(完整版)初中数学分式化解求值解题技巧大全

(完整版)初中数学分式化解求值解题技巧大全
(完整版)初中数学分式化解求值解题技巧大全

化简求值常用技巧

在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种: 1、 应用分式的基本性质

例1 如果1

2x x

+=,则2421x x x ++的值是多少?

解:由0x ≠,将待求分式的分子、分母同时除以2

x ,得 原式=.

2222

1111

1

1

213

1()1x x x x

=

==-++

+-.

2、倒数法

例2

如果1

2x x

+=,则242

1x x x ++的值是多少? 解:将待求分式取倒数,得

422

2222

1111()1213x x x x x x x

++=++=+-=-= ∴原式=1

3

. 3、平方法

例3

已知12x x

+

=,则221

x x +的值是多少?

解:两边同时平方,得

22

221124,42 2.x x x x

++

=∴+=-= 4、设参数法

例4

已知

0235a b c ==≠,求分式2

22

2323ab bc ac

a b c +-+-的值. 解:设235

a b c

k ===,则

2,3,5a k b k c k ===.

∴原式=

222222323532566

.(2)2(3)3(5)5353

k k k k k k k k k k k ?+??-??==-+-- 例5

已知

,a b c b c a

==求a b c a b c +--+的值.

解:设a b c

k b c a

===,则

,,.a bk b ck c ak ===

∴3

c ak bk k ck k k ck ==?=??=, ∴3

1,1k k == ∴a b c == ∴原式=

1.a b c

a b c

+-=-+

5、整体代换法

例6

已知

113,x y -=求2322x xy y x xy y

+---的值. 解:将已知变形,得

3,y x xy -=即3x y xy -=-

∴原式=

2()32(3)333

.()23255

x y xy xy xy xy x y xy xy xy xy -+?-+-===-----

例: 例5. 已知a b +<0

,且满足a a b ba b 2

2

22++--=,求a b a b

33

13+-的值。

解:因为a a b ba b 22

22++--= 所以()()a b a b +-+-=2

20 所以()()a b a b +-++=210 所以a b +=2或a b +=-1 由a b +<0 故有a b +=-1

所以a b a b a ba a b b a b

3322

1313+-=+-+-()()

=

-?-+-=

-+-113312222

()

a a

b b ab

a a

b b ab =

+--=---=

--()()a b a b a b a b a b a b a b 2233113311331

=-1

评注:本题应先对已知条件a a b ba b 22

22++--=进行变换和因式分解,并由a b +<0

确定出a b +=-1,然后对所给代数式利用立方和公式化简,从而问题迎刃而解。

6、消元代换法

例7

已知1,abc =则

111a b c

ab a bc b ac c ++=++++++ .

解:∵1,abc =∴1,c ab

=

∴原式=

111111

a b

ab

ab a b ab b a ab ab

++

++?++?++ 1

111a ab ab a ab a a ab =++

++++++ 1 1.1

ab a ab a ++==++ 7、拆项法

例8

若0,a b c ++=求111111()()()3a b c b

c

a

c

a

b

++++++的值.

解:原式=111111()1()1()1a b c b

c

a

c

a

b

??????=++++++++????????????

111111111()()()a b c a b c a b c a b c =++++++++

111

()()a b c a b c

=++++ 0a b c ++=∵

∴原式=0. 8、配方法

例9

若13,13,a b b c -=-=求

222

1

a b c ab ac bc

++---的值. 解:由13,13,a b b c -=-=得2a c -=. ∴2

2

2

2

a b c ab ac b ++---

2221()()()2

a b b c a c ??=

-+-+-??

1

1202

=?= ∴原式=1

6

.

化简求值切入点介绍

解题的切入点是解题的重要方向,是解题的有效钥匙。分式求值有哪些切入点呢?下面本文结合例题归纳六个求分式的值的常见切入点,供同学们借鉴:

切入点一:“运算符号”

点拨:对于两个分母互为相反数的分式相加减,只须把其中一个分式的分母的运算符号提出来,即可化成同分母分式进行相加减。

例1:求a

b a b a b 2422

2-+-

解:原式=b a a b a b ---24222=b a a b --2422=b

a b a ---242

2

=)

2()

2)(2(b a b a b a --+-

=)2(b a +-=b a --2

评注:我们在求解异分母分式相加减时,先要仔细观察这两个分式的分母是否互为相反数。若互为相

反数,则可以通过改变运算符号来化成同分母分式,从而避免盲目通分带来的繁琐。

切入点二:“常用数学运算公式”

