量子阱半导体激光器简述

量子阱半导体激光器简述
量子阱半导体激光器简述

上海大学2016~2017 学年秋季学期研究生课程考试

(论文)

课程名称:半导体材料(Semiconductor Materials) 课程编号:101101911

论文题目: 量子阱及量子阱半导体激光器简述

研究生姓名: 陈卓学号: 16722180

论文评语:

(选题文献综述实验方案结论合理性撰写规范性不足之处)

任课教师: 张兆春评阅日期:

课程考核成绩

量子阱及量子阱半导体激光器简述

陈卓

(上海大学材料科学与工程学院电子信息材料系,上海200444)

摘要:

本文接续课堂所讲的半导体激光二极管进行展开。对量子阱结构及其特性以及量子阱激光器的结构特点进行阐释。最后列举了近些年对量子阱激光器的相关研究,包括阱层设计优化、外部环境的影响(粒子辐射)、电子阻挡层的设计、生长工艺优化等。

关键词:量子阱量子尺寸效应量子阱激光器工艺优化

一、引言

半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用[1],它具有许多突出的优点:转换效率高、覆盖波段范围广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也进一步得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。

20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。[2]制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE)、金属有机化合物化学气相淀积(MOCVD)、化学束外延(CBE)和原子束外延等。[3]我国早在1974年就开始设计和制造分子束外延(MBE)设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS)使用国产的MBE设备制成的GRIN-SCH InGaAs/GaAs应变多量子阱激光器室温下阈值电流为1.55mA,连续输出功率大于30mW,输出波长为1026nm。[4]

量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC)和光电子集成(OEIC)的核心器件。

减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL)以及在三维都使电子受限的所谓量子点(QD)将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。

二、量子阱的结构与特性

1、态密度、量子尺寸效应与能带

量子阱由交替生长两种半导体材料薄层组成的半导体超晶格产生。超晶格结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完全不同的形状与结构。1970年首次在GaAs半导体上制成了超晶格结构。江崎(Esaki)等人把超晶格分为两类:成分超晶格和掺杂超晶格。理想超晶格的空间结构及两种材料的能带分布分别如图1和图2。

图1.理想超晶格空间结构图2.超晶格材料能带分布图

要想弄清量子阱激光器的工作原理,必须对其结构、量子化能态、态密度分布等作深入的了解,从而弄清量子尺寸效应、粒子数反转等量子阱以及激光器工

作的条件。[5]半导体材料中,当其吸收光子产生电子-空穴对或其电子-空穴对复

合发射出光子时,都会涉及载流子跃迁的能态及载流子浓度。载流子的浓度是由半导体材料的态密度和费米能级所决定的,前者表征不同能态的数量的多少,后者表征载流子在具体能级上的占有几率。在半导体的体材料中,导带中电子的态密度可以表达为

,(1)

式中m e *为电子的有效质量,h 为普朗克常数,E 为电子的能量。由此可见,体材料中的能态密度同能量呈抛物线的关系。

在量子阱中,设x 方向垂直势阱层,则势阱中的电子在y-z 平面上作自由运动(与体材料相同),而在x 方向上要受两边势垒的限制。假定势阱层的厚度为L x ,其热势垒高度为无穷大,则量子效应使得波矢k x 取分立数值: ,(2)

式中的 m =1,2,3 …,是不为零的正整数。对应的能量本征值E m 只能取一系列的分立值,第m 个能级的能量E mc 为

, (3) 式中m em *为导带中第m 个能级上电子的有效质量。m=1时,E 1c 为导带第一个能级的能量。因此,电子能量小于E 1c 的能态不复存在,只有那些大于E 1c 的能态才会存在。对应于E 1c 量子态的态密度为

. (4)

依此类推,对于其他量子态E mc 也有相应的态密度表达式,因此量子阱中导带的总体态密度为

,(5)

2/12/3c )2(4)(E h m E e *

=πρx L m π=x k 2*22x *2)(2h k 2h E x

em em mc L m m m π==)()()(1211c x e c E E H L h m E -=*πρ)(1d 12mc m em x E E H m L h E E -=∑∞=*πρ)(

式中m em *为第m 个能级上电子的有效质量,H( E-E mc )为Heaviside 函数,其表达式为

(6)

从该式可以看出,导带中的电子的态密度呈阶梯状。同样地,我们也可以用类似的方式表达价带中空穴的态密度。由于价带通常是简并的,同时存在有重空穴带和轻空穴带,其有效质量分别以m hh *和m lh *表示。[6]

又有量子阱中电子的运动服从薛定谔方程。如前文分析,在y-z 平面内,电子不受附加周期势的作用,与体材料中电子的运动规律相同,相应的能量表达式为

, (7)

其中k y 、k z 分别为电子在y 和z 方向上的波矢,m //*是电子y-z 平面上的有效质量。在x 方向上,电子受到阱壁的限制,能量是量子化的,只能取一些分立的值,即

2x x x n E E ∝=(n x =1,2,3,…). (8)

所以,电子的总能量E为:E=E x +E yz ,即由于E yz 的作用,相当于把能级E n 展宽为能带,称为子能带。 即材料能带沿k x 方向分裂为许多子能带(图4(a ))。而且态密度呈现阶梯状分布,同一子能带内态密度为常数,(图4(b ))。由图4(b )可以看出,尽管量子阱中的电子和空穴态密度为阶梯状,其包络线依然是抛物线。在该图中还可以看到多个子带,对于第一个子带来说,其态密度都是一个常数。正是载流子二维运动的这种特性有效地改变了其能态密度和载流子的分布,因而有效地改进了量子阱中载流子的辐射复合效率。

???=-01)mc E H(E ,,mc mc E E E E ≤≥)2/()(*//22

2yz m k k E z y +=

(a ) (b )

图4.(a)量子阱导带和价带中子能带沿k //方向的分布:导带子能带仍是抛物线型分布,价带中子能带却与抛物线型相差很多,这是由于价带中轻重空穴带混合(mixing )所致;(b )体材料与量子阱有源材料态密度ρ(E )对比图:量子阱中能带分裂为子能带(n =1,2,…),E g-b 与E g-q 为分裂前后禁带宽度,且E g-b

带和导带间电子跃迁只能发生在n 相同的子能带间(直接跃迁的选择定则)

能带的变化导致以下结果:

(1)带电子与重空穴和轻空穴复合分别产生TE 模与TM 模,重空穴带与轻空穴带在带顶处简并解除加剧了TE 模与TM 模的非对称性。

(2)不像体材料抛物线能带中载流子必须从接近带底处开始填充那样,量子阱的阶梯状能带允许注入的载流子依子能带逐级填充。因此注入载流子能量量子化,提高了注入有源层内载流子的利用率,明显增加了微分增益dg/dN 。高微分增益带来一系列好处:降低了激光器的阈值电流;减少了载流子内部损耗,提高了效率;提高了激光器的调制带宽,减少了频率啁啾。

(3)由于E g-q >E g-b ,量子阱激光器的输出波长通常要小于同质的体材料激光器。

(4)在导带中子能带沿k //的分布仍是抛物线型,而在价带中却远非如此,这是由于重空穴带和轻空穴带混合(mixing )并相互作用所致,这使得价带的能态密度分布并不像右图所示的那样呈现阶梯状,而是使价带的能态密度增大,加剧了价带和导带能态密度的不对称,提高了阈值电流,降低了微分增益,从而使激光器的性能,这种情况要靠后面要提的应变量子阱来改善。

2、粒子数反转

半导体激光二极管是通过p-n 结注入载流子实现粒子数反转的。将电流通过 p-n 结注入到有源区,使其导带底附近的电子浓度和价带顶附近的空穴浓度远远大于平衡态时的浓度,从而实现粒子数反转。在平衡态时,我们通常用费米能级F 来描述电子和空穴的分布状态。当外加电压注入电流时,可以采用n 区和p 区的准费米能级F n 和F p 来描述电子和空穴在能级E 上的占有情况,在能量为E 处的电子和空穴的占据几率分别为

, (9)

,(10) 有源区中总的自由载流子电子和空穴的浓度分别为 ,(11)

. (12)

事实上,总的自由载流子浓度应当等于平衡时载流子浓度同注入载流子浓度之和,即 n =n 0 +σn , p =p 0 +σp 。注入载流子的浓度σn 和σp 大于平衡载流子浓度()[]1/exp 1

)(+-=KT F E E f n n ()[]1

/exp 11)(+--=KT F E E f n p ?∞∞-=E

E E f n d ()(n n )ρdE

E E f p )()(p p ρ?∞

∞-=

才可能实现粒子数反转,即σn >n 0,σp > p 0。注入的电流的密度决定准费米能级的位置,因而也决定了电子和空穴的准费米能级间距F n -F p 的大小。在体材料中,要想实现粒子数反转,n 区和p 区的准费米能级差必须大于禁带宽度:

. (13)

在量子阱中,带隙不再是原来体材料的带隙E g ,而应当以E g1代之,即

, (14)

则得到量子阱中粒子数反转的条件为

. (15) 进一步推广至量子阱中各能级,可以得出量子阱结构受激发射必须满足的条件[7]为

. (16)

