实验2矩形截面梁的纯弯曲

实验2矩形截面梁的纯弯曲
实验2矩形截面梁的纯弯曲

实验二 矩形截面梁的纯弯曲

一、实验目的

1.测定纯弯曲下矩形截面梁横截面上正应力的分布规律,并与理论值比较。

2.测定泊松比μ。

3.熟悉电测法基本原理和电阻应变仪的使用。

二、实验仪器

1.CLDT-C 型材料力学多功能实验台

2.DH-3818型静态电阻应变仪

3.矩形截面梁实验装置一套(205E GPa =)

4.游标卡尺

三、实验原理

在纯弯曲段,见图2-1,梁横截面上任一点的正应力计算公式为

z

My

I σ=

式中:M 为弯矩;z I 为横截面对中性轴z 的惯性矩;y 为所求应力点至中性轴的距离。

2

Pa

M =

3

12

z bh I =

图2-1

为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁的侧面不同高度,平行于轴线贴有5片电阻应变片,如图2-2所示,其中3#片位于中性层处,2#、4#片分别距中性层上、下/4h 处,1#、5#片分别位于上、下表面。此外,在梁的上表面沿横向粘贴0#应变片。

组桥方式:半桥单臂接法,如图2-3所示。

加载采用增量法,即每增加等量的载荷P ?,测出各点的应变增量ε?,然后分别取各点应变增量的平均值i ε?均,依次求出各点的应力增量i σ?实。将实测应力值i σ?实与理论应力值i σ?理进行比较,以验证弯曲正应力公式。

i i E σε?=?均实

i z

My

I σ??=

2

Pa

M ??=

利用梁的上表面1#、0#应变片,可测定泊松比μ。

εμε?=

?均0均1

图2-2 布片方式

补偿片C D B

A

U O

I

U 工作片2R R 14R R 3

图2-3 组桥方式

四、实验步骤

1.测量矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a 及各应变片到中性层的距离y 。

2.拟定加载方案,见表1。

3.按照组桥方式,将应变片和力传感器接入桥路,并连接好应变仪的电源线。

4.设置力传感器的灵敏系数,并平衡各通道。

5.按照加载方案进行加载测试,记录实验数据。加载时应缓慢均匀地进行。实验至少重复两次,如果数据稳定,即可结束。

6.现场计算出泊松比μ和各点的应力增量i σ?实,并将实测应力值i σ?实与理论应力值

i σ?理进行比较,经教师审核认可后,结束实验,使实验装置和仪器复原(卸载、拆线整理

所用仪器、关闭电源、将应变仪盖好)。

五、原始实验数据

表1

2

Pa

M ??=

3

12z bh I =

i z

My

I σ??=

理 (1,2,3,4,5i =) i i E σε?=?均实 (1,2,3,4,5i =)

100%i

i i

σσσ?-??=?理实理

表2

七、思考题

1.应变片是粘贴在梁表面的,为什么可以把所测的应变看成是梁横截面上的应变?

2.在梁的纯弯曲段内,若3#、4#、5#应变片的位置稍左一点或稍右一点,对测量结果有无影响?位置稍上一点或稍下一点对测量结果有无影响?

第一节 矩形截面梁的纯弯曲实验

第一节矩形截面梁的纯弯曲实验 一、实验目的 1.学习电测法的基本原理和静态电阻应变仪的使用方法。 2.学习电测法中的1/4桥、1/2桥和全桥的测量方法。 3.测量矩形截面梁在纯弯曲段中测点沿轴线方向的线应变,画出该线应变沿梁高度方向的变化规律,验证平面截面假设。 4.根据上述测量结果计算测点的正应力,并与理论计算值进行比较。 二、实验设备和仪器 1.多用电测实验台。 2.DH-3818型静态电阻应变仪。 3.SDX-I型载荷显示仪。 三、实验原理及方法 实验装置如图2-1所示,矩形截面梁采用低碳钢制成,其弹性模量,E,210 GPa梁的尺寸为,,。在发生纯弯曲变形的梁段上,沿a,100 mmb,20 mmh,40 mm 梁的沿轴线方向粘贴有5个应变片(其中应变片1位于梁的上表面,应变片2 位于梁的上表面与中性层的中间,应变片3位于梁的中性层上,应变片4位于梁的中性层与下表面的中间,应变片5位于梁的下表面),另外在梁的支撑点以外粘贴有一个应变片作为温度补偿片。应变片的灵敏系数K,2.08。 1.应变测量 3种测量桥路的接线方法如下: F 温度补偿片 b

123hz45y aa工作片 图2-1 矩形截面梁的纯弯曲 (1) 1/4桥测量方法 将5个工作片和温度补偿片按1/4桥形式分别接入电阻应变仪的5个通道中,组成5个电桥。具体接法:工作片的引线接在每个电桥的、端,温度补偿片接AB ?19 ? 在电桥的、端。当梁在载荷作用下发生弯曲变形时,工作片的电阻值将随着梁CB 的变形而发生变化,电阻应变仪相应通道的输出应变为,于是测点的应变为 ,仪 ,,,仪实 (2) 1/2桥测量方法 由于测点5与测点1的应变之间存在关系 ,,,,实5实1 测点4与测点2的应变之间存在关系 ,,,,实4实2 于是可将工作片5和1、4和2分别按1/2桥形式接入电阻应变仪的2个通道中,组 成2个电桥。具体接法:工作片5接到一个电桥的、端,工作片1接到该电桥AB的、端;工作片4接到另一个电桥的、端,工作片2接到相应电桥的、CBABB 端。当梁在载荷作用下发生弯曲变形时,电阻应变仪相应通道的输出应变为,C,仪 于是测点5和测点4的应变为