点拨:在求分式的值时,有些数学运算公式直接应用难以奏效,这时,需要对这些数学公式进行变形应用。

例2:若0132

=+-a a ,则3

3

1

a a +

的值为______ 解:依题意知,0≠a ,由0132

=+-a a 得

a a 312=+,对此方程两边同时除以a 得31

=+

a

a ∴18)33(3]3)1)[(1()11)(1(12

22233=-?=-++=+-+=+a a a a a a a a a a

评注:在求分式的值时,要高度重视以下这些经过变形后的公式的应用:

①))((2

2

b a b a b a -+=- ②ab b a ab b a b a 2)(2)(2

2

2

2

+-=-+=+ ③)(3)(]3))[(())((3

2

2

2

3

3

b a ab b a ab b a b a b ab a b a b a +-+=-++=+-+=+ ④)(3)(]3))[(())((3

2

2

2

3

3

b a ab b a ab b a b a b ab a b a b a -+-=+--=++-=- ⑤])()[(4

1

22b a b a ab --+=

切入点三:“分式的分子或分母”

点拨:对于分子或分母含有比较繁杂多项式的分式求值,往往需要对这些多项式进行分解因式变形处理,然后再代题设条件式进行求值。

例3:已知5,3-==+xy y x ,求2

22

2223xy y x y xy x +++的值。 解:xy y x y x xy y x y x xy

y x y xy x +=+++=+++)2())(2(2232

222 ∵5,3-==+xy y x ∴原式=

5

3

53-=- 评注:分解因式的方法是打开分式求值大门的有效钥匙,也是实现分式约分化简的重要工具。像本题

先利用十字相乘法对分子分解因式,利用提公因式法对分母分解因式,然后约去相同的因式,再代题设条件式求值,从而化繁为简。

切入点四:“原分式中的分子和分母的位置”

点拨:对于那些分母比分子含有更繁杂代数式的分式,倘若直接求值,则难以求解。但是,我们可以先从其倒数形式入手,然后再对所求得的值取其倒数,则可以把问题简单化。

例4:已知3

1

12=++x x x ,则12

4

2++x x x 的值为______ 解:依题意知,0≠x ,由

3

1

12

=++x x x 得 312=++x x x ,即311=++x x 从而得21

=+x x ∴3121)1(1112

22

2224=-=-+=++=++x x x x x x x 故3

1

1242=++x x x

评注:取倒数思想是处理那些分母比分子含有更繁杂代数式的分式求值问题的重要法宝。像本题利用取倒数思想巧变原分式中的分子和分母的位置,从而化难为易。

切入点五:“题设条件式”

点拨:当题设条件式难以直接代入求值时,不妨对其进行等价变换,也许可以找到解题钥匙。 例5:已知

323=-y x ,则x

y xy xy

y x 69732-+--的值为______ 解:由

32

3=-y

x 得xy x y 323=-,则xy y x 332-=- ∴

4

1

16473337)23(33269732-=-=+?--=+---=-+--xy xy xy xy xy xy xy x y xy y x x y xy xy y x

评注:等价变换思想是沟通已知条件和未知结论的重要桥梁,是恒等变形的充分体现。像本题通过对

题设条件式作等价变换,找到重要解题条件“xy x y 323=-”和“xy y x 332-=-”,然后作代换处理,从而快速求值。

切入点六:“分式中的常数值”