3、单量子阱(SQW )和多量子阱(MQW )对光子的限制

在量子阱激光器中,由于有源层厚度很小,若不采取措施,会有很大一部分光渗出。

对SQW 采取的办法是采用如图5所示的分别限制(separated confinement heterojunction )结构,在阱层两侧配备低折射率的光限制层(即波导层)。该层的折射率分布可以是突变的(如图5(b )左图所示)也可以是渐变的(如右图),分别对应波导层带隙的突变和渐变)。

图5.(a )单量子阱激光器的禁带宽度分布;(

b )分别限制单量子阱激光器(SCH-SQW )的折射率分布,左边是阶梯型(step index ),右边是渐变型(grated index )(对应带隙渐变) MQW 有由多个窄带隙和宽带隙超薄层交替生长而成,在两边最外的势垒层之后再生长底折射率的波导层以限制光子,这等效于加厚了有源层,使激光器的远场特性有大幅度改善,其原理如图6所示。

g

E F F p n >-v c g1E E E 11-=v

c g p n E E E F F 1111-=>-nv m e gm n p n E E E F F -=>-E g 图5(a ) 折射率 图5(b )

图6.多量子阱禁带宽度及折射率随厚度分布

4、应变量子阱

前面提到的量子阱材料的使用大大改善了半导体激光器的性能,与含厚有源层的双异质结一样,要求组成异质结的材料之间在晶体结构和晶格常数是匹配的,否则将会造成悬挂键,对器件性能造成不利的影响。但是只要将超薄层的厚度控制在某一临界尺寸以内,存在于薄层内的应变能可通过弹性形变来释放而不产生失配位错,相反,薄层之间的晶格常数失配所造成的应力能使能带结构发生有利变化,而且,应变的引入降低了晶格匹配的要求,可以在较大的范围内调整化合物材料各成分的比例。

(1)压应变与张应变

如图7所示,设结平面为x-y 平面,晶体生长方向为z 方向,阱层晶格常数为a o ,垒层晶格常数为a s ,当在垒层上生长出很薄的阱层材料时,在x-y 平面内,阱层材料的晶格常数变为a //=a s ,为保持晶胞体积不变,在z 方向上,阱层材料晶格常数变为a ⊥。

若a //=a s

若a //=a s >a o >a ⊥,则阱层内产生张应变(tensile strain )

总的应变可分解为纯的轴向分量和静态分量。

图7.晶格失配引起的应变 (2)应变导致的材料能带变化 a 、先不考虑阱中的量子效应,而只考虑纯粹的应变的影响(图8)。

图8.(a)无应变时能带分布;(b)压应变下能带变化;(c)张应变下能带变化(a)静态分量将使价带整体上移h1(meV),而使价带整体下移h2(meV)(对于张应力h1<0,h2<0)。即压应变的静态分量将使阱材料的禁带变宽,而张应变的将使其变窄。这会改变激光器的输出波长。

(b)更重要的是,应变的轴向分量将会使价带产生更大的变化:价带在整体移动的基础上,重空穴带和轻空穴带分离,分别上移和下移s/2(meV)(对张应力,s<0),对1%的晶格失配s约为60—80meV。

(c)在沿k⊥方向上轻重空穴的有效质量发生变化(对应图中曲线的曲率半径的变化),重空穴的变轻而重孔穴变重。在压应变情况下,价带中能量最高的能带沿k//方向上的有效质量比沿k⊥方向上的轻,所以我们可在价带中最高的能带上获得轻的空穴,这可以提高导带和价带的对称性,提高激光器的性能。

b、应变对量子阱中能带的影响

(a)前已提到,在量子阱中导带和价带分裂为子能带,在k//方向上,导带中子能带仍是抛物线型,而由于混合效应,价带中子能带远非抛物线型,加剧了导带和价带能态密度的不对称性,降低了激光器的性能。而压应变可以使价带中的轻重空穴带分离。所以在量子阱中引入压应变可以使轻重空穴进一步分离,减轻混合效应,减小价带的能态密度,增加导价带能态密度的对称性,提高微分增益,降低阈值电流,提高激光器的性能。如图9,轻空穴带被“推入”阱底,在图中不可见。

图9. 压应变对量子阱中价带的影响

(b)对于张应变,由于它将会提升轻空穴带,而使重空穴带降低,且减小其有效质量,所以可以增加TE模与TM模的对称性,输出与偏振模式无关的激光或TM偏振模激光。1993年7月日本的H.Tanaka等人用GaAs/AlGaAs张应变量子阱得到了输出波长为780nm(红外)的TM模CW振荡激光器。并通过控制注入电极载流子浓度,用GaAs/AlGaAs多量子阱TM模振荡激光器实现偏振模调制。由于张应变与量子效应分离轻重空穴带的效果相反,所以最终的能带分布要取决于应变与量子效应的“竞争”结果。

应变量子阱的出现从根本上改变了能带的结构,只要通过调节应变的类型与应变量的大小就有可能得到我们所需要的能带结构,使半导体器件的性能出现了大的飞跃,半导体激光器在许多领域内的应用成为现实,成为半导体光电子学发展史上的一个里程碑。例如,用来泵浦掺铒光纤放大器、激射波长为980nm的半导体激光器就是依靠应变量子阱来实现的。应变量子阱给正在发展中的Ge1-x Si x/Si超晶格带来了活力,理论分析认为,通过布里渊区能带的折叠效应,

就有可能实现Ge 1-x Si x /Si 材料有间接带隙向直接带隙转变。如果这一目的能实现,以其作为半导体激光器的有源层材料,则大规模的光电子集成将成为现实,其应用价值不言而喻。

三、半导体量子阱激光器的结构与特性

同通常的半导体激光二极管一样,量子阱激光器具有许多种条形结构:氧化物条形[8]、掩埋条形[9]和脊形波导条形[10]等。在氧化物条形结构中,注入电流通过氧化物上开的窗口流经有源区。由于有源区横向上的组分和厚度是一样的,只有电流注入时才会引起折射率微小的变化,横向上的光波导是依靠光学增益来完成的,所以这是一种增益波导激光器。在掩埋条形和脊形波导结构中,在有源区的横向上,折射率的实部都有足够大的差别,以便维持单模或低阶模光波的传输,所以它们是折射率波导激光器。折射率波导激光器显示出了阈值工作电流低、单模工作稳定、特征温度T 0高等优越性能。

同常规的激光器相比,由于有源区为量子阱结构,器件特性便具有下列新特点:首先,量子阱中态密度呈阶梯状分布,导带中第一个电子能级E 1c 高于原导带底E c 价带中第一个空穴能级E 1v 低于原价带顶E v ,因此有E 1c -E 1v > E g 。量子阱中首先是E 1c 和E 1v 之间电子和空穴参与的复合,所产生的光子能量hν=E 1c -E 1v >E g ,即光子能量大于材料的禁带宽度。相应地,其发射波长λ=1. 24 /( E 1c -E 1v )小于E g 所对应的波长λg ,即出现了波长蓝移。其次,量子阱激光器中,辐射复合主要发生在E 1c 和E 1v 之间,这是两个能级之间电子和空穴参与的复合,不同于导带底附近和价带顶附近的电子和空穴参与的辐射复合,因而量子阱激光器的光谱的线宽明显地变窄了。第三,在量子阱激光器中,由于势阱宽度L x 通常小于电子和空穴的扩散长度L c 和L h ,电子和空穴还未来得及扩散就被势垒限制在势阱之中,产生很高的注入效率,易于实现粒子数反转,其增益大为提高,甚至可高达两个数量级。此外,还有一个十分有趣的物理现象,即在量子阱结构中,注入载流子通过同声子的相互作用,使较高阶梯能态上的电子或空穴转移到较低能态上,从而出现“声子协助受激辐射”。可见,声子协助载流子跃迁是量子结构的一个重要特性。

如果量子阱数为m ,条型宽率为W ,腔长为L ,那么量子阱激光器的阈值电流为

. (17)

式中Γ1为垂直方向的光学限制因子,也即此前所描述的光学限制因子,而Γ2为平行于结平面的光学限制因子,它计入了窄条宽度的影响。由于条宽有限,光场在横向上会扩展至条外。分析可得,阈电流等于J th 同结面积WL 的乘积。量子阱激光器的J th 可降至100A /cm 2。条宽通常为2μm 或更窄,如果腔长L ~1μm ,则I th 仅为微安量级。这种腔长仅为μm 量级的激光器便是现今人们正在热心研究的微腔激光器。众所周知,半导体器件对温度十分灵敏,其特性常常因温度升高而变坏。在激光器中,I th =I tho exp( T/T 0) ,T 0为特征温度,它越大则器件性能越稳定。对于AlGaAs 激光器,T 0通常为120K ,而AlGaAs 量子阱激光器的T 0通常高于160K ,甚至有的高达300K 。对于InGaAsP 激光器,由于其价带的俄歇复合效应,使得电流泄漏较大,通常T 0~50K 。而采用量子阱结构之后,其T 0可达150K 甚至更高。因而量子阱使InGaAsP 激光器的温度稳定性大为改善,这???????????? ??+ΓΓ=21i 210th 1ln 211exp )A (0