纯弯曲实验报告

《材料力学》课程实验报告纸 实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高 度变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)内力图 分析主梁的受力特点,进行求解并画出其内力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的内力简图,如图2所示。 Page 1 of 10

《材料力学》课程实验报告纸 (3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

第11章梁的弯曲应力要点

第11章梁的弯曲应力 教学提示:梁纯弯曲和横力弯曲时横截面上的正应力;梁横力弯曲时横截面上的切应力;提高弯曲强度的若干措施、薄壁杆件的切应力流和弯曲中心。 教学要求:掌握梁纯弯曲时横截面上正应力计算公式的推导过程,理解横力弯曲正应力计算仍用纯弯曲公式的条件和近似程度。掌握中性层、中性轴和翘曲等基本概念和含义。熟练掌握弯曲正应力和剪应力强度条件的建立和相应的计算。了解什么情况下需要对梁的弯曲切应力进行强度校核。从弯曲强度条件出发,掌握提高弯曲强度的若干措施。 在外荷载作用下,梁截面上一般都有弯矩和剪力,相应地在梁的横截面上有正应力和剪应力。弯矩是垂直于横截面的分布内力的合力偶矩;而剪力是切于横截面的分布内力的合力。本章研究正应力σ和剪应力τ的分布规律,从而对平面弯曲梁的强度进行计算。 11.1梁的弯曲正应力 平面弯曲情况下,一般梁横截面上既 有弯矩又有剪力,如图11.1所示梁的AC、 DB段。而在CD段内,梁横截面上剪力等 于零,而只有弯矩,这种情况称为纯弯曲。 下面推导梁纯弯曲时横截面上的正应力公 式。应综合考虑变形几何关系、物理关系 和静力学关系等三个方面。 11.1.1 弯曲正应力一般公式 1、变形几何关系 为研究梁弯曲时的变形规律,可通过 试验,观察弯曲变形的现象。取一具有对 称截面的矩形截面梁,在其中段的侧面上, 画两条垂直于梁轴线的横线mm和nn,再 在两横线间靠近上、下边缘处画两条纵线 ab和cd,如图11.2(a)所示。然后按图 11.1(a)所示施加荷载,使梁的中段处于纯弯曲 状态。从试验中可以观察到图11 .2(b)情况: (1)梁表面的横线仍为直线,仍与纵线正 交,只是横线间作相对转动。

矩形截面梁纯弯曲正应力的电测实验

A B C D L a a 1L b 2 F 2 F 2 F 2 F h 实验四 矩形截面梁纯弯曲正应力的电测实验 一、实验名称 矩形截面梁纯弯曲正应力的电测实验 二、实验目的 1.学习使用电阻应变仪,初步掌握电测方法; 2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。 三、实验设备 1.WSG -80型纯弯曲正应力试验台 2.静态电阻应变仪 四、主要技术指标 1.矩形截面梁试样 图1 试样受力情况 材料:20号钢,E=208×109Pa ; 跨度:L=600mm ,a=200mm ,L 1=200mm ; 横截面尺寸:高度h=28mm ,宽度b=10mm 。 2.载荷增量 载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F 0=26 N 。 3.精度 满足教学实验要求,误差一般在5%左右。 五、实验原理

如图1所示,CD 段为纯弯曲段,其弯矩为Fa 2 1 M = ,则m 6N .2M 0?=,m 20N M ?=?。根据弯曲理论,梁横截面上各点的正应力增量为: z I My ?= ?理 σ (1) 式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩形截面 12 bh I 3 z = (2) 由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。只要测出各点沿纵向的应变增量ε?,即可按胡克定律计算出实际的正应力增量实σ?。 ε σ?=?E 实 (3) 在CD 段任取一截面,沿不同高度贴五片应变片。1片、5片距中性轴z 的距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位置上。 测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ?,并画出正应力实σ?沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值 理σ?进行比较。 六、实验步骤及注意事项 1.开电源,使应变仪预热。 2.在CD 段的大致中间截面处贴五片应变片与轴线平行,各片相距h/4,作为工作片;另在一块与试样相同的材料上贴一片补偿片,放到试样被测截面附近。应变片要采用窄而长的较好,贴片时可把试样取下,贴好片,焊好固定导线,再小心装上。 3.调动蝶形螺母,使杠杆尾端翘起一些。 4.把工作片和补偿片用导线接到预调平衡箱的相应接线柱上,将预调平衡箱与应变仪联接,接通电源,调平应变仪。 5.先挂砝码托,再分四次加砝码,记下每次应变仪测出的各点读数。注意加砝码时要缓慢放手。 6.取四次测量的平均增量值作为测量的平均应变,代入(3)式计算可得各点的