点拨:当题设条件式的值和所要求解的分式的常数相同时,应注意考虑是否可以作整体代入变形求解,以便更快找到解题的突破口。

例6:设1=abc ,求1

11+++

+++++c ac c

b b

c b a ab a 的值 解:∵1=abc

∴原式=

1

1+++

+++++c ac c

b b

c b abc a ab a =1111+++

+++++c ac c b bc b bc b =abc c ac c b bc b ++++++11=ab a b bc b +++

+++1111 =ab abc a abc b bc b ++++++11=b bc bc

b b

c b +++

+++111 =11

1=++++b bc bc

b

评注:整体代入变形是分式求值的重要策略。像本题紧扣“1=abc ”,多次作整体代入处理,先繁后

简,逐项通分,最后顺利得到分式的值。

综上可见,找准切入点,灵活变形可以巧妙求解分式的值。所以,当你遇到分式求值题找不到解题方向时,不妨找准切入点,对原分式变一变,也许分式求值思路现。

初中数学分式化解求值解题技能大全

化简求值常用技巧 在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种: 1、 应用分式的基本性质 例1 如果12x x +=,则2 42 1 x x x ++的值是多少? 解:由0x ≠,将待求分式的分子、分母同时除以2 x ,得 原式=. 2222 1111 11 213 1()1x x x x = ==-++ +-. 2、倒数法 例2 如果12x x +=,则2 42 1 x x x ++的值是多少? 解:将待求分式取倒数,得 4222222 1111()1213x x x x x x x ++=++=+-=-= ∴原式=1 3 . 3、平方法 例3 已知12x x + =,则221 x x +的值是多少? 解:两边同时平方,得 2222 1124,42 2.x x x x ++ =∴+=-= 4、设参数法 例4 已知 0235a b c ==≠,求分式2222323ab bc ac a b c +-+-的值. 解:设235 a b c k ===,则 2,3,5a k b k c k ===. ∴原式=22222 2323532566 .(2)2(3)3(5)5353 k k k k k k k k k k k ?+??-??==-+-- 例5 已知 ,a b c b c a ==求a b c a b c +--+的值. 解:设a b c k b c a ===,则 ,,.a bk b ck c ak === ∴3 c ak bk k ck k k ck ==?=??=,

初中数学分式计算题及答案.

分式计算题精选1.计算(x+y)2.化简3.化简:4.化简:5.化简:6.计算:

7.化简:. 8.化简: 9.化简:. 10计算:.11.计算:.12.解方程:.

13.解方程: 14.解方程:=0. 15.解方程:(1) . 16. 17解方程:﹣=1; ﹣=0.18.

20.已知 3x 2 + xy - 2 y 2 = 0 ( x ≠0, y ≠0),求 - - 的值。 1 ? ? x ,求 1 ? ? x ,求 19.已知 a 、 b 、 c 为实数,且满足 (2 - a )2 + 3 - b 2 + c 2 - 4 (b - 3)(c - 2) = 0 ,求 1 1 + 的值。 a - b b - c x y x 2 + y 2 y x xy 21.计算已知 x 2 1 ? 1 ?= - ?÷? + x ? 的值。 x 2 - 2 1 - 2 ? 1 - x 1 + x ? ? x 2 - 1 ? ? 1 1 1 ? x - y = 3 22.解方程组: ? ? 1 1 = 2 ?? x y 9 23.计算(1)已知 x 2 1 ? 1 ?= - ?÷? + x ? 的值。 x 2 - 2 1 - 2 ? 1 - x 1 + x ? ? x 2 - 1 ?

- x - y ?? ÷ 25. ? 24. 1 1 2 4 + + + 1 - x 1 + x 1 + x 2 1 + x 4 ? 2 2 ? x + y ?? x - y - ? 3x x + y ? 3x ?? x

2014寒假初中数学分式计算题精选 参考答案与试题解析 1计算(x+y)?=x+y. 解:原式=. 2化简,其结果是. 解:原式=??(a+2)+ = + = = =. 故答案为: =. 3 解:原式=×=. =. 4 解:=1﹣=1﹣==.5化简:=.

分式解题技巧

J ____ __ B 卜 J l + x* 1-K B 式方程的常规办法来解,将会带来繁琐的运算,如能适当局部通分,并辅以除法 求解,将会得到较为理想的效果. 解 局部通分得 d )(D 丘-恥-2)' 去分母,得x 2— 7x + 10=x 2 — 9x + 18.故2x=8..°. x=4.经检验知x=4是原方程的 解. 分式运算中的“七巧” 1.巧用公式的基本性质 z-1 解原式(化为警分式) —(沁本性励 (X -一) ? Z £ 例B 化简 ;— + 2 + T 2. 巧用逐步通分法 :I 分析若 一次性完成通分,运算量很大,注意到(1 — x )(1 + x )=1 —X 4,可以用逐步通分法化简. 巧解分式方程 、裂项法 例1解方程三+三?三+三 X-6 - C X -4 Z - 0 分析 方程中每一个 分式的分母加1都等于它的分子?根据这样一个特点,可以把分子分裂成两项, 然后分别用它的分母去除,消去分子中的未知数,再分组通分将分子化为 解原方程可化为 匕公)U t^-e ) + 1 _(3 J4)+ 1 (A -6) +J K — 2 A - 3 (A - 4) x - 6 Bn 1 1 1 1 移项得土「土匚士一 通分得宀 解之得x=5 .经检验x=5是原方程的解. 2 2 ??x — 14x + 48=x — 6x + 8, 、局部通分法 分析用去分母化整 例1廿算—一仗--) _IL L ~^1 而(1 — x 2)(1 + x 2)=1 解 1-X

