x f x -+=-≥∑ , 则b a -的最小值为( ) A .15 B .16 C .17 D .18 【答案】D 三、函数的周期性

全国高考数学复习微专题:函数的图像

函数的图像 一、基础知识 1、做草图需要注意的信息点: 做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点 (1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线 特点:两点确定一条直线 信息点:与坐标轴的交点 (2)二次函数:()2 y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性 信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1 y x = ,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注: (1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。 (2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

2010高考数学复习专题:函数的最值

函数的最值(值域) ●高考要求 掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法 最值问题,几乎涉及到高中数学的各个分支,是历年高考重点考查的知识点之一,有一些基础题,也有一些小综合的中档题,更有一些以难题形式出现.它经常与三角函数、二次函数、一元二次方程、不等式及某些几何知识紧密联系.所以其解法灵活,综合性强,能力要求高.解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法.考生的运算能力,分析问题和解决问题能力在这里充分展现.因此我们应注意总结最大、最小值问题的解题方法与技巧,以提高高考应变能力因函数的最大、最小值求出来了,值域也就知道了反之,若求出的函数的值域为非开区间,函数的最大或最小值也等于求出来了 ●重难点归纳 (1)求函数的值域 此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、导数法 数形结合法(图像法)导数法 数形结合法、判别式法、部分分式、均值不等式、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域 (2)函数的综合性题目 此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强 (3)运用函数的值域解决实际问题 此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力 ●知识点归纳 一、相关概念 1、值域:函数A x x f y ∈=,)(,我们把函数值的集合}/)({A x x f ∈称为函数的值域。 2、最值:求函数最值常用方法和函数值域的方法基本相同。事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。 最大值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0) = M 。那么,称M 是函数y =f (x )的最大值。记作()max 0y f x = 最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0) = M 。那么,称M 是函数y =f (x )的最小值。记作()min 0y f x = 注意: ①函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f (x 0) = M ; ② 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f (x )≤M (f (x )

高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)

第1讲函数、基本初等函数的图象与性质 考情解读(1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大. 1.函数的三要素 定义域、值域及对应关系 两个函数当且仅当它们的三要素完全相同时才表示同一函数. 2.函数的性质 (1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则. (2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性. (3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|. 3.函数的图象 对于函数的图象要会作图、识图、用图. 作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换. 4.指数函数、对数函数和幂函数的图象和性质

(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分01两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况. 热点一 函数的性质及应用 例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________. (2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈????0,1 2时,f (x )=-x 2,则f (3)+f ??? ?-3 2=________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,1 2]时的 解析式探求f (3)和f (-3 2)的值. 答案 (1)(-1,3) (2)-1 4 解析 (1)∵f (x )是偶函数, ∴图象关于y 轴对称. 又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示, 由f (x -1)>0,得-2

(完整版)高三数学函数专题复习策略

高三数学试卷中函数专题复习策略 一、《考试说明》对函数部分的要求 1.函数.理解函数的概念、定义域、值域、奇偶性,了解函数的单调性、周期性、最大值、最小值; 2.基本初等函数.了解幂函数的概念及图象,理解指数函数、对数函数的概念及图象和性质,理解指数及对数的运算. 3.函数与方程.了解函数的零点与方程根的联系,能够用二分法求相应方程的近似解. 4.函数模型及应用.理解常见的函数模型在实际问题中的应用. 5.理解导数的几何意义,会根据公式、四则运算法则、复合函数求导法则求函数的导数,能利用导数研究函数的单调性,会求函数的单调区间,函数的极大值、极小值,闭区间上函数的最大值、最小值. 二、函数部分命题特点 函数是高中数学的核心内容,是学习高等数学的基础,作为高中数学中最重要的知识模块,贯穿着中学数学的始终.综观近几年的高考情况,函数命题呈现如下特点: 1.知识点覆盖面全.近几年高考题中,函数的所有知识点基本都考过,特别是函数的图象性质、导数的几何意义与应用以及函数与不等式的综合基本上年年必考. 2.题型难度涉及面广.在每年高考题中,低档、中档、高档难度的函数题都有,且填空、解答题型都有. 3.综合性强.为了突出函数在中学数学中的主体地位,近几年来高考强化了函数对其他知识的渗透,例如,解析几何中经常涉及函数的值域的求法,三角、数列本质上也是函数问题. 三、函数复习中关注方面 (一)关注函数的定义域 定义域的求法实际上就是解不等式,考生必须能够做到以下两点:一是熟知定义域常见要求,如分式的分母不为零;偶次根号下非负;对数的真数大于零,底数大于零且不等于1;零次幂的底数不为零;三角函数中的正切、余切的定义域等等;二是熟练掌握常见不等式的解法,如二次不等式、分式不等式、根式不等式、三角不等式以及简单的指对数不等式. 例1.(2012年江苏卷)函数x x f 6log 21)(-=的定义域为 . 【解析】根据二次根式和对数函数有意义的条件,得