纯弯梁的弯曲应力测定

纯弯梁的弯曲应力测定实验报告 使用设备名称与型号 同组人员 实验时间 1、 实验目的 1.测定梁纯弯曲时横截面上的正应力大小及分布规律,并与理论值比较,以验证弯曲正应力公式。 2.观察正应力与弯矩的线性关系。 3.了解电测法的基本原理和电阻应变仪的使用方法。 2、 实验设备与仪器 1.弯曲梁实验装置和贴有电阻应变片的矩形截面钢梁。 2.静态数字电阻应变仪YJ28A-P10R(见附录四)和载荷显示仪。 3.直尺。 3、 实验原理 梁纯弯曲时横截面上的正应力公式为σ= ,式中M为作用在横截面上的弯矩,Y为欲求应力点到中性轴Z的距离,I z为梁横截面对中性轴的惯性矩。本实验采用矩形截面钢梁,实验时将梁的支承及载荷情况布置如图6-1所示,梁的CD段为纯弯曲,在梁的CD段某截面不同高度(四等分点)处贴五片电阻应变片,方向平行梁轴,温度补偿片粘贴梁上不受力处,当纯弯梁受载变形时,利用电阻应变仪测出各应变片的应变值(即梁上各纵向应变值)ε实。由于纵向纤维间不互相挤压,故根据单向应力状态的虎克定律求出应力σ实=Eε实。E为梁所用材料的弹性模量。为了减少测量误差,同时也可以验证正应

力与弯矩的线性关系,采用等量加载来测定沿高度分布的各相应点的应变,每增加等量的载荷 F,测定各点相应的应变一次,取应变增量的平均值 ε实。求出各应力增量 σ实=E ε实,并与理论值 σ理= 进行比较,其中 M= Fa.,从而验证理论公式的正确性。

图6-1纯弯梁示意图 4、 实验操作步骤 1.将梁放在实验装置的支座上。注意应尽量使梁受平面弯曲,用尺测量力作用点的位置及梁的截面尺寸。 2.在确保梁的最大应力小于材料的比例极限σp前提下,确定加载方案。 3.将梁上各测点的工作应变片逐点连接到应变仪的A、B接线柱上,而温度补偿片接在B、C接线柱上。按电阻应变仪的使用方法,将应变仪调整好。 4.先加载至初载荷,记录此时各点的应变值,然后每次等量增加载荷 ΔF,逐次测定各点相应的应变值,直到最终载荷终止。卸载后,注意记录各测点的零点漂移。 5.检查实验数据是否与离开中性轴的距离成正比,是否与载荷成线形关系,结束工作。 5、 实验结果及分析计算 1、 实验数据 12345

材料力学实验指导书(矩形截面梁纯弯曲正应力的电测实验)

矩形截面梁纯弯曲正应力的电测实验 一、实验名称 矩形截面梁纯弯曲正应力的电测实验。 二、实验目的 1.学习使用电阻应变仪,初步掌握电测方法; 2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。 三、实验设备 1.WSG-80型纯弯曲正应力试验台 2.静态电阻应变仪 四、试样制备及主要技术指标 1、矩形截面梁试样 材料:20号钢,E=208×109Pa; 跨度:L=600mm,a=200mm,L1=200mm; 横截面尺寸:高度h=28mm,宽度b=10mm。

2.载荷增量 载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F0=26 N 。 3.精度 满足教学实验要求,误差一般在5%左右。 五、实验原理 如图1所示,CD 段为纯弯曲段,其弯矩为a 2 1 F M = , 则m N M ?=6.20,m N M ?=?20。根据弯曲理论,梁横截面上各点的正应力增量为: z I y M ?= ?理σ (1) 式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩 形截面, 12 bh I 3 z = (2) 由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。只要测出各点沿纵向的应变增量ε?,即可按胡克定律计算出实际的正应力增量实σ?。 εσ?=?E 实 (3) 在CD 段任取一截面,沿不同高度贴五片应变片。1片、5片距中性轴z 的 距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位臵上。 测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ?,并画出正应力实σ?沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值理σ?进行比较。 六、实验步骤 1.开电源,使应变仪预热。