1 閔 型 2龙 1 3?巧用运算律 例3计算 ' I : I :! 1 ■ -:!':分析 1 1 力 4” 折 可以先用加法交换律整理顺序如下: 1-工1十工1十1十兀* 1十严 再用逐步通分法化简. < y 2 x 、 x ( -- + - + ---- )中"1 例4化简 x f 宀y +硼 y +矽解原式 (-)a + 2(丄)+ 1(乘法分配律) x x 4.巧用已知条件 例5当x 2 — 4x + 1=0时, 解原式二十-宁害 K - 1 耳(JE 一 1) (云十 1)(號_1) X (K - 1) 为了求岀代数式的值,将己知条件变形为疋+1 =伉 则原式二竺=4 x 原式卜卜矗一詞诗】]怡"◎■诗 6 ?巧变形 例7计算 [ ] 1 尹证而+乔丽弓+…刁丽匚丽 分析 我们注意一个事实 求角"士)呃 5 ?巧用乘法公式 例6计算 b a b J 『 (丁吋計) 解应用立方和公式 x (x+y ) x+y y (x+y )

分式化简求值练习题库(经典精心整理)

1.先化简,再求值:1 2 112 ---x x ,其中x =-2. 2、先化简,再求值:,其中a=﹣1. 3、(2011?綦江县)先化简,再求值:,其中x=. 4、先化简,再求值:,其中 . 5先化简,再求值,其中x 满足x 2 ﹣x ﹣1=0. 6、化简:b a b a b a b 3a -++ -- 7、(2011?曲靖)先化简,再求值:,其中a=. 8、(2011?保山)先化简2 11 111 x x x x -÷-+-( ),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.

9、(2011?新疆)先化简,再求值:(+1)÷,其中x=2. 10、先化简,再求值:3 x –3 – 18 x 2 – 9,其中x = 10–3 11、(2011?雅安)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算.. 12、先化简,再求值:12 -x x (x x 1 --2),其中x =2. 13、(2011?泸州)先化简,再求值:,其中 . 14、先化简22()5525x x x x x x -÷ ---,然后从不等组23212x x --≤??

(完整版)初中数学分式计算题及答案

2014寒假初中数学分式计算题精选 参考答案与试题解析 一.选择题(共2小题) 1.(2012?台州)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x千米/时,则下面列出的方程 中正确的是() A.B.C.D. 解答:解:设公共汽车的平均速度为x千米/时,则出租车的平均速度为(x+20)千米/时, 根据回来时路上所花时间比去时节省了,得出回来时所用时间为:×, 根据题意得出=×,故选:A. 2.(2011?齐齐哈尔)分式方程=有增根,则m的值为() A.0和3 B.1C.1和﹣2 D.3 考点:分式方程的增根;解一元一次方程. 专题:计算题. 分析:根据分式方程有增根,得出x﹣1=0,x+2=0,求出即可.D 二.填空题(共15小题) 3.计算的结果是. 4.若,xy+yz+zx=kxyz,则实数k=3 分析: 分别将去分母,然后将所得两式相加,求出yz+xz+xy=3xyz,再将xy+yz+zx=kxyz 代入即可求出k的值.也可用两式相加求出xyz的倒数之和,再求解会更简单. 点评:此题主要考查学生对分式的混合运算的理解和掌握,解答此题的关键是先求出yz+xz+xy=3xyz.5.(2003?武汉)已知等式:2+=22×,3+=32×,4+=42×,…,10+=102×,(a,b均为正整数),则a+b= 109. 解答: 解:10+=102×中,根据规律可得a=10,b=102﹣1=99,∴a+b=109. 6.(1998?河北)计算(x+y)?=x+y.