高考数学函数零点专题

欢迎下载学习好资料 2. 函数的零点专题高考解读函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利求方程的根、用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的x掌握零点存在性定理.增强根据实际问题建立数轴的交点的横坐标的等价性;图象与学模型的意识,提高综合分析、解决问题的能力.知识梳理 1.函数的零点与方程的根xffxfxx 的零(),我们把使叫做函数())=0 (1)函数的零点对于函数的实数( 点.函数的零点与方程根的关系(2)xfxgxyfFxxgxf的图象与)=函数((()=(=)-)(的根,)的零点就是方程即函数()xgy )(函数的图象交点的横坐标.= (3)零点存在性定理bbfafyfxa,上的图象是连续不断的一条曲线,且有)<0如果函数(=(([)在区间),·]cbfcyfxabca这个)使得)在区间(=,()内有零点,即存在∈(0, 那么,函数,=)(xf的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条=也就是方程(0) 件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解..在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时,数2即把方程分拆为一个等式,使两端都转化为我们所熟悉的函形结合是基本的解题方法,xxgfxgxf的形式,这时()),=((),即把方程写成)数的解析式,然后构造两个函数(可以根据图象的变化趋势找到方程中字母方程根的个数就是两个函数图象交点的个数,. 参数所满足的各种关系高频考点突破函数的零点判断考点一 11?x?2x?)ea(?xf(x)?e?2x?有唯一零点,已知函数11课标20173,理】1例、【a= 则111?DBCA.1 ...223 1x fxx-2的零点所在的区间是+( 【变式探究】(1)函数) (=)e211)(,1,(0)(2,3) (1,2) D.A. B.. C222xfxfyxxgxxx=)(,若函数0)≥(3- =)(满足:R∈,)(=已知偶函数(2). 学习好资料欢迎下载 xx,,>0log?2??yfxgx)的零点个数为( )-则=(() 1x,,<0-?x?A.1 B.3 C.2 D.4 【方法技巧】函数零点的求法 fx)=0(1)直接求零点:令,如果能求出解,则有几个解就有几个零点.( ab]上是连续不断的曲线,且,(2)零点存在性定理:利用定理不仅要函数在区间[fafb)<0,还 必须结合函数的图象与性质(如单调性、奇偶性()(才能确定函数有多少)·个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其有几个交点,就有几个不同的零点. fxxxfx)的零点所在的区间为( (=ln +) -2【变式探究】设(,则函数)A.(0,1) B.(1,2) C.(2,3) D.(3,4) 考点二、二次函数的零点 2axxafx∈R. )=+2+2例、已知函数,(2xfxfx的解集;1-[1,2],求不等式 ((1)若不等式)(≥)≤0的解 集为2axxfxg的取值上有两个不同的零点,求实数1)+(2)若函数在区间((1,2))=(+范围.【方法技巧】 解决二次函数的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组. 【变式探究】 22xaafxxa小,求实数大,一个零点比1的一个零点比+(-2)-1)已知1()=+(的取值范围.