实验五 梁的纯弯曲正应力测定

图2-2 梁的尺寸、测点布置及加载示意图 图2-3半桥接线图 实验五 梁的纯弯曲正应力测定 一、概述 梁是工程中常用的构件和零件。在结构设计和强度计算中经常要涉及到梁的弯曲正应力的计算。而梁的弯曲正应力的理论公式是根据纯弯曲梁横截面变形保持平面的假设推导出来的,它的正确性以及能否推广到剪切弯曲梁,可以由本次实验提供的简便方法验证。 二、实验目的 1.用电测法测量矩形截面梁在纯弯曲时横截面上正应力的大小及分布规律,并与理论计算值相比较,以验证弯曲正应力理论公式。 2.掌握电测法原理和电阻应变仪的使用方法。 三、实验设备、器材及试样 1. 静态应变测试仪。 2. 多功能组合实验台。 四、实验原理 弯曲梁为矩形截面钢梁,其弹性模量E =2.05×105MPa ,几何尺寸见图2-2,CD 段为纯弯曲段,梁上各点为单向应力状态,在正应力不超过 比例极限时,只要测出各点的轴向应变ε实,即可按σ实 =E ε实计算正应力。为此在梁的CD 段某一截面的前后 两侧面上,在不同高度沿平行于中性层各贴有五枚电阻 应变片。其中编号3和3′片位于中性层上,编号2和2′ 片与编号4和4′片分别位于梁的上半部分的中间和梁 的下半部分的中间,编号1和1′片位于梁的顶面的中线 上,编号5和5′片位于梁的底面的中线上(见图2-2), 并把各前后片进行串接。 温度补偿片贴在一块与试件相同的材料上,实验时放在 被测试件的附近。上面粘贴有各种应变片和应变花,实验时根据工作片的情况自行组合。为了便于检验测量结果的线性度,实验时采用等量逐级缓慢加载方法,即每次增加等量的荷载ΔP ,测出每级荷载下各点的应变增量Δε,然后取应变增量的平均值 实ε?,依次求出各点应力增量Δσ实=E 实实ε?。 实验可采用半桥接法、公共外补偿。即工作片与不受力的温度补 偿片分别接到应变仪的A 、B 和B 、C 接线柱上(如图2-3),其中R 1 为工作片,R 2为温度补偿片。对于多个不同的工作片,用同一个温度 补偿片进行温度补偿,这种方法叫做“多点公共外补偿”。 也可采用半桥自补偿测试。即把应变值绝对值相等而符号相反的两个 工作片接到A 、B 和B 、C 接线柱上进行测试、但要注意,此时ε实=ε仪/2,ε仪 为应变仪所

纯弯梁正应力分布电测实验(精)

实验七 纯弯梁正应力分布电测实验 实验内容一 纯弯梁正应力分布电测实验 一、实验目的 1、用电测法测定矩形截面梁在纯弯曲时的正应力的大小及其分布规律,并与理论值作比较。 2、初步掌握电测方法。 二、实验设备 1、弯曲梁实验装置一台(见图7.2) 2、YJ-4501A 静态数字电阻应变仪一台 3、温度补偿片 三、实验原理及方法 试件选用矩形截面,荷载及测量点的布置如图7.1。梁的材料为钢,其弹性模量a G E Ρ=210,转动实验装置上的加载手轮,可使梁受到如图7.1的荷载,梁的中段为纯弯曲段,荷载作用于纵向对称平面内,而且在弹性极限内进行实验,故为弹性范围内平面弯曲问题。梁的正应力公式为 y I M Z =σ 式中:M --纯弯曲段梁截面上的弯矩 Z I --横截面对中性轴的惯性矩 y --截面上测点至中性轴的距离。 为了测量梁纯弯曲时横截面上应力分布规律,在梁的纯弯曲段沿梁的侧面各点沿轴线方向粘贴应变片,其分布如图(图7.1)应变片1#粘贴在中性层上,应变片2#、3#、应变片4#和应变片6#、7#分别粘贴在距离中性层为、和上下表面。此外,在梁的上表面沿横向粘贴应变片8#,如果测得纯梁弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式4/h 8/3h εσE =,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,可得出测量误差。 式中:ε—各测量点的线应变 E —材料的弹性模量 σ--相应各测点正应力

若由实验,测得的应变片7#和8#的应变7ε和8ε满足 μεε=7 8 ,则证明 验采用等增量加载的方法测量应力的实验值及计算理论值,计算时均应以弯矩增量及应变增量的平均值代入。 4# 图7.1 图中:, mm c 150=mm h 40= mm b 20= , mm l 620= 1#--8#所示应变片粘贴位置及方向。 四、实验步骤 1、检查梁是否安放稳妥 2、把梁上的应变片接在静态电阻应变仪的A 、B 接线柱上。公共温度补偿片接在0通道接线柱B 、C 上。此接法为半桥接线法 3、打开实验装置和仪器的电源开关,转动加载系统给梁加载荷0.5kN 。 4、校对电阻应变仪上的灵敏度系数。对搭接的各测量通道置0操作。 5、用等增量加载法测量,分四次加载,。实验时逐级加载,并记录各应变片在各级荷载作用下的读数应变。 N P 1000=ΔN P 4500max =6、根据实验数据计算各测点应力的实测值及理论值,并作比较。 7、计算78εε值,若μεε=78,则说明纯弯曲梁为单向力状态。 五、注意事项 1、接线要牢固可靠。