R R L a m J I i mWLJ βη

在光纤通信等应用中至关重要。

四、半导体量子阱激光器相关研究举例

1、小发散角量子阱激光器

半导体激光器的快轴方向发散角度由外延层的结构决定,确切地说是由波导模式确定,而波导模式又主要由波导的折射率构型决定。在降低量子阱激光垂直发散角方面,已有一些研究机构进行了尝试,研制出采用大光腔、非对称包层、非对称脊波导等结构来减小发散角[ 11-15 ]。在大功率情况下,目前存在的极窄波导、宽波导、模式扩展波导等结构方法,可将LD垂直方向的发散角降低到20°左右,但这时宽波导结构需要把波导层加厚到3μm左右,这在工艺实现上存在一定困难[ 16-17 ]。

李雅静[ 18 ]等使用三层平板波导理论分析了半导体量子阱激光器远场分布。针对大功率激光器讨论了极窄和模式扩展波导结构方法减小垂直方向远场发散角,得到了极窄波导结构量子阱激光器远场分布的简化模型,获得了垂直发散角的理论值;使用传输矩阵方法模拟了模式扩展波导结构量子阱激光器的近场光斑及远场分布,获得垂直方向远场发散角的减小值。实验测试了极窄和模式扩展波导结构量子阱激光器的垂直发散角,理论结果与实验测试获得的发散角基本一致,实现了降低发散角的要求,获得了小发散角量子阱激光器。

2、粒子辐射对激光器的影响

量子阱激光器凭借优异的特性在卫星激光通信中发挥着作用。但是由于卫星激光通信终端面临着空间粒子辐射的影响,很有可能造成激光器性能下降,严重威胁系统的安全及寿命。因此有必要对量子阱激光器的辐射耐受性进行深入的研究。一般来说,辐射粒子与半导体相互作用主要有两种方式:一种为电离效应,其会引起靶原子电荷的激发,将会在材料中产生瞬时的扰乱和半永久性的影响,只要辐射粒子交给电子的能量大于半导体的禁带宽度,就将使价带的电子激发到导带中去,产生电子空穴对, 即非平衡载流子。由于半导体中载流子是可以移动的,这些非平衡载流子最终将会复合,也就是说并不能产生永久的效应。[ 19 ]辐射与材料的另一种作用方式是位移效应,即入射粒子将其能量的一部分交给靶原子,一旦这个能量足够大,晶格原子将克服周围原子对其的束缚,导致其离开正常的晶格位置,形成位移缺陷,称为位移损伤。半导体激光器的首要损伤模式为位移损伤效应。

为了评估辐射环境下激光器的性能的变化,马晶[ 20 ]等使用加速器对量子阱半导体激光器进行了总通量1x1016cm-2的电子辐照实验辐射实验。结果表明,在辐射环境下激光器的输出功率下降、阈值电流增加,从理论上分析了位移效应对量子阱激光器的影响,并推导了电子通量与相对闭值电流变化、相对输出功率变化的函数关系式。该公式可用于预测激光器在辐射环境下的性能变化。

3、量子阱激光器的高温稳定性

作为Cs原子钟的核心部件,852nm半导体激光器需要在高温环境下稳定工作,因此要具有良好的温度稳定性,且其波长温漂越小越好。由于有源区材料的禁带宽度、外延层材料的折射率等都会随温度发生变化,因此激射波长也会随之发生变化。其中,量子阱的禁带宽度随温度发生的变化是最主要的影响因素,所以研究激光器设计中量子阱材料的选择非常重要。目前,852nm半导体激光器的量子阱材料主要有AlGaAs,InGaAs,InGaAsP等。法国的Alcatel Thales III-V实验室采用InGaAsP量子阱,斜率效率达到0.9W/A,波长随温度漂移为0.26nm/℃,功率为280mW[ 21 ];德国的Ferdinand Braun研究所采用脊形波导结构,量子阱

采用InGaAsP材料,斜率效率达到1W/A,波长随温度漂移为0.25nm/℃,功率为250mW[ 22]。量子阱决定了半导体激光器的最终性能,因此精确控制及在线监测量子阱的外延生长非常重要。反射各向异性谱(Reflectance Anisotropy Spectroscopy,RAS)已经被证明是在线监测并研究外延层组份控制和多量子阱应变影响的有力工具[ 23-24]。

徐华伟[ 25]等设计并外延生长了具有高温度稳定性的InAlGaAs/AlGaAs应变量子阱激光器,用于解决852nm半导体激光器在高温环境下工作时的波长漂移问题。基于理论模型,计算并模拟对比了InAlGaAs,InAlGaP,InGaAs和GaAs 量子阱的增益及其增益峰值波长随温度的漂移。结果显示,采用In0.15Al0.11Ga0.74As作为852nm半导体激光器的量子阱可以使器件同时具有较高的增益峰值和良好的波长温漂稳定性。使用金属有机化合物气相淀积(MOVCD)外延生长了In0.15Al0.11Ga0.74As/Al0.3Ga0.7As有源区,通过反射各向异性谱(RAS)在线监测和PL谱研究了InAlGaAs/AlGaAs界面的外延质量,实验证明了通过降低生长温度和在InAlGaAs/AlGaAs界面处使用中断时间,可以有效抑制In 析出,从而获得InAlGaAs/AlGaAs陡峭界面。最后,采用优化后的外延生长条件,研制出了InAlGaAs/AlGaAs应变量子阱激光器。实验测试结果显示,其光谱半高宽、斜率效率、激射波长随温度漂移的理论计算结果与实验测试结果相吻合,证明器件性能满足在高温环境下工作的要求。

4、电子阻挡层的设计

InGaAsSb/AlGaAsSb 量子阱激光器是2~5μm波段的理想光源,在人体组织手术、痕量气体检测以及激光雷达等领域有着重要的应用[26-27]。但是,高阈值电流和低特征温度一直是限制其转换效率和稳定性的主要因素[28-29]。Xia[30]等证明了有源区Auger复合所造成的高能载流子泄漏是影响激光器阈值电流和温度敏感特性的重要因素之一。另外,电子在p型限制层的泄漏产生的热量会使激光器的结温迅速升高,严重影响了器件寿命。[31]增加阱数可以改善上述情况,但是阱数过多会增加器件的内损耗,激光器室温阈值电流也将随之变大[32],器件性能反而降低。

安宁[33]等为了降低2μm InGaAsSb/AlGaAsSb 量子阱激光器的阈值电流并获得良好的温度特性,在p型波导层及限制层之间引入AlGaAsSb电子阻挡层。采用理论计算方法模拟了电子阻挡层对InGaAsSb/AlGaAsSb LD输出特性的影响。研究结果表明: 电子阻挡层结构可有效减少2μm InGaAsSb/AlGaAsSb 量子阱激光器的Auger复合,抑制量子阱中导带电子向p型限制层的溢出,降低器件的阈值电流,同时改善了温度敏感特性。

5、垒层和阱层厚度对量子阱激光器性能的影响

氮化镓(GaN)基材料被称为第三代半导体, 在光电子学和微电子学领域有重要的应用价值。作为一种重要的GaN基光电子器件,GaN基激光器在激光显示、激光印刷、激光照明等领域有广阔的应用前景,国际上受到极大关注。要研制出高性能的GaN基激光器,难度很大,不仅需要高质量的材料,还需要优化的工艺制作。另外,激光器的结构非常复杂,包括限制层、波导层、有源层等,器件结构设计也非常重要,合理的结构设计能够改善器件性能。InGaN量子阱是GaN 基激光器的有源层,也是核心区域之一。

周梅[34]等采用LASTIP软件研究了InGaN/GaN(In组分为15%)量子阱垒层和阱层厚度对GaN基蓝紫光激光器性能的影响及机理。模拟计算结果表明,当阱层太薄或太厚时,GaN基激光器的阈值电流增加、输出功率下降,最优的阱层厚度

为4.0 nm左右;当阱层厚度太薄时,载流子很容易泄漏,而当阱层厚度太厚时,极化效应导致发光效率降低,研究还发现,与垒层厚度为7 nm相比,垒层厚度为15 nm时激光器的阈值电流更低、输出功率更高,因此适当地增加垒层厚度能显著抑制载流子泄漏,从而改善激光器性能。

五、总结

本文简要介绍了量子阱结构的一些特性,尤其是其作为半导体激光器有源层的特点,包括:阱中载流子态密度的阶梯状分布、更易实现粒子数反转的条件以及对光子的限制等。还介绍了近些年对量子阱激光器的相关研究,包括阱层设计优化、外部环境的影响(粒子辐射)、电子阻挡层的设计、生长工艺优化等。

参考文献

[1]刘恩科等.《半导体物理学》(第四版).国防工业出版社,1997.

[2]黄德修,刘雪峰.《半导体激光器及其应用》.国防工业出版社,1999.5.

[3]Peter S.Zory.Quantum Well Lasers,Jr,1993.

[4]Zhou BingKun.An Overview of Optical Device Research in China.IEEE communications magazine. July,1993.

[5]Gary M,ColeamanJ J.Quantumwell heterostructurelasers.In:Norman G E,William R F eds. Heterostructrues and quantum devices. Academic press,1994.215-241.

[6]余金中,王杏华.第六讲半导体量子阱激光器,半导体量子器件物理讲座.中国学术电子出

版社,2001,30(11):717-723.