高考数学函数问题的题型与方法

高考数学函数问题的题 型与方法 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

第9讲函数问题的题型与方法 三、函数的概念 函数有二种定义,一是变量观点下的定义,一是映射观点下的定义.复习中不能仅满足对这两种定义的背诵,而应在判断是否构成函数关系,两个函数关系是否相同等问题中得到深化,更应在有关反函数问题中正确运用.具体要求是: 1.深化对函数概念的理解,明确函数三要素的作用,并能以此为指导正确理解函数与其反函数的关系. 2.系统归纳求函数定义域、值域、解析式、反函数的基本方法.在熟练有关技能的同时,注意对换元、待定系数法等数学思想方法的运用.3.通过对分段定义函数,复合函数,抽象函数等的认识,进一步体会函数关系的本质,进一步树立运动变化,相互联系、制约的函数思想,为函数思想的广泛运用打好基础. 本部分的难点首先在于克服“函数就是解析式”的片面认识,真正明确不仅函数的对应法则,而且其定义域都包含着对函数关系的制约作用,并真正以此作为处理问题的指导.其次在于确定函数三要素、求反函数等课题的综合性,不仅要用到解方程,解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合. Ⅰ深化对函数概念的认识 例1.下列函数中,不存在反函数的是() 分析:处理本题有多种思路.分别求所给各函数的反函数,看是否存在是不好的,因为过程太繁琐. 从概念看,这里应判断对于给出函数值域内的任意值,依据相应的对应法则,是否在其定义域内都只有惟一确定的值与之对应,因此可作出给定函数的图象,用数形结合法作判断,这是常用方法。 此题作为选择题还可采用估算的方法.对于D,y=3是其值域内一个值,但若y=3,则可能x=2(2>1),也可能x=-1(-1≤-1).依据概念,则易得出D中函数不存在反函数.于是决定本题选D. 说明:不论采取什么思路,理解和运用函数与其反函数的关系是这里解决问题的关键. 由于函数三要素在函数概念中的重要地位,那么掌握确定函数三要素的基本方法当然成了函数概念复习中的重要课题. 例1.(重庆市)函数)2 3( log 2 1 - =x y的定义域是(D) A、[1,) +∞B、2 3 (,) +∞C、2 3 [,1]D、2 3 (,1] 例2.(天津市)函数12 3- =x y(0 1< ≤ -x)的反函数是(D)

2018届高三数学复习函数的性质(1)专题练习

函数的性质一 一、 填空题 1. 函数245y x mx =-+在[2,)+∞上是增函数,则(1)f -的取值范围是 2. 若函数12()21 x x m f x ++=-是奇函数,则m = 3. 函数211 x y x -=-的递减区间是 . 4. 已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -= . 5. 已知函数53()8f x x px qx =++-满足(2)10f -=,则(2)f = . 6. 已知定义在R 上的偶函数()f x 在[0,)x ∈+∞上单调递增,则满足1(21)()3 f x f -<的x 的取值范围是 . 7. 若函数2()|2|f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是 . 8. 若函数()log (2)a f x ax =-在[0,1]上单调递减,则实数a 的取值范围是 . 9. 设()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“(),()f x g x 均为偶函数”是“()h x 是偶函数”的 条件. 10. 设()f x 是R 上的奇函数,()g x 是R 上的偶函数,若函数()()f x g x +的值域为[1,4]-,则 ()()f x g x -的值域为 . 11. 已知奇函数()f x 的定义域为R ,若(1)f x +为偶函数,且(1)2f =,则(4)(5)f f +的值为 . 12. 已知()f x 在R 上是单调函数,且满足对任意x R ∈,(()2)3x f f x -=,则(3)f = . 二、选择题 13. 以下函数中,在区间(0,)+∞上为增函数的是( ) .A y =.B 2(1)y x =- .C 2x y -= .D 0.5(1)y log x =+ 14. 设函数(),()f x g x 的定义域为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( ) .A ()()f x g x 是偶函数 .B ()|()|f x g x 是奇函数 .C |()|()f x g x 是奇函数 .D |()()|f x g x 是奇函数 15. 定义在区间R 上的奇函数()f x 为增函数,偶函数()g x 在区间[0,)+∞的图像与()f x 的图像重合,设0a b >>,给出下列不等式,其中成立的是( )

相关文档
最新文档