工程力学第九章梁的应力及强度计算

课时授课计划 掌握弯曲应力基本概念; 掌握弯曲正应力及弯曲剪应力的计算;掌握弯曲正应力的强度计算; 掌握弯曲剪应力强度校核。

I D (d

根据[M],用平衡条件确定许用外载荷。 在进行上列各类计算时,为了保证既安全可靠又节约材料的原则,设计规范还规定梁内的最大正应力允许稍大于[σ],但以不超过[σ]的5%为限。即 3、进行强度计算时应遵循的步骤 (1)分析梁的受力,依据平衡条件确定约束力,分析梁的内力(画出弯矩图)。(2)依据弯矩图及截面沿梁轴线变化的情况,确定可能的危险截面:对等截面梁,弯矩最大截面即为危险截面。 (3)确定危险点 (4)依据强度条件,进行强度计算。 第三节梁的剪应力强度条件 一、概念 梁在横弯曲作用下,其横截面上不仅有正应力,还有剪应力。 对剪应力的分布作如下假设: (1)横截面上各点处剪应力均与剪力Q同向且平行; (2)横截面上距中性轴等距离各点处剪应力大小相。 根据以上假设,可推导出剪应力计算公式: 式中:τ—横截面上距中性轴z距离为y处各点的剪应力; Q—该截面上的剪力; b—需求剪应力作用点处的截面宽度; Iz—横截面对其中性轴的惯性矩; Sz*—所求剪应力作用点处的横线以下(或以上)的截面积A*对中性轴的面积矩。 剪应力的单位与正应力一样。剪应力的方向规定与剪力的符号规定一样。 二、矩形截面横梁截面上的剪应力 如图所示高度h大于宽度b的矩形截面梁。横截面上的剪力Q沿y轴方向作用。 将上式带入剪应力公式得: 上式表明矩形截面横梁截面上的剪应力,沿截面高度呈抛物线规律变化。 在截面上、下边缘处y=±h/2,则=0;在中性轴上,y=0,剪应力值最大,

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告 一、实验目的 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 3.XL3416 纯弯曲试验装置 4.力&应变综合参数测试仪 5.游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为 σ= My / I z 式中M为弯矩,I z 为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。 实验采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量 σ实i=E△ε实i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变 片到中性层的距离y i 。见附表1 3.拟订加载方案。先选取适当的初载荷P 0(一般取P =10%P max 左右),估 算P max (该实验载荷范围P max ≤4000N),分4~6级加载。 4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 6. 加载。均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。实验至少重复两次。见附表2 7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 附表1 (试件相关数据) 附表2 (实验数据) 载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 με 1 εP -33 -66 -99 -133 -166 △εP -33 -33 -34 -33 平均值 -33.25 2 εP -16 -3 3 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.75 3 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 0 4 εP 1 5 32 47 63 79 △εP 17 15 1 6 16 平均值 16 5 εP 32 65 9 7 130 163 △εP 33 32 33 33 平均值 32.75 五、实验结果处理 1. 实验值计算 根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算 各点的实验应力值,因1με=10-6ε,所以 各点实验应力计算: 应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mm Y 2 -10 高 度 h = 40 mm Y 3 0 跨 度 L = 620mm (新700 mm ) Y 4 10 载荷距离 a = 150 mm Y 5 20 弹性模量 E = 210 GPa ( 新206 GPa ) 泊 松 比 μ= 0.26 惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4

梁弯曲时横截面上的正应力

在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。 1、纯弯曲与横力弯曲 从火车轴的力学模型为图2-53a 所示的外伸梁。画其剪力、弯矩图(见图2-53b 、c ),在其AC 、BD 段内各横截面上有弯矩M 和剪力F Q 同时存在,故梁在这些段内 发生弯曲变形的同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。在其CD 段内各段截面,只有弯矩M 而无剪力F Q ,梁的这种弯曲称为纯弯曲。 2、梁纯弯曲时横截面上的正应力 如图2-54a 所示,取一矩形截面梁,弯曲前在其表面两条横向线m —m 和n —n ,再画两条纵向线a —a 和b —b ,然后在其两端外力偶矩M ,梁将发生平面纯弯曲变形(见图2-54b)。此时可以观察到如下变形现象: ⑴横向线m —m 和n —n 任为直线且与正向线正交,但绕某点相对转动了一个微小角度。 ⑵纵向线a —a 和b —b 弯成了曲线,且a —a 线缩短,而b —b 线伸长。 由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。 从图2-54b 中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c )。中性层与横截面的交线称为中性轴。梁弯曲时,横截面绕中心轴绕动了一个角度。 由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点: ⑴中性轴的线应变为零,所以其正应力也为零。 ⑵距中性轴距离相等的各点,其线应变相等。根据胡克定律,它们的正应力也必相等。 ⑶在图2-54b 所示的受力情况下,中性轴上部分各点正应力为压应力(即负值),中性轴下部分各点正应力为拉应力(即正值)。 ⑷横截面上的正应力沿y 轴呈线性分布,即ky =σ(k 为特定常数),如图2-55、图2-56所示。最大正应力(绝对值)在离中性轴最远的上、下边缘处。 由于距离中性层上、下的纵向纤维的线应变与到中性层的距离y 成正比,当其正应力不超过材料的比例极限时,由胡克定律可知 y E y E E ?=?=?=ρρεσ 2-24 对于指定的横截面,ρE 为常数(即为上述k 的值)看,由于此时梁轴线的曲率 半径ρ还是一个未知量,通过静力学平衡关系∑z F )(=0,可得 图2-55 正应力分布图 图2-56 梁纯弯曲时横截面上的

纯弯曲实验报告

实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高度 变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)力图 分析主梁的受力特点,进行求解并画出其力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的力简图,如图2所示。 Page 1 of 10