[7]Bernard M G A,Duraffourg G. Phys. Stat. Solidi,1961,1:699.

[8]Cook D D,Nash F R. J. Appl. Phys. ,1975,46:1660.

[9]WakaoK, Nakai K, Sanada T,et al..IEEE. J. Quantum Elevtron. 1987,QE-23: 943.

[10]Bhumbra B S,Glew R W,Greene P D,et al..Electron. Lett. ,1990, 26: 1755.

[11]Ohkubo M,Namiki S,Ijichi T,et al..0.98nm InGaAs-InGaAsP-InGaP GRIN-SCH SL-SQW laser for coupling high optical power into single-mode fiber[J].IEEE J Quantum Electronics, 1993,29(6):1932-1935.

[12]Asonen H,Ovtchinnikov A,Zhang G D,et al..Aluminum-free 980 nm GaInAs/GaInAsP/GaInP pump laser[J].IEEE J Quantum Electronics, 1994, 30 (2):415 423.

[13]Soohaeng C,Yongjo P,Youngmin K.660 nm GaInP-AlGaInP quantum-well laser diode structures with reduced vertical beam divergence angle[J].IEEE Photonic Technology Letters,2005,17 (3):534-536.

[14]Gao W, Xu Z T, Nelson A.Low-divergence high-power 980 nm single-mode diode lasers with asymmetric epitaxial structure[C].Materials and Devices for Optical and Wireless Communications, Proceedings of SPIE, 2002, 4905: 154-156.

[15]Temmyo J, Sugo M.Design of high-power trained InGaAs/AlGaAs quantum-well lasers with

a vertical divergence angle of 18 degree [J].Electronics Letters, 1995, 31 (8):642-644.

[16]田海涛,陆中宏,赵润等.900nm窄发散角量子阱激光器[J].光电子·激光,2006, 17(3):299-301.

[17]Smowton P M,Lewis G M,Yin M.650nm laser with narrow far-field diver gence with integrated optical mode expansion layer [J].IEEE J Quantum Electronics, 1999, 5 (3): 735-739.

[18]李雅静,安振峰,陈国鹰,王晓燕,赵润,杜伟华,王薇.微纳电子技术,2008,45(11):635-638.

[19]Warner J H 2008 Ph. D. Dissertation(Baltimore: University of Maryland).

[20]马晶,车驰,韩琦琦,周彦平,谭立英.物理学报,2012,61(21):214211-1-214211-7.

[21]Vincent L,Fra ncois J V,Shailendra B,et al..High power Al free active region(λ=852nm)DBF laser diodes for atomic clocks and interferometry applications[C];Conference and Lasers and Electron-Optics,California,2006:398-405.

[22]Klehr A,Wenzel H,Brox O,et al..High power DFB lasers for D1 and D2 caesium absorption spectroscopy and atomic clocks[C].Novel In-Plane Semiconductor Lasers VII,San Jose,2008:69091E-1-69091E-10.

[23]Zorn M,Zettler J T,Knaller A,et al.. In situ determination and control of AlGaInP compositon During MOVPE growth[J].Jounal of Crystal Growth,2006,287(2):637-641.

[24]Bugge F,Zorn M,Zeimer V,et al..MOVPE growth of InGaAs/GaAsP-MQWs for high power

laser diodes studied by reflectance anisotropy spectroscopy[J].Journal of Crystal Growth,2009,311(4):1065-1069.

[25]徐华伟,宁永强,曾玉刚,张星,琴莉.光学精密工程,2013,21(3):590-597.

[26]Shterengas L,Belenky G,Kisin M V,et al..High power2.4μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1W of continuous wave output power and a maximum power-conversion efficiency of 17.5%[J].Appl.Phys. Lett.,2007,90(1):011119-1-3.[27]Shan H,Li M.Effects of structure of InGaAsSb/AlGaAsSb multi-quantum well based on Al and In change on X-ray double crystal diffraction and photoluminescence properties[J].Chin.J.Lumin.(发光学报),2013,34(1):68-71(in Chinese).

[28]Wagner J,Mann C,Rattunde M,et al..Infrared semiconductor lasers for sensing and diagnostics[J].Appl.Phys.A,2004,78(4):505-512.

[29]Reboul J R,Cerutti L,Rodriguez J B,et al..Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si[J].Appl.Phys.Lett.,2011,99(12) :121113-1-3.

[30]Xia R D,Chang Y,Zhuang W H.The Auger compound analysis of DH laser[J]. Acta Electronic Sinica( 电子学报),1985,23(8):112-114(in Chinese).

[31]Chen T R.Carrier leakage and temperature sensitivity of threshold current in InGaAsP/InP lasers[J].Acta Electronica Sinica (电子学报),1985,13(1):65-71 (in Chinese).

[32]Zhao F,Zhang Y Y,Song J J,et al.High internal quantum efficiency blue light-emitting diodes with triangular shaped InGaN/GaN multiple quantum wells[J].Chin.J.Lumin.(发光学报),2013,34(1) :66-72(in Chinese).

[33]安宁,刘国军,李占国,常量,魏志鹏,马晓辉.发光学报,2014,35(10):1205-1209.

[34]周梅,赵德刚.物理学报,2016,65(7):077802-1-077802-6.

有关双异质结激光器与量子阱激光器的基础报告

有关双异质结激光器与量子阱激光器的基础报告 xxx (xxxxxxxxxxxxxxx) 摘要:异质结半导体激光器是半导体激光发展史上的重要突破,它的出现使光纤通信及网络技术成为现实并迅速发展。异质结构已成为当代高性能半导体光电子器件的典型结构,具有巨大的开发潜力和应用价值。 关键词:双异质结半导体激光器;量子阱激光器;泵浦 About double heterostructure lasers andreport on the basis of quantum well laser xxx (xxxx) Abstract:Heterojunction semiconductor laser is an important breakthrough in the history of the development of semiconductor laser, it make the optical fiber communication and network technology become a reality and rapid development. Heterostructure has become the contemporary typical structure of high performance semiconductor optoelectronic devices, has huge development potential and application value Key words: double heterojunction semiconductor lasers; Quantum well laser; pump 0 引言 双异质结激光器和量子阱激光器在我们的当代的科研中都取得了一定的成绩,有很多相关的资料供我们查看和研究,这些惊人的成就给我的生活带来的巨大的改变,我们作为新一代的基础人员,有义务去发展,将这些激光器的研究壮大和深入。 1 双异质结基本结构 双异质结基本结构是将有源层夹在同时具有宽带隙和低折射率的两种半导体材料之间,以便在垂直于结平面的方向(横向)上有效地限制载流子和光子。用此结构于1970年实现了GaAlAs/GaAs激射波长为0.89 μm的半导体激光器在室温下能连续工作。图表示出双异质结激光器的结构示意图和相应的能带图在正向偏压下,电子和空穴分别从宽带隙的N区和P区注进有源区。它们在该区的扩散又分别受到P-p异质结和N-p异质结的限制,从而可以在有源区内积累起产生粒子数反转所需的非平衡载流子浓度。同时,窄带隙具有源区有高的折射率与两边低折射率的宽带隙层构成了一个限制光子在有源区内的介质光波导。 异质结激光器激光器的供应商是半导体半导体的供应商激光发展史上的重要突破,它的出现使光纤光纤的供应商通信及网络技术成为现实并迅速发

量子点的制备及应用进展

龙源期刊网 https://www.360docs.net/doc/621964946.html, 量子点的制备及应用进展 作者:于潇张雪萍王才富倪柳松等 来源:《科技视界》2013年第29期 【摘要】本文分别从量子点的概念、特性、制备方法、表面修饰等方面对量子点进行了 描述及讨论,在此基础上,对量子点在生物传感器方面的应用进行了,最后分析了量子点生物传感器的存在的问题,对其未来发展趋势进行了展望。 【关键词】量子点;光学;生物传感器 量子点主要是由Ⅱ-Ⅵ族和Ⅲ-Ⅴ族元素组成的均一或核壳结构纳米颗粒,又称半导体纳米晶体。由于发生结构和性质发生宏观到微观的转变,其拥有独特的光、电、声、磁、催化效应,因此成为一类比较特殊的纳米材料。国内外关于量子点传感器的研究非常广泛,例如在生命科学领域,可以用于基于荧光共振能量转移原理的荧光探针检测,可以用于荧光成像,生物芯片等;在半导体器件领域,量子点可以用于激光器,发光二极管、LED等。本文对量子点 的制备方法和应用领域及前景进行了初步讨论。 1 量子点的基本特性及其制备方法 1.1 量子点的特性及优势 量子点的基本特性有:量子尺寸效应、表面效应、量子限域效应、宏观量子隧道效应,除此之外,量子点具有一些独特的光学效应,这使得量子点较传统的荧光染料用来标记生物探针具有以下优势: (1)量子点具有宽的激发光谱范围,可以用波长短于发射光的光激发,产生窄而对称的发射光谱,避免了相邻探测通道之间的干扰。 (2)量子点可以“调色”,即通过调节同一组分粒径的大小或改变量子点的组成,使其荧光发射波长覆盖整个可见光区。尺寸越小,发射光的波长越小。 (3)量子点的稳定性好,抗漂白能力强,荧光强度强,具有较高的发光效率。半导体量子点的表面上包覆一层其他的无机材料,可以对核心进行保护和提高发光效率,从而进一步提高光稳定性。正是由于量子点具有以上特性使其在生物识别及检测中具有潜在的应用前景,有望成为一类新型的生化探针和传感器的能量供体,因此备受关注。 1.2 量子点的制备方法 根据原料的不同分为无机合成路线和金属-有机物合成路线,两种合成方法各有利弊。