分式方程解法知识讲解

16.3《分式方程解法》说课稿 《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为数学教学主导,在设计数学活动时要遵循以下原则:一、根据学生的年龄特征和认知特点组织教学。二、重视培养学生的应用意识和实践能力。1、让学生在现实情境和已有的生活和知识经验中体验和理解数学。2、培养学生应用数学的意识和提高解决问题的能力。三、重视引导学生自主探索,培养学生的创新精神。1、引导学生动手实践、自主探索和合作交流。2、鼓励学生解决问题策略的多样化。 四、教师对教学目标,难点,重点把握要恰当、具体。 数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。 一、设计思想: 数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富 和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。

分式运算中的常用技巧与方法

分式运算中的常用技巧与方法1 在分式运算中,若能认真观察题目结构特征,灵活运用解题技巧,选择恰当的运算方法,常常收到事半功倍的效果。现就分式运算中的技巧与方法举例说明。 一、 整体通分法 例1.化简: 21 a a --a-1 分析 将后两项看作一个整体,则可以整体通分,简捷求解。 解: 21 a a --a-1= 21 a a --(a+1)= 21a a --(1)(1)1 a a a -+-= 22(1) 1a a a ---=11 a - 二、 逐项通分法 例2.计算 1 a b --1a b +- 22 2b a b +- 344 4b a b - 分析:注意到各分母的特征,联想乘法公式,适合采用逐项通分法 解:1a b -- 1a b +- 22 2b a b +- 344 4b a b -= 22 ()() a b a b a b +---- 22 2b a b +- 344 4b a b - =222b a b --222b a b +- 344 4b a b -= 222244 2()2() b a b b a b a b +---- 344 4b a b - = 344 4b a b -- 344 4b a b -=0 三、 先约分,后通分 例3.计算: 2262a a a a +++ 22444 a a a -++

分析:分子、分母先分解因式,约分后再通分求值计算 解: 2262a a a a +++ 22444a a a -++=(6)(2)a a a a +++2 (2)(2)(2)a a a +-+=62a a +++22a a -+=242 a a ++=2 四、 整体代入法 例4.已知1x +1y =5求2522x xy y x xy y -+++的值 解法1:∵ 1x + 1y =5∴xy ≠0,.所以 2522x xy y x xy y -+++= 225112y x y x -+++= 11 2()5112x y x y +-++=25552 ?-+=57 解法2:由1x +1y =5得,x y xy +=5, x+y=5xy ∴2522x xy y x xy y -+++=2()5()2x y xy x y xy +-++=25552xy xy xy xy ?-+=57xy xy =57 五、运用公式变形法 例5.已知a 2-5a+1=0,计算a 4+4 1a 解:由已知条件可得a ≠0,∴a+1a =5 ∴a 4+4 1a =(a 2+2 1a )2-2=[(a+1a )2-2]2-2=(52-2)2 -2=527 六、设辅助参数法 例6.已知b c a += a c b += a b c +,计算:()()() a b b c c a abc +++ 解:设b c a += a c b += a b c +=k ,则b+c=ak ;a+c=bk ;

初三中考数学分式及其运算

考点跟踪训练4 分式及其运算 一、选择题 1.(2010·孝感)化简????x y -y x ÷x -y x 的结果是( ) A. 1y B. x +y y C.x -y y D .y 答案 B 解析 原式=x 2-y 2xy ·x x -y =(x +y )(x -y )xy ·x x -y =x +y y . 2.(2011·宿迁)方程2x x +1-1=1x +1 的解是( ) A .-1 B .2 C .1 D .0 答案 B 解析 把x =2代入方程,可知方程左边=43-1=13,右边=13 .∴x =2是方程的解. 3.(2011·苏州)已知1a -1b =12,则ab a -b 的值是( ) A.12 B .-12 C .2 D .-2 答案 D 解析 1a -1b =12,2b -2a =ab ,-2(a -b )=ab ,所以ab a -b =-2. 4.(2011·威海)计算1÷1+m 1-m ·()m 2-1的结果( ) A .-m 2-2m -1 B .-m 2+2m -1 C .m 2-2m -1 D .m 2-1 答案 B 解析 原式=1×1-m 1+m ×(m +1)(m -1)=-(m -1)2=-m 2+2m -1. 5.(2011·鸡西)分式方程x x -1-1=m (x -1)(x +2) 有增根,则m 的值为( ) A .0和3 B .1 C .1和-2 D .3 答案 D 解析 去分母,得x (x +2)-(x -1)(x +2)=m ,当增根x =1时,m =3;当增根x =-2 时,m =0,经检验,当m =0时,x x -1 -1=0.x =x -1,方程无解,不存在增根,故舍去m =0.所以m =3. 二、填空题 6.(2011·嘉兴)当x ______时,分式13-x 有意义. 答案 ≠3 解析 因为分式有意义,所以3-x ≠0,即x ≠3. 7.(2011·内江)如果分式3x 2-27x -3 的值为0,那么x 的值应为________. 答案 -3 解析 分母x -3≠0,x ≠3;分子3x 2-27=0,x 2=9,x =±3,综上,x =-3. 8.(2011·杭州)已知分式x -3x 2-5x +a ,当x =2时,分式无意义,则a =________;当x <6时,使分式无意义的x 的值共有________个. 答案 6,2