(3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

材料物理性能 实验一材料弯曲强度测试

实验一 复合材料弯曲强度测定 一、实验目的 了解复合材料弯曲强度的意义和测试方法,掌握用电子万能试验机测试聚合物材料弯曲性能的实验技术。 二、实验原理 弯曲是试样在弯曲应力作用下的形变行为。弯曲负载所产生的盈利是压缩应力和拉伸应力的组合,其作用情况见图1所示。表征弯曲形变行为的指标有弯曲应力、弯曲强度、弯曲模量及挠度等。 弯曲强度f σ,也称挠曲强度(单位MPa ),是试样在弯曲负荷下破裂或达到规定挠度时能承受的最大应力。挠度s 是指试样弯曲过程中,试样跨距中心的顶面或底面偏离原始位置的距离(㎜)。弯曲应变f ε是试样跨度中心外表面上单元长度的微量变化,用无量纲的比值或百分数表示。挠度和应变的关系为:h L s f 62ε=(L 为试样跨度,h 为试样厚度)。 当试样弯曲形变产生断裂时,材料的极限弯曲强度就是弯曲强度,但是,有些聚合物在发生很大的形变时也不发生破坏或断裂,这样就不能测定其极限弯曲强度,这时,通常是以试样外层纤维的最大应变达到5%时的应力作为弯曲屈服强度。 与拉伸试验相比,弯曲试验有以下优点。假如有一种用做梁的材料可能在弯曲时破坏,那么对于设计或确定技术特性来说,弯曲试验要比拉伸试验更适用。制备没有残余应变的弯曲试样是比较容易的,但在拉伸试样中试样的校直就比较困难。弯曲试验的另一优点是在小应变下,实际的形变测量大的足以精确进行。 弯曲性能测试有以下主要影响因素。 ① 试样尺寸和加工。试样的厚度和宽度都与弯曲强度和挠度有关。 ② 加载压头半径和支座表面半径。如果加载压头半径很小,对试样容易引起较大的剪切力而影响弯曲强度。支座表面半径会影响试样跨度的准确性。 ③ 应变速率。弯曲强度与应变速率有关,应变速率较低时,其弯曲强度也偏低。 ④ 试验跨度。当跨厚比增大时,各种材料均显示剪切力的降低,可见用增大跨厚比可减少剪切应力,使三点弯曲更接近纯弯曲。 ⑤ 温度。就同一种材料来说,屈服强度受温度的影响比脆性强度大。 三、实验仪器 WDW1020型电子万能试验机 图1 支梁受到力的作用而弯曲的情况

梁弯曲时横截面上的正应力

梁弯曲时横截面上的正应力 在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。 1、纯弯曲与横力弯曲 从火车轴的力学模型为图2-53a所示的外伸梁。画其剪力、弯矩图(见图2-53b、 同时存在,故梁在这些段内c),在其AC、BD段内各横截面上有弯矩M和剪力F Q 发生弯曲变形的同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯 ,梁的这种弯曲称为纯弯曲。曲。在其CD段内各段截面,只有弯矩M而无剪力F Q 2、梁纯弯曲时横截面上的正应力 如图2-54a所示,取一矩形截面梁,弯曲前在其表面两条横向线m—m和n—n,再画两条纵向线a—a和b—b,然后在其两端外力偶矩M,梁将发生平面纯弯曲变形(见图2-54b)。此时可以观察到如下变形现象: ⑴横向线m—m和n—n任为直线且与正向线正交,但绕某点相对转动了一个微小角度。 ⑵纵向线a—a和b—b弯成了曲线,且a—a线缩短,而b—b线伸长。 由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。可以设想梁由无数条纵向纤维组成,且纵

向纤维间无相互的挤压作用,处于单向受拉或受压状态。 从图2-54b 中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c )。中性层与横截面的交线称为中性轴。梁弯曲时,横截面绕中心轴绕动了一个角度。 由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点: ⑴中性轴的线应变为零,所以其正应力也为零。 ⑵距中性轴距离相等的各点,其线应变相等。根据胡克定律,它们的正应力也必相等。 ⑶在图2-54b 所示的受力情况下,中性轴上部分各点正应力为压应力(即负值),中性轴下部分各点正应力为拉应力(即正值)。 ⑷横截面上的正应力沿y 轴呈线性分布,即ky =σ(k 为特定常数),如图2-55、图2-56所示。最大正应力(绝对值)在离中性轴最远的上、下边缘处。 由于距离中性层上、下的纵向纤维的线应变与到中性层的距离y 成正比,当其正应力不超过材料的比例极限时,由胡克定律可知 y E y E E ?=?=?=ρρεσ 2-24 对于指定的横截面,ρE 为常数(即为上述k 的值)看,由于此时梁轴线的曲率 半径ρ还是一个未知量,通过静力学平衡关系∑z F )(=0,可得

纯弯梁的弯曲应力测定实验报告

纯弯梁的弯曲应力测定 一.实验目的 1.掌握电测法的测试原理,学习运用电阻应变仪测量应变的方法 2.测定梁弯曲时的正应力分布,并与理论计算结果镜像比较,验证弯梁正应力公式。二.实验设备 1.钢卷尺 2.游标卡尺 3.静态电阻应变仪 4.纯弯梁实验装置 三.实验原理 本实验采用的是用低碳钢制成的矩形截面试件,实验装置如图所示。 计算各点的实测应力增量公式:i i E 实实εσ?=?计算各点的理论应力增量公式:z i i I My ?= ?σ式中?M=12?P×a ,Iz=bh312 四.试验方法 1.测定弯梁试件尺寸:h,b,L,a 2.电阻应变仪大调整与桥路连接 3.接通力传感器显示屏电源,当试件未受力时,调节电阻应变仪零点。 4.缓慢转动手轮,每增加1KN 载荷,测相应测点的应变值,直到载荷为4.5KN 为止。 5.卸去载荷,应变仪,力传感器显示屏复位。应变测量结束。 五.实验数据测定 试件材料的弹性模量E =210GPa