大功率半导体激光器的发展介绍

大功率半导体激光器的发展介绍 激光打标机、激光切割机、激光焊接机等等激光设备中激光器起着举足轻重的地位,在激光器的发展历程中,半导体激光器的发展尤为重要,材料加工用激光器主要要满足高功率和高光束质量,所以为了提高大功率半导体激光器的输出功率,可以将十几个或几十个单管激光器芯片集成封装、形成激光器巴条,将多个巴条堆叠起来可形成激光器二维叠阵,激光器叠阵的光功率可以达到千瓦级甚至更高。但是随着半导体激光器条数的增加,其光束质量将会下降。

另外,半导体激光器结构的特殊性决定了其快、慢轴光束质量不一致:快轴的光束质量接近衍射极限,而慢轴的光束质量却比较差,这使得半导体激光器在工业应用中受到了很大的限制。要实现高质量、宽范围的激光加工,激光器必须同时满足高功率和高光束质

量。因此,现在发达国家均将研究开发新型高功率、高光束质量的大功率半导体激光器作为一个重要研究方向,以满足要求更高激光功率密度的激光材料加工应用的需求。 大功率半导体激光器的关键技术包括半导体激光芯片外延生长技术、半导体激光芯片的封装和光学准直、激光光束整形技术和激光器集成技术。 (1)半导体激光芯片外延生长技术 大功率半导体激光器的发展与其外延芯片结构的研究设计紧密相关。近年来,美、德等国家在此方面投入巨大,并取得了重大进展,处于世界领先地位。首先,应变量子阱结构的采用,提高了大功率半导体激光器的光电性能,降低了器件的阈值电流密度,并扩展了GaAs基材料系的发射波长覆盖范围。其次,采用无铝有源区提高了激光芯片端面光学灾变损伤光功率密度,从而提高了器件的输出功率,并增加了器件的使用寿命。再者,采用宽波导大光腔结构增加了光束近场模式的尺寸,减小了输出光功率密度,从而增加了输出功率,并延长了器件寿命。目前,商品化的半导体激光芯片的电光转换效率已达到60%,实验室中的电光转换效率已超过70%,预计在不久的将来,半导体激光器芯片的电光转换效率能达到85%以上。 (2)半导体激光芯片的封装和光学准直 激光芯片的冷却和封装是制造大功率半导体激光器的重要环节,由于大功率半导体激光器的输出功率高、发光面积小,其工作时产生的热量密度很高,这对芯片的封装结构和工艺提出了更高要求。目前,国际上多采用铜热沉、主动冷却方式、硬钎焊技术来实现大功率半导体激光器阵列的封装,根据封装结构的不同,又可分为微通道热沉封装和传导热沉封装。

半导体量子结构的生长方式

科研训练报告 题目:半导体量子结构的生长方式学生姓名: 学院:理学院 班级: 指导教师: 2012年09 月12 日

一、国内外研究进展及研究意义 1.1 国内外研究现状和发展动态 半导体量子结构的生产方式有三种,包括量子点、量子线,量子点三种方式,量子点是在把导带电子、价带空穴及激子在三个空间方向上束缚住的半导体纳米结构。美国科学家首度利用光将胶状(colloidal)半导体量子点(quantum dot)磁化,且其生命周期远远超过先前的记录。这个结果除了能激发更多基础研究,对于同时利用自旋与电荷的自旋电子元件(spintronics)领域,也是一项重大的进展。 直到目前,半导体只能在相当低温下呈现磁性,原因是磁化半导体纳米微粒需要靠激子(exciton)之间的磁性交互作用,但此作用的强度在30 K附近就不足以对抗热效应。 最近,华盛顿大学的Daniel Gamelin等人制造出掺杂的纳米微晶,它们的量子局限效应(quantum confinement effect)使激子具有很大的磁性交互作用,且生命周期可长达100 ns,比先前的记录200皮秒(picosecond, ps)高出很多。研究人员利用光将激子注入胶状纳米微晶中,产生相当强的光诱发磁化(light-induced magnetization)现象。 华大团队成功的关键在于以磁性锰离子取代镉化硒(CdSe)半导体纳米微晶中的部份镉离子。这些悬浮在胶状溶液中的微晶大小不到10 nm,照光时内部产生的强大磁场可将锰离子的自旋完全排正。Gamelin表示,排正的过程非常快,此效应在低温时非常强,且可维持到室温。这要归功于第一次在研究中被观察到的高温磁激子(excitonic magnetic polaron, EMP)。 上述团队舍弃以传统的分子束磊晶法(MBE),而改用新的化学方法直接合成磁性半导体量子点。Gamelin解释,由于掺质-载子间的交互作用够强,EMP稳定性因而增强超过100倍,所以才能在300 K下观察到磁化效应。 美国科学家开发出一种新型的电子胶(electronic glue),能将个别的纳米晶体(nanocrystals)连接在一起。这种电子胶还能用来制作大面积的电子元件和光伏(photovoltaics)元件。 利用旋转或浸泡涂布(dip coating)和喷墨印刷等溶液类制程来制作大面积太阳电池,例如便宜的屋顶太阳能面板,是高成本效益的方法。不过这些技术必须让半导体溶解,以方便做为墨水(ink)使用。半导体纳米微晶是微小的半导体块状物,是制作此类墨水的理想材料。 然而,在纳米微晶表面由庞大、绝缘有机分子组成的表面配位基,会阻隔纳米晶体间的电荷转移,造成印刷阵列内的个别纳米微晶彼此连结不佳,这点大大降低了纳米微晶在太阳电池和其它的元件上的应用。 最近,芝加哥大学的Dmitri Talapin等人开发出一种新的化学材料,能让个别

半导体量子点发光

. 半导体量子点发光 一、半导体量子点的定义 当半导体的三维尺寸都小于或接近其相应物质体相材料激子的玻尔半径(约5.3nm)时,称为半导体量子点。 二、半导体量子点的原理 在光照下,半导体中的电子吸收一定能量的光子而被激发,处于激发态的电子向较低能 级跃迁,以光福射的形式释放出能量。大多数情况下,半导体的光学跃迁发生在带边,也就是说光学跃迁通常发生在价带顶和导带底附近。半导体的能带结构可以用图的简化模型来表 示。如图所示,直接带隙是指价带顶的能量位置和导带底的能量位置同处于一个K 空间,间接带隙是指价带顶位置与导带底位置的K 空间位置不同。电子从高能级向低能级跃迁,伴随着发射光子,这是半导体的发光现象。

. 对于半导体量子点,电子吸收光子而发生跃迁,电子越过禁带跃迁入空的导带,而在原来的价带中留下一个空穴,形成电子空穴对(即激子),由于量子点在三维度上对激子施加 量子限制,激子只能在三维势垒限定的势盒中运动,这样在量子点中,激子的运动完全量子 化了,只能取分立的束缚能态。激子通过不同的方式复合,从而导致发光现象。原理示意图,如图所示,激子的复合途径主要有三种形式。 (1)电子和空穴直接复合 ,产生激子态发光。由于量子尺寸效应的作用 ,所产生的发射光的波长随着颗粒尺寸的减小而蓝移。 (2)通过表面缺陷态间接复合发光。在纳米颗粒的表面存在着许多悬挂键,从而形成了许多表面缺陷态。当半导体量子点材料受光的激发后,光生载流子以极快的速度受限于表面缺 陷态而产生表面态发光。量子点的表面越完整,表面对载流子的捕获能力就越弱,从而使得表面态的发光就越弱。 (3)通过杂质能级复合发光。杂质能级发光是由于表面分子与外界分子发生化学反应生 成其它杂质,这些杂质很容易俘获导带中的电子形成杂质能级发光。 以上三种情况的发光是相互竞争的。如果量子点的表面存在着许多缺陷,对电子和空穴的俘获能力很强,电子和空穴一旦产生就被俘获,使得它们直接复合的几率很小,从而使得激子态的发光就很弱,甚至可以观察不到,而只有表面缺陷态的发光。 为了消除由于表面缺陷引起的缺陷态发光而得到激子态的发光,常常设法制备表面完整 的量子点或者通过对量子点的表面进行修饰来减少其表面缺陷,从而使电子和空穴能够有效 地直接复合发光。