分式化简求值解题技巧

分式化简求值解题技巧 一、整体代入例1、已知,求的值.22006a b +=b a b ab a 42121232 2+++例2、已知,求的值.311=-y x y xy x y xy x ---+2232练一练: 1.已知,求的值. 511=+y x y xy x y xy x +++-22322.已知,求分式的值211=+y x y x xy y y x x 33233++++3. 若,求分式的值ab b a 32 2=+)2121(222b a b b a b -+-+

二、构造代入 例3、已知,求的值.2520010x x --=2 1)1()2(23-+---x x x 例4已知不等于0,且, a b c ,,0a b c ++=求的值.)11()11(11 (b a c c a b c b a +++++练一练: 4. 若,求的值1=ab 221111b a +++5.已知,试求代数式的值x x 12=+3 4121311222+++-?-+-+x x x x x x x 三、参数辅助,多元归一 例5 、已知,求的值。432z y x ==222z y x zx yz xy ++++

练一练6.已知,求分式的值23=-+b a b a ab b a 2 2-四、倒数代入例6、已知,求的值.41=+x x 1 242 ++x x x 练一练 7. 若,求分式的值.2132=+-x x x 1242 ++x x x 8.已知,求的值.2 11222-=-x x )1(1111(2x x x x x +-÷+--9. 已知,求的值.5 1,41,31=+=+=+c a ac c b bc b a ab bc ac ab abc ++

120道分式化简求值练习题库

化简求值题 1. 先化简,再求值: 12112---x x ,其中x =-2. 2、先化简,再求值: ,其中a=﹣1. 3、先化简,再求值: ,其中x=. 4、先化简,再求值: ,其中. 5先化简,再求值 ,其中x 满足x 2﹣x ﹣1=0. 6、化简: b a b a b a b 3a -++-- 7、先化简,再求值: ,其中a=. 8、先化简211111 x x x x -÷-+-( ),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.

9、先化简,再求值:( +1)÷,其中x=2. 10、先化简,再求值:3x –3 – 18x 2 – 9 ,其中x = 10–3 11、先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算. . 12、先化简,再求值: 12-x x (x x 1--2),其中x =2. 13、先化简,再求值: ,其中. 14、先化简22( )5525x x x x x x -÷---,然后从不等组23212x x --≤??

16、先化简,再求值:232( )111 x x x x x x --÷+-- ,其中x = 17先化简。再求值: 2222121111a a a a a a a +-+?---+,其中12 a =-。 18. 先化简,再求值:? ????1+ 1 x -2÷ x 2 -2x +1 x 2-4,其中x =-5. 19. 先化简再计算:22121x x x x x x --??÷- ?+?? ,其中x 是一元二次方程2220x x --=的正数根. 20 化简,求值: 111(1 1222+---÷-+-m m m m m m ) ,其中m =. 21、(1)化简: ÷. (2)化简:22a b ab b a (a b )a a ??--÷-≠ ??? 22、先化简,再求值: ,其中. 3

初中数学分式计算题及答案

. 分式计算题精选1.计算(x+y)? 2.化简 3.化简: 4.化简: 5.化简: 6.计算:

. 7. 化简:. 8.化简: 9.化简:. 10计算:. 11.计算:. 12.解方程:.

. 13.解方程: 14.解方程:=0. 15. 解方程:(1) . 16. 17解方程:﹣=1; ﹣=0. 18.

. 19.已知a 、b 、c 为实数,且满足()() 02)3(432222=---+-+-c b c b a ,求c b b a -+-11的值。 20.已知0232 2=-+y xy x (x ≠0,y ≠0),求xy y x x y y x 2 2+--的值。 21.计算已知211222-=-x x ,求?? ? ??+-÷??? ??+--x x x x x 111112的值。 22.解方程组:??? ????==-92113111y x y x 23.计算(1)已知211222-=-x x ,求?? ? ??+-÷??? ??+--x x x x x 111112的值。

24.4214 121111 x x x x ++++++- 25.x y x y x x y x y x x -÷????????? ??--++-3232

2014寒假初中数学分式计算题精选 参考答案与试题解析 1计算(x+y)?= x+y . 解:原式=. 2化简,其结果是. 解:原式=??(a+2)+ =+ = = =. 故答案为: = . 3 解:原式=×=. = . 4 解:=1﹣=1﹣==.5化简:= .