2.试件尺寸及贴片位置 试件尺寸/m贴片位置/m b0.02y6-0.020 3.应变读数记录 读 次 载荷 P/kN 载荷 增量 Δ P/k N 电阻应变仪读数(με) 测点1测点2测点3测点4测点5测点6测点7 S1Δ S 1 S2Δ S2 S3Δ S3 S4Δ S4 S5Δ S5 S6Δ S6 S7Δ S7 10.51010-290340-460480-61062 2 1.51-2934-4648-6162 1.51-1-3631-4848-6764 3 2.50-6565-9496-12 812 6 16-2333-4256-6369 4 3.56-8898-13 615 2 -19 1 19 5 12-3139-4648-5964 5 4.58-11137-1820-2525

纯弯曲正应力分布实验报告

竭诚为您提供优质文档/双击可除纯弯曲正应力分布实验报告 篇一:弯曲正应力实验报告 一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、Ts3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。三、实验原理和方法 弯曲梁的材料为钢,其弹性模量e=210gpa,泊松比μ =0.29。用手转动实验装置上面的加力手轮,使四点弯上压 头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:?? m

yIx 式中:m为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力?p 时,梁的四个受力点处分别增加作用力?p/2,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴 向应变,则由单向应力状态的虎克定律公式??e?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实=eε 式中e是梁所用材料的弹性模量。 实 图3-16 为确定梁在载荷Δp的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷Δp测定各点相应的应变增量一次,取应变增量的平均值Δε

纯弯梁正应力分布规律实验

中国矿业大学(北京) 工程土木工程_______专业_______班_________组 实验者姓名:__________实验日期:___________年____月___日 实验六纯弯曲正应力分布规律实验 一.实验目的 1.用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)的 分布规律。 2.验证纯弯曲梁的正应力计算公式。 二.实验仪器与设备 1.多功能工程力学实验台。 2.应力&应变综合参数测试仪一台。 3.矩形截面钢梁。 4.温度补偿块(或标准无感电阻)。 5.长度测量尺。 三.实验原理及方法 四.实验步骤

1.测量梁矩形截面的宽度b 和高度h 、载荷作用点到梁支点的距离a ,并测量各应变片到中性层的距离y I 。 2.将拉压传感器接至应力&应变综合参数测试仪中。 3.应变片连接采用1/4桥连接方式,将待测试应变片连接在A 、B 两端,将B 、B 1短接,在桥路选择上,将A 、D 两端连接补偿片,D 1、D 2短线连接即可。 4.本次实验的载荷范围为0~2kN ,在此范围内,采用分级加载方 式(一般分4~6级),实验时逐级加载,分别记录各应变片在各级载荷作用下的应变值。 五.实验结果处理 1.按实验记录数据求出各点的应力实验值,并计算出各点的应 力理论值。计算出它们的相对误差。 2.按同一比例分别画出各点应力的实验值和理论值沿横截面高度 的分布曲线,将两者进行比较,如两者接近,则说明弯曲正应 力的理论分析是可行的。 3.计算6#和5#的比值,若 μεε≈5 6 ,则说明纯弯曲梁为单向应力状 态。

4.实验数据可参照下表: 应变片至中性层的距离 梁宽度b= 20.84 mm;梁高度h= 40.15mm;施力点到支座距离l= 106 mm 应变片在各级载荷下的应变值 各测试点应力实验结果 P=400N

梁的弯曲应力

第8章梁得弯曲应力 梁在荷载作用下,横截面上一般都有弯矩与剪力,相应地在梁得横截面上有正应力与剪应力。弯矩就是垂直于横截面得分布内力得合力偶矩;而剪力就是切于横截面得分布内力得合力。所以,弯矩只与横截面上得正应力σ相关,而剪力只与剪应力τ相关。本章研究正应力σ与剪应力τ得分布规律,从而对平面弯曲梁得强度进行计算。并简要介绍一点得应力状态与强度理论。 8.1梁得弯曲正应力 平面弯曲情况下,一般梁横截面上既有弯 矩又有剪力,如图8、1所示梁得AC、DB 段。而在CD段内,梁横截面上剪力等于零,而 只有弯矩,这种情况称为纯弯曲。下面推导梁 纯弯曲时横截面上得正应力公式。应综合考虑 变形几何关系、物理关系与静力学关系等三个 方面。 8.1.1弯曲正应力一般公式 1、变形几何关系 为研究梁弯曲时得变形规律,可通过试验, 观察弯曲变形得现象。取一具有对称截面得矩 形截面梁,在其中段得侧面上,画两条垂直于梁 轴线得横线mm与nn,再在两横线间靠近上、 下边缘处画两条纵线ab与cd,如图8、2(a)所 示。然后按图8、1(a)所示施加荷载,使梁得 中段处于纯弯曲状态。从试验中可以观察到图 8、2(b)情况: (1)梁表面得横线仍为直线,仍与纵线正交,只 就是横线间作相对转动。 (2)纵线变为曲线,而且靠近梁顶面得纵线缩 短,靠近梁底面得纵线伸长。 (3)在纵线伸长区,梁得宽度减小,而在纵线 缩短区,梁得宽度则增加,情况与轴向拉、压时得 变形相似。 根据上述现象,对梁内变形与受力作如下假设: 变形后,横截面仍保持平面,且仍与纵线正交;同时, 梁内各纵向纤维仅承受轴向拉应力或压应力。前 者称为弯曲平面假设;后者称为单向受力假设。 根据平面假设,横截面上各点处均无剪切变形,因此,纯弯时梁得横截面上不存在剪应力。 根据平面假设,梁弯曲时部分纤维伸长,部分纤维缩短,由伸长区到缩短区,其间必存在一长度不变得过渡层,称为中性层,如图8、2(c)所示。中性层与横截面得交线称为中性轴。对于具有对称截面得梁,在平面弯曲得情况下,由于荷载及梁得变形都对称于纵向对称面,因而中性轴必与截面得对称轴垂直。