半导体超晶格

半导体超晶格 材料的制造、设计是以固体能带结构的量子力学理论为基础的,也 就是说,人为地改变晶体的周期势,做出具有新功能的人工超晶格 结构材料。半导体超晶格材料具有一般半导体材料不能实现的许 多新现象,可以说是超薄膜晶体制备技术,量子物理和材料设计理 论相结合而出现的第三种类的半导体材料。利用这种材料,不仅可 以显著提高场效应晶体管和半导体激光器等的性能,也可以制备 至今还没有的功能更优异的新器件和发现更多的新物理现象,使 半导体器件的设计和制造由原来的“杂质工程”发展到“能带工 程”。因此,半导体超晶格是属于高科技范畴的新型功能材料。 电子亲和势是指元素的气态原子得到一个电子时放出的能量,叫做电子亲和势。(曾用名:电子亲和能EA)单位是kJ/mol或eV。电子亲和势的常用符号恰好同热力学惯用符号相反。热力学上把放出能量取为负值,例如,氟原子F(g)+e→F-(g),△H=-322kJ/mol。而氟的电子亲和势(EA)被定义为322kJ/mol。为此,有人建议元素的电子亲和势是指从它的气态阴离子分离出一个电子所吸收的能量。于是,氟离子F-(g)-e→F(g),△H=322kJ/mol。两者所用符号就趋于统一。可以认为,原子的电子亲和势在数值上跟它的阴离子的电离能相同。根据电子亲和势数据可以判断原子得失电子的难易。非金属元素一般具有较大的电子亲合势,它比金属元素容易得到电子。电子亲和势由实验测定,但目前还不能精确地测得大多数元素的电子亲和势。元素的电子亲和势变化的一般规律是:在同一周期中,随着原子序数的增大,元素的电子亲和势一般趋于增大,即原子结合电子的倾向增强,或它的阴离子失去电子的能力减弱。在同一族中,元素的电子亲合势没有明显的变化规律。当元素原子的电子排布呈现稳定的s2、p3、p6构型时,EA值趋于减小,甚至ⅡA族和零族元素的EA都是负值,这表明它们结合电子十分困难。在常见氧化物和硫化物中含有-2价阴离子。从O-(g)或S-(g)结合第二个电子而变成O2-(g)或S2-(g)时,要受到明显的斥力,所以这类变化是吸热的。即O-(g)+e→O2-(g),△H=780kJ/mol;S-(g)+e→S2-(g),△H=590kJ/mol。这些能量能从形成氧化物或硫化物晶体时放出的晶格能得到补偿。 电子亲和势与原子失去电子需消耗一定的能量正好相反,电子亲和势是指原子获得电子所放出的能量。 元素的一个气态原子在基态时获得一个电子成为气态的负一价离子所放出的能量,称为该元素的第一电子亲和势(First electron affinity)。与此类推,也可得到第二、第三电子亲和 势。第一电子亲和势用符号“E”表示,单位为kJ·mol·L,如: Cl(g) +e → Cl(g)E= +348.7 kJ·mol·L 大多数元素的第一电子亲和势都是正值(放出能量),也有的元素为负值(吸收能量)。这说明这种元素的原子获得电子成为负离子时比较困难,如: O(g) +e → O(g)E= +141 kJ·mol·L O(g) +e → O(g)E= -780 kJ·mol·L 这是因为,负离子获得电子是一个强制过程,很困难须消耗很大能量。

量子阱半导体激光器

量子阱半导体激光器 :本文主要叙述了量子阱半导体激光器发展背景、基本理论、主要应用与发展现状。一、发展背景 1962年后期,美国研制成功GaAs同质结半导体激光器,第一代半导体激光器产生。但 这一代激光器只能在液氮温度下脉冲工作,无实用价值。直到1967年人们使用液相外延的方法制成了单异质结激光器,实现了在室温下脉冲工作的半导体激光器。1970年,贝尔实验室有一举实现了双异质结构的在室温下连续工作的半导体激光器。至此之后,半导体激光 器得到了突飞猛进的发展。半导体激光器具有许多突出的优点:转换效率高、覆盖波段范围 广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。其发展速度之快、 应用范围之广、潜力之大是其它激光器所无法比拟的。但是,由于应用的需要,半导体激光 器的性能有待进一步提高。 80年代,量子阱结构的出现使半导体激光器出现了大的飞跃。量子阱结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料 后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电 子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完

全不同的形状与结构。在此基础上,根据需要,通过改变超薄层的应变量使能带结构发生变 化,发展起来了应变量子阱结构。这种所谓“能带工程”赋予半导体激光器以新的生命力, 其器件性能出现大的飞跃。具有量子阱结构的量子阱半导体激光器与双异质结半导体激光器 (DH)相比,具有阈值电流密度低、量子效应好、温度特性好、输出功率大、动态特性好、 寿命长、激射波长可以更短等等优点。目前,量子阱已成为人们公认的半导体激光器发展的 根本动力。 其发展历程大概为:1976年,人们用GaInAsP/InP实现了长波长激光器。对于激光腔 结构,Kogelnik和Shank提出了分布反馈结构,它能以单片形式形成谐振腔。Nakamura用实验证明了用光泵浦的GaAs材料形成的分布反馈激光器(DBR)。Suematsu提出了用于光通信的动态单模激光概念,并用整体激光器验证了这种想法。1977年,人们提出了所谓的面 发射激光器,并于1979年做出了第一个器件。目前,垂直腔面发射激光器(VECSEL)已用于千兆位以太网的高速网络。自从Nakamura实现了GaInN/GaN蓝光激光器,可见光半导体激 光器在光盘系统中得到了广泛应用,如CD播放器、DVD系统和高密度光存储器。1994年,一种具有全新机理的波长可变、可调谐的量子级联激光器研制成功,且最近,在此又基础上

半导体电子元器件基本知识

半导体电子元器件基本知识 四、光隔离器件 光耦合器又称光电耦合器,是由发光源和受光器两部分组成。发光源常用砷化镓红外发光二极管,发光源引出的管脚为输入端。常用的受光器有光敏三极管、光敏晶闸管和光敏集成电路等。受光器引出的管脚为输出端。光耦合器利用电---光----电两次转换的原理,通过光进行输入与输出之间的耦合。 光耦合器输入与输出之间具有很高的绝缘电阻,可以达到10的10次方欧姆,输入与输出间能承受2000V以上的耐压,信号单向传输而无反馈影响。具有抗干扰能力强、响应速度快、工作可靠等优点,因而用途广泛。如在:高压开关、信号隔离转换、电平匹配等电路中。 光隔离常用如图: 五、电容 有电解电容、瓷片电容、涤纶电容、纸介电容等。 利用电容的两端的电压不能突变的特性可以达到滤波和平滑电压的目的以及电路之间信号的耦合。电解电容是有极性的(有+、-之分)使用时注意极性和耐压。 电路原理图一般用C1、C2、C?等表示。 半导体二极管、三极管、场效应管是电路中最常用的半导体器件,PN结是构成各种半导体器件的重要基础。 导电能力介于导体和绝缘体之间的物质称为半导体。具有热敏、光敏、掺杂特性;根据掺入的杂质不同,可分为:N型半导体、P型半导体。 PN结是采用特定的制造工艺,使一块半导体的两边分别形成P型半导体和N型半导体,它们交界面就形成PN结。PN结具有单向导电性,即在P端加正电压,N端接负时PN结电阻很低,PN结处于导通状态,加反向电压时,PN结呈高阻状态,为截止,漏电流很小。 一、二极管 将PN结加上相应的电极引线和管壳就成为半导体二极管。 P结引出的电极称为阳极(正极),N结引出的电极称为阴极(负极),原理图中一般常用D1、D2、D?等表示。 二极管正向导通特性(死区电压):硅管的死区电压大于0。5V,诸管大于0。1V。用数字式万用表的二极管档可直接测量出正极和负极。利用二极管的单向导电性可以组成整流电路。将交流电压变为单向脉动电压。 使用注意事项: 1、在整流电路中流过二极管的平均电流不能超过其最大整流电流; 2、在震荡电路或有电感的回路中注意其最高反向击穿电压的使用问题; 3、整流二极管不应直接串联(大电流时)或并联使用,串联使用时,每个二极管应并联一个均压电阻,其大小按100V(峰值)70K左右计算,并联使用时,每个二极管应串联10

半导体量子点及其应用概述_李世国答辩

科技信息2011年第29期 SCIENCE&TECHNOLOGY INFORMATION 0引言 近年来半导体材料科学主要朝两个方向发展:一方面是不断探索扩展新的半导体材料,即所谓材料工程;另一方面是逐步从高维到低维深入研究己知半导体材料体系,这就是能带工程。半导体量子点就是通过改变其尺寸实现能级的改变,达到应用的目的,这就是半导体量子点能带工程。半导体量子点是由少量原子组成的准零维纳米量子结构,原子数目通常在几个到几百个之间,三个维度的尺寸都小于100纳米。载流子在量子点的三个维度上运动受尺寸效应限制,量子效应非常显著。在量子点中,由于量子限制效应作用,其载流子的能级类似原子有不连续的能级结构,所以量子点又叫人造原子。由于特殊能级结构,使得量子点表现出独特的物理性质,如量子尺寸效应、量子遂穿效应、库仑阻塞效应、表面量子效应、量子干涉效应、多体相关和非线性光学效应等,它对于基础物理研究和新型电子和光电器件都有很重要的意义,量子点材料生长和器件应用研究一直是科学界的热点之一[1]。 1量子点制备方法 目前对量子点的制备有很多方法,主要有外延技术生长法、溶胶-凝胶法(Sol-gel 和化学腐蚀法等,下面简单介绍这几种制备方法: 1.1外延技术法 外延技术法制备半导体量子点,主要是利用当前先进的分子束外延(MBE、金属有机物分子束外延(MOCVD和化学束外延(CBE等技术通过自组装生长机理,在特定的生长条件下,在晶格失配的半导体衬底上通过异质外延来实现半导体量子点的生长,在异质外延外延中,当外延材料的生长达到一定厚度后,为了释放外延材料晶格失配产生的应力能,外延材料就会形成半导体量子点,其大小跟材料的晶格失配度、外延过程中的条件控制有很大的关系,外延技术这是目前获得高质量半导体量子点比较普遍的方法,缺点是对半导体量子点的生长都是在高真空或超高真空下进行,使得材料生长成本非常高。1.2胶体法