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

最新分式化简求值练习题库(经典、精心整理)

化简求值题 1. 先化简,再求值:1 2 112 ---x x ,其中x =-2. 2、先化简,再求值:,其中a=﹣1. 3、(2011?綦江县)先化简,再求值:,其中x=. 4、先化简,再求值:,其中. 5先化简,再求值,其中x 满足x 2﹣x ﹣1=0. 6、化简:b a b a b a b 3a -++ -- 7、(2011?曲靖)先化简,再求值:,其中a=. 8、(2011?保山)先化简,再从﹣1、0、1三个数中,选择一个你认为合适的数作 为x 的值代入求值.

9、(2011?新疆)先化简,再求值:(+1)÷,其中x=2. 10、先化简,再求值:3 x –3 – 18 x 2 – 9 ,其中x = 10–3 11、(2011?雅安)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算.. 12、先化简,再求值:12 -x x (x x 1 --2),其中x =2. 13、(2011?泸州)先化简,再求值:,其中 . 14、先化简2 2()5525x x x x x x -÷---,然后从不等组23212 x x --≤??

16、(2011?成都)先化简,再求值:2 32()111 x x x x x x --÷+--,其中3 x =. 17先化简。再求值: 222 2121111a a a a a a a +-+?---+,其中1 2 a =-。 18. 先化简,再求值:? ?? ??1+ 1 x -2÷ x 2 -2x +1 x 2-4,其中x =-5. 19. 先化简再计算:22121x x x x x x --??÷- ?+?? ,其中x 是一元二次方程2 220x x --=的正数根. 20 化简,求值: 11 1(1 122 2+---÷-+-m m m m m m ) ,其中m =3. 21、(1)化简:÷ . (2)化简:2 2a b ab b a (a b )a a ?? --÷-≠ ???

最新初中数学—分式的分类汇编及解析(5)

一、选择题 1.当x =1时,下列分式中值为0的是( ) A . 11 x - B . 22 2 x x -- C . 3 1 x x -+ D . 1 1 x x -- 2.计算221 93x x x +--的结果是( ) A . 13 x - B . 13 x + C . 13x - D . 233 9 x x +- 3.分式 x 2 2x 6 -- 的值等于0,则x 的取值是 A .x 2= B .x ?2=- C .x 3= D .x ?3=- 4.下列式子中,错误的是 A . 1a a 1 a a --=- B .1a a 1 a a ---=- C .1a 1a a a --- =- D .1a 1a a a +--- = 5.计算: ()3 3 2xy ?-一 的结果是 A .398x y -- B .398x y --- C .391x y 2 --- D .361x y 2 --- 6.下列运算正确的是( ) A .2-3=-6 B .(-2)3=-6 C .( 23)-2=49 D .2-3= 1 8 7.下列各式从左到右的变形正确的是( ) A .2211 88 a a a a ---=-++ B .()() 2 2 1a b a b -+=- C . 22 x y x y x y +=++ D . 052520.11y y x x ++=-++ 8.使分式29 3 x x -+的值为0,那么x ( ). A .3x ≠- B .3x = C .3x =± D .3x ≠ 9.将分式()0,0xy x y x y ≠≠-中的x .y 扩大为原来的3倍,则分式的值为:( ) A .不变; B .扩大为原来的3倍 C .扩大为原来的9倍; D .减小为原来的 13 10.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( ) A .7.7× 106 B .7.7×107 C .7.7×10-6 D .7.7×10-7

初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?=,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

分式化简求值几大常用技巧

分式化简求值几大常用技巧 在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种: 1、 应用分式的基本性质 例1 如果1 2x x +=,则242 1x x x ++的值是多少? 解:由0x ≠,将待求分式的分子、分母同时除以2 x ,得 原式=. 2222 1111 1 1 213 1()1x x x x = ==-++ +-. 2、倒数法 例2 如果1 2x x +=,则2421x x x ++的值是多少? 解:将待求分式取倒数,得 42222 22 1111()1213x x x x x x x ++=++=+-=-= ∴原式=1 3 . 3、平方法 例3 已知12x x + =,则221 x x +的值是多少? 解:两边同时平方,得 2222 1124,42 2.x x x x ++ =∴+=-= 4、设参数法 例4 已知 0235a b c ==≠,求分式2 22 2323ab bc ac a b c +-+-的值. 解:设235 a b c k ===,则 2,3,5a k b k c k ===. ∴原式=22222 2323532566 .(2)2(3)3(5)5353 k k k k k k k k k k k ?+??-??==-+-- 例5 已知 ,a b c b c a ==求a b c a b c +--+的值. 解:设a b c k b c a ===,则 ,,.a bk b ck c ak ===