第七章 直梁弯曲时的内力和应力

第七章直梁弯曲时的内力和应力 一、填空题: 1、梁产生弯曲变形时的受力特点,是梁在过轴线的平面内受到外力偶的作用或者受到和梁轴线相___________的外力的作用。 2、车床上的三爪盘将工件夹紧之后,工件夹紧部分对卡盘既不能有相对移动,也不能有相对转动,这种形式的支座可简化为___________支座。 3、矩形截面梁弯曲时,其横截面上的剪力作用线必然________于外力并通过截面________。 4、梁弯曲时,其横截面上的剪力作用线必然__________于横截面。 5、梁弯曲时,任一横截面上的弯矩可通过该截面一侧(左侧或右侧)的外力确定,它等于该一侧所有外力对________力矩的代数和。 6、梁上某横截面弯矩的正负,可根据该截面附近的变形情况来确定,若梁在该截面附近弯成上_____下_______,则弯矩为正,反之为负。 7、用截面法确定梁横截面上的剪力时,若截面右侧的外力合力向上,则剪力为______。 8、以梁横截面右侧的外力计算弯矩时,规定外力矩是顺时针转向时弯矩的符号为_______。 9、将一悬臂梁的自重简化为均布载荷,设其载荷集度为q,梁长为L,由此可知在距固定端L/2处的横截面上的剪力为_________,固定端处横截面上的弯矩为__________。 10、在梁的集中力偶左、右两侧无限接近的横截面上,剪力相等,而弯矩则发生_______,_________值等于梁上集中力偶的力偶矩。 11、剪力图和弯矩图是通过________和___________的函数图象表示的。 12、桥式起重机横梁由左、右两车轮支承,可简化为简支梁,梁长为L,起吊重量为P,吊重位置距梁左、右两端长度分别为a、b,且a>b,由此可知最大剪力值为_______. 13、将一简支梁的自重简化为均布载荷作用而得出的最大弯矩值,要比简化为集中罚作用而的最大弯矩值__________ 14、由剪力和载荷集度之间的微分关系可知,剪力图上的某点的_________等于对应于该点的载荷集度. 15、设载荷集度q(X)为截面位置X的连续函数,则q(X)是弯矩M(X)的_______阶导函数。 16、梁的弯矩图为二次抛物线时,若分布载荷方向向上,则弯矩图为向_________凸的抛物线。

纯弯梁弯曲的应力分析实验报告

一、实验目的 1. 梁在纯弯曲时横截面上正应力大小和分布规律 2. 验证纯弯曲梁的正应力计算公式 3. 测定泊松比m 4. 掌握电测法的基本原理 二、实验设备 多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺 三、实验原理 1. 测定弯曲正应力 本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。 计算各点的实测应力增量公式:i i E 实实εσ?=? 计算各点的理论应力增量公式:z i i I My ?= ?σ 2.测定泊松比 计算泊松比数值:ε εμ' = 四、实验步骤 1.测量梁的截面尺寸h 和b ,力作用点到支座的距离以及各个测点到中性层的距离; 2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:[]σa bh 3F 2 max ≤ ,然后确定量程,分级载荷和载荷重量; 3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值; 4.记录荷载为F 的初应变,以后每增加一级荷载就记录一次应变值,直至加到n F ;

5.按上面步骤再做一次。根据实验数据决定是否再做第三次。 五、实验数据及处理 梁试件的弹性模量11101.2?=E Pa 梁试件的横截面尺寸h = 40.20 ㎜,b = 20.70 ㎜ 支座到集中力作用点的距离d = 90 ㎜ 各测点到中性层的位置:1y = 20.1 ㎜ 2y = 10.05 ㎜ 3y = 0 ㎜ 4y = 10.05 ㎜ 5y = 20.1 ㎜

六、应力分布图(理论和实验的应力分布图画在同一图上) 七、思考题 1.为什么要把温度补偿片贴在与构件相同的材料上? 答:应变片是比较高精度的传感元件,必须考虑温度的影响,所以需要把温度补偿片贴在与构件相同的材料上,来消除温度带来的应变。 2.影响实验结果的主要因素是什么? 答:影响本实验的主要因素:实验材料生锈,实验仪器精度以及操作的过程。

相关文档
最新文档