大功率宽面808nm GaAsPAlGaAs量子阱激光器分别限制结构设计

第26卷 第12期2005年12月 半 导 体 学 报 CHIN ESE J OURNAL OF SEMICONDUCTORS Vol.26 No.12 Dec.,2005 2005206216收到,2005207221定稿 Ζ2005中国电子学会 大功率宽面808nm G aAsP/Al G aAs 量子阱激光器 分别限制结构设计 王 俊 马骁宇 林 涛 郑 凯 冯小明 (中国科学院半导体研究所光电子器件国家工程中心,北京 100083) 摘要:本文对有源区条宽100 μm 的GaAsP/Al G aAs 808nm 量子阱激光器分别限制结构进行了理论分析和设计.选取了三种情况的波导层和限制层的铝组分,分别计算和分析了波导层厚度与激光器光限制因子、最大出光功率、垂直发散角和阈值电流密度的函数关系.根据计算结果可知:当波导层和限制层铝组分为014和015时,采用窄波导结构可以获得器件的最大输出功率为1112W ,发散角为19°,阈值电流密度为266A/cm 2;采用宽波导结构可以得到器件的最大输出功率为914W ,发散角为32°,阈值电流密度为239A/cm 2. 关键词:大功率808nm 半导体激光器;G aAsP/Al GaAs 量子阱激光器;分别限制异质结构 PACC :4255P ;4260B EEACC :4320J 中图分类号:TN248.4 文献标识码:A 文章编号:025324177(2005)1222449206 1 引言 大功率808nm 半导体量子阱激光器被广泛应用于泵浦固体激光器、激光加工和激光医疗等领域.由于实际应用要求激光器的功率越来越大,人们采用各种材料和结构来提高激光器的功率.从外延片的材料和结构上看,有匹配量子阱和应变量子阱结构,含铝结构和无铝结构以及大光腔结构等[1,2].一般对808nm 半导体量子阱激光器而言,限制其输出光功率的主要因素有:高输出光功率密度引起的腔面光学灾变损伤;各种载流子非辐射复合和漏电流引起的有源区和腔面温升[3]. 由于Al GaAs 和GaAs 材料的外延技术成熟,Al GaAs/GaAs 量子阱结构是大功率808nm 半导体 量子阱激光器常用的结构.但是,由于含铝有源区容易氧化和产生暗线缺陷,腔面光学灾变功率密度不高,从而限制了激光器的功率和寿命 [4] .与含铝材料 相比,无铝材料具有高的腔面光学灾变功率密度、热导率和电导率,且不易氧化,因而有利于提高器件功率和可靠性[5].对于全无铝材料结构,虽然具有上述优点,但是由于量子阱层与垒和上限制层形成异质结的导带带阶较小,会造成较强的载流子泄漏,从而 导致阈值电流密度增加,外量子效率下降,温度特性 变差[6].因此,人们提出采用无铝材料作为有源区,而波导层和限制层采用导带带阶较大的含铝材料,如GaAsP/Al GaAs 结构.这种量子阱有源区结构具有无铝材料的优点,且量子阱层与波导层和上限制层的较大导带带阶能够有效减小漏电流,降低阈值电流密度,改善激光器温度特性.另外,GaAsP/Al 2GaAs 张应变量子阱在端面的驰豫形成非吸收窗 口,能够减少端面对光子的吸收[7]. Erbert [8]研究了GaAsP/Al GaAs 大光腔结构 量子阱激光器.在激射波长715nm 至840nm 范围内,他们获得了高的输出功率和转换效率.Sebas 2tian [9]研究了大光腔结构810nm GaAsP/Al GaAs 激光器,也得到了高的输出功率和良好的光束特性.但是到目前为止,还没有研究人员从理论上对GaAsP/Al GaAs 量子阱激光器进行分析和设计.本 文从理论上对GaAsP/Al GaAs 分别限制结构量子阱激光器进行了分析.对一定的波导层和限制层铝 组分,采用窄波导结构可以获得条宽100 μm 器件的最大输出功率为1112W ,发散角为19°,阈值电流密度为266A/cm 2;采用宽波导结构可以得到器件的最大输出功率为914W ,发散角为32°,阈值电流密度为239A/cm 2.

量子阱原理及应用

光子学原理课程期末论文 ——量子阱原理及其应用 信息科学与技术学院 08电子信息工程 杨晗 23120082203807

题目:量子阱原理及其应用 作者:杨晗 23120082203807 摘要:随着半导体量子阱材料的发展,量子阱器件广泛应用于各种领域.本文主 要介绍量子阱的基本特征,重点从量子阱材料、量子阱激光器、量子阱LED、等方面介绍量子阱理论在光电器件方面的发展及其应用。 关键词:量子阱量子约束激光器 量子阱是指由2种不同的半导体材料相间排列形成的、具有明显量子限制效应的电子或空穴的势阱。量子阱的最基本特征是,由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱,简单来说,就是由多个势阱构成的量子阱结构为多量子阱,简称为MQW(Multiple Quantum Well),而由一个势阱构成的量子阱结构为单量子阱,简称为SQW(Single Quantum Well)。 一量子阱最基本特征 由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱。如果势垒层很薄,相邻阱之间的耦合很强,原来在各量子阱中分立的能级将扩展成能带(微带),能带的宽度和位置与势阱的深度、宽度及势垒的厚度有关,这样的多层结构称为超晶格。有超晶格特点的结构有时称为耦合的多量子阱。量子肼中的电子态、声子态 和其他元激发过程以及它们之间 的相互作用,与三维体状材料中的 情况有很大差别。在具有二维自由 度的量子阱中,电子和空穴的态密 度与能量的关系为台阶形状。而不 是象三维体材料那样的抛物线形 状[1]。 图1半导体超晶格的层状结构,白圈和灰圈代 表两种材料的原子

量子阱半导体激光器简述

上海大学2016~2017 学年秋季学期研究生课程考试 (论文) 课程名称:半导体材料(Semiconductor Materials) 课程编号:101101911 论文题目: 量子阱及量子阱半导体激光器简述 研究生姓名: 陈卓学号: 16722180 论文评语: (选题文献综述实验方案结论合理性撰写规范性不足之处) 任课教师: 张兆春评阅日期: 课程考核成绩

量子阱及量子阱半导体激光器简述 陈卓 (上海大学材料科学与工程学院电子信息材料系,上海200444) 摘要: 本文接续课堂所讲的半导体激光二极管进行展开。对量子阱结构及其特性以及量子阱激光器的结构特点进行阐释。最后列举了近些年对量子阱激光器的相关研究,包括阱层设计优化、外部环境的影响(粒子辐射)、电子阻挡层的设计、生长工艺优化等。 关键词:量子阱量子尺寸效应量子阱激光器工艺优化

一、引言 半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用[1],它具有许多突出的优点:转换效率高、覆盖波段范围广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也进一步得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。 20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。[2]制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE)、金属有机化合物化学气相淀积(MOCVD)、化学束外延(CBE)和原子束外延等。[3]我国早在1974年就开始设计和制造分子束外延(MBE)设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS)使用国产的MBE设备制成的GRIN-SCH InGaAs/GaAs应变多量子阱激光器室温下阈值电流为1.55mA,连续输出功率大于30mW,输出波长为1026nm。[4] 量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC)和光电子集成(OEIC)的核心器件。 减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL)以及在三维都使电子受限的所谓量子点(QD)将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。 二、量子阱的结构与特性 1、态密度、量子尺寸效应与能带 量子阱由交替生长两种半导体材料薄层组成的半导体超晶格产生。超晶格结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完全不同的形状与结构。1970年首次在GaAs半导体上制成了超晶格结构。江崎(Esaki)等人把超晶格分为两类:成分超晶格和掺杂超晶格。理想超晶格的空间结构及两种材料的能带分布分别如图1和图2。

新型高性能半导体纳米线电子器件和量子器件

项目名称:新型高性能半导体纳米线电子器件和量 子器件 首席科学家:徐洪起北京大学 起止年限:2012.1至2016.8 依托部门:教育部中国科学院

一、关键科学问题及研究内容 国际半导体技术路线图(ITRS)中明确指出研制可控生长半导体纳米线及其高性能器件是当代半导体工业及其在纳米CMOS和后CMOS时代的一个具有挑战性的科学任务。本项目将针对这一科学挑战着力解决如下关键科学问题:(1)与当代CMOS工艺兼容、用于新型高性能可集成的纳电子器件的半导体纳米线阵列的生长机制和可控制备;(2)可集成的超高速半导体纳米线电子器件的工作原理、结构设计及器件中的表面和界面的调控;(3)新型高性能半导体纳米线量子电子器件的工作模式、功能设计和模拟、载流子的基本运动规律。 根据这些关键科学问题,本项目包括如下主要研究内容: (一)新型半导体纳米线及其阵列的可控生长和结构性能表征 在本项目中我们将采用可控生长的方法来生长制备高品质的InAs、InSb 和GaSb纳米线及其异质结纳米线和这些纳米线的阵列。 生长纳米线的一个重要环节是选取衬底,我们将研究在InAs衬底上生长高品质的InAs纳米线,特别是要研究在大晶格失配的Si衬底上生长InAs纳米线的技术。采用Si衬底将大大降低生长成本并为与当代CMOS工艺的兼容、集成创造条件。关于InSb和GaSb纳米线的制备,人们还没有找到可直接生长高品质InSb和GaSb纳米线的衬底。我们将研究以InAs纳米线为InSb和GaSb纳米线生长凝结核的两阶段和多阶段换源生长工艺,探索建立生长高品质InSb和GaSb纳米线及其InAs、InSb和GaSb异质结纳米线的工艺技术。本项目推荐首席徐洪起教授领导的小组采用MOCVD 技术已初步证明这种技术路线可行。我们将进一步发展、优化InSb和GaSb纳米线的MOCVD生长工艺技术,并努力探索出用CVD和MBE生长InSb和GaSb纳米线的生长技术。CVD是一种低成本、灵活性高的纳米线生长技术,可用来探索生长大量、多样的InSb、InAs和GaSb纳米线及其异质结,可为项目前期的纳米器件制作技术的发展提供丰富的

半导体超晶格能带结构2

本科生毕业论文(设计)册 学院汇华学院 专业物理学 班级2007级 学生侯敏娟 指导教师李玉现

河北师范大学本科毕业论文(设计)任务书 编号: 论文(设计)题目:半导体超晶格的隧穿特性 学院:专业:物理学班级: 学生姓名:学号: 2 指导教师:职称: 1、论文(设计)研究目标及主要任务 研究目标:提高学生个人的调研能力,锻炼语言组织能力,培养对物理学的研究兴趣,了解物理学的发展进程,在实践中达到物理思想的熏陶。 主要任务:简单介绍半导体的概念、分类、应用,重点解释半导体的隧道效应(势垒贯穿),提高对其的认识和了解,明白怎样总结出其微观粒子的波动性及传播过程,激发研究热情并加快其研究进度。 2、论文(设计)的主要内容 早在19世纪三十年代,英国巴拉迪首先发现了半导体之后,半导体行业就开始不断发展,本文首先介绍了半导体是如何被发现的并且有怎样的意义,随着研究的深入,人们发现了半导体的物理结构,随后提出了超晶格概念,超晶格概念的提出使得量子物理的研究量级从埃扩大到纳米,这一现象的发现为量子物理的进程做出了伟大的贡献,随后发现隧道效应,本文主要就隧道效应的推导过程作了详细的计算,并计算出透射系数,透射系数随着势垒的加宽或电压的增大而迅速减小,得出结论:宏观条件下观察不到隧道效应。 3、论文(设计)的基础条件及研究路线 基础条件:已经搜集了大量的相关材料,学习了其中与论文题目相关的内容并加以理解。认真整理材料和个人的学习体会,对论文相关内容有了统筹的把握。 研究路线:需在原有材料基础上进行总结归纳,介绍其研究方法并适时加入自己的观点和看法,对有关原理进行必要理论分析,并揭示其研究应用前景,突出研究半导体重要意义。 4、主要参考文献 1、周世勋.量子力学教程[M],北京:高等教育出版社,2009:34-44 2、杨福家.原子物理学[M],高等教育出版社,2000:106-110. 3、黄昆.固体物理学[M],高等教育出版社,2001:325-351. 5 指导教师:年月日 教研室主任:年月日

量子阱半导体激光器

量子阱半导体激光器的原理及应用 刘欣卓(06009406) (东南大学电子科学与工程学院南京 210096) 光电调制器偏置控制电路主要补偿了激光调制器的温漂效应,同时兼顾了激光器输出功率的变化。链路采用的激光器带有反馈PD,输出对应的电压信号。该信号经过放大后直接作为控制系统的输入,将两者的电压相减控制稳定后再放大。反馈光信号经过光电转换和滤波放大两个环节。最后一节采用低通滤波器排除射频信号的影响。放大环节有两个作用。其一:补偿采样过程中1%的比例;其二:通过微调放大倍数实现可调的偏置。偏 置控制主要是一个比例积分环节,输出作为调制器的偏置。 关键词:光电调制器;模拟偏置法;误差 High-speed Optical Modulator Bias Control LIU XinZhuo 2) (06009406) (1)Department of Electronic Engineering, Southeast University, Nanjing, 210096 Abstract: The optical modulator bias control circuit compensates for the drift of the laser modulator effect. It also takes into account the changes in the laser output power. Link uses the laser with feedback PD and the output corresponds to voltage signal. The signal after amplification is acted as the input of the control system. After the two voltage signals reduction and stability, the output may be amplified. The feedback optical signal includes photoelectric conversion and filtering amplification. The last part of circuit excludes the influence of the RF signal through a low pass filter. We know that enlarge areas have two roles. First: it can compensate for sampling ratio of 1%of the process; Second: it can realize adjustable bias by fine-tune magnification. The bias control is a proportional integral part of the output of the modulator bias. Abstract: Specific charge of electron; magnetic focusing; magnetic control tube; Zeeman effects; error 作者的个人学术信息: 刘欣卓,1991年,女,南京市。大学本科,电 子科学与工程学院。liuxinzhuo@https://www.360docs.net/doc/621964946.html,. 1.量子阱半导体激光器的发展历程 1.1激光器研制的现状 随着光子技术的发展,光子器件及其集成技术在各领域的应用前景越来越广阔,尤其在一些数据处理速率要求极高的领域,光子器件正逐步取代电子器件。可以预见,不久的将来,光子器件及光子集成线路在各行业所占的比重将不亚于目前集成电路在各领域的地位及作用。而激光器作为光子器件的核心之一,对其新型结构的研制更是早就提上了日程,并取得了一定的进展。 为了研制出阈值电流低、量子效率高、工作于室温环境、短波长、长寿命和光束质量好等要求的半导体激光器, 研究人员致力于寻找新工作原理、新材料、新结构以及各种新的技术。在此,半导体激光器(LD),特别是量子阱半导体激光器(QWLD)正逐步作为光通信和光互连中的重要光源。 1. 2半导体激光器 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,较常规激光器而言,产生激光的具体过程比较特殊。 半导体激光器工作物质的种类有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)

半导体量子点发光

半导体量子点发光 一、半导体量子点的定义 当半导体的三维尺寸都小于或接近其相应物质体相材料激子的玻尔半径(约5.3nm)时,称为半导体量子点。 二、半导体量子点的原理 在光照下,半导体中的电子吸收一定能量的光子而被激发,处于激发态的电子向较低能级跃迁,以光福射的形式释放出能量。大多数情况下,半导体的光学跃迁发生在带边,也就是说光学跃迁通常发生在价带顶和导带底附近。半导体的能带结构可以用图的简化模型来表示。如图所示,直接带隙是指价带顶的能量位置和导带底的能量位置同处于一个K空间,间接带隙是指价带顶位置与导带底位置的K空间位置不同。电子从高能级向低能级跃迁,伴随着发射光子,这是半导体的发光现象。

对于半导体量子点,电子吸收光子而发生跃迁,电子越过禁带跃迁入空的导带,而在原来的价带中留下一个空穴,形成电子空穴对(即激子),由于量子点在三维度上对激子施加量子限制,激子只能在三维势垒限定的势盒中运动,这样在量子点中,激子的运动完全量子化了,只能取分立的束缚能态。激子通过不同的方式复合,从而导致发光现象。原理示意图,如图所示,激子的复合途径主要有三种形式。 (1)电子和空穴直接复合,产生激子态发光。由于量子尺寸效应的作用,所产生的发射光的波长随着颗粒尺寸的减小而蓝移。 (2)通过表面缺陷态间接复合发光。在纳米颗粒的表面存在着许多悬挂键,从而形成了许多表面缺陷态。当半导体量子点材料受光的激发后,光生载流子以极快的速度受限于表面缺陷态而产生表面态发光。量子点的表面越完整,表面对载流子的捕获能力就越弱,从而使得表面态的发光就越弱。 (3)通过杂质能级复合发光。杂质能级发光是由于表面分子与外界分子发生化学反应生成其它杂质,这些杂质很容易俘获导带中的电子形成杂质能级发光。 以上三种情况的发光是相互竞争的。如果量子点的表面存在着许多缺陷,对电子和空穴的俘获能力很强,电子和空穴一旦产生就被俘获,使得它们直接复合的几率很小,从而使得激子态的发光就很弱,甚至可以观察不到,而只有表面缺陷态的发光。 为了消除由于表面缺陷引起的缺陷态发光而得到激子态的发光,常常设法制备表面完整的量子点或者通过对量子点的表面进行修饰来减少其表面缺陷,从而使电子和空穴能够有效地直接复合发光。

相关文档
最新文档