∴3 c ak bk k ck k k ck ==?=??=, ∴3 1,1k k == ∴a b c == ∴原式= 1.a b c a b c +-=-+ 5、整体代换法 例6 已知 113,x y -=求2322x xy y x xy y +---的值. 解:将已知变形,得 3,y x xy -=即3x y xy -=- ∴原式= 2()32(3)333 .()23255 x y xy xy xy xy x y xy xy xy xy -+?-+-===----- 例: 例5. 已知a b +<0 ,且满足a a b ba b 2 2 22++--=,求a b a b 33 13+-的值。 解:因为a a b ba b 2 2 22++--= 所以()()a b a b +-+-=220 所以()()a b a b +-++=210 所以a b +=2或a b +=-1 由a b +<0 故有a b +=-1 所以a b a b a ba a b b a b 3322 1313+-= +-+-()() = -?-+-= -+-11331 2222() a a b b ab a a b b ab = +--=---= --()()a b a b a b a b a b a b a b 2233113311331 =-1 评注:本题应先对已知条件a a b ba b 22 22++--=进行变换和因式分解,并由a b +<0确定出a b +=-1,然后对所给代数式利用立方和公式化简,从而问题迎刃而解。 6、消元代换法 例7 已知1,abc =则 111a b c ab a bc b ac c ++=++++++ . 解:∵1,abc =∴1,c ab = ∴原式=1 11111a b ab ab a b ab b a ab ab ++ ++?++?++

初中数学分式方程典型例题讲解

a c=ac,b a c= a p a0=1形如 A 【例1】下列代数式中:x1 x-y ,是分式的有:.π2 x-y,a+b , x+y , (1)x-4 x+4 (2) x2+2 (3) x2-1 (4)|x|-3 (5) a=“ ± . a±ac=bc±da(a≠0,c≠0); 第十六章分式知识点和典型例习题 3.分式的乘法与除法:b ? d bd a÷ c d= b d bd ? ac 【知识网络】 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m●a n=a m+n;a m÷a n=a m-n 6.积的乘方与幂的乘方:(ab)m=a m b n,(a m) n= 7.负指数幂:a-p=1 a mn 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:b c b±c(a≠0) a a 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: B(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式.其中A叫做分式的分子,B 叫做分式的分母. 1 a-b x2-y2x+y , 题型二:考查分式有意义的条件:在分式中,分母的值不能是零如果分母的值是零,则分式没 有意义. 【例2】当x有何值时,下列分式有意义 3x26-x1 x-1 x 2.异分母加减法则:b d bc c=ac± da ac题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

分式化简求值练习题库(经典、精心整理)汇编

1. 先化简,再求值:1 2 112 ---x x ,其中x =-2. 2、先化简,再求值:,其中a=﹣1. 3、(2011?綦江县)先化简,再求值:,其中x=. 4、先化简,再求值:,其中 . 5先化简,再求值,其中x 满足x 2 ﹣x ﹣1=0. 6、化简:b a b a b a b 3a -++ -- 7、(2011?曲靖)先化简,再求值:,其中a=. 8、(2011?保山)先化简2 11 111 x x x x -÷-+-( ),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.

9、(2011?新疆)先化简,再求值:(+1)÷,其中x=2. 10、先化简,再求值:3 x –3 – 18 x 2 – 9 ,其中x = 10–3 11、(2011?雅安)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算.. 12、先化简,再求值:12 -x x (x x 1 --2),其中x =2. 13、(2011?泸州)先化简,再求值:,其中 . 14、先化简22()5525x x x x x x -÷ ---,然后从不等组23212x x --≤??

最新初二数学分式的加减法练习题

17.2分式的运算 17.2.2 分式的加减法(1) 同步练习 一、请你填一填(每小题4分,共36分) 1. 异分母分式相加减,先________变为________分式,然后再加减. 2. 分式xy 2,y x +3,y x -4的最简公分母是________. 3. 计算:2223 2 1xyz z xy yz x +-=_____________. 4. 计算:)11(1x x x x -+-=_____________. 5. 已知22y x M -=2222y x y xy --+y x y x +-,则M=____________. 6. 若(3-a )2与|b -1|互为相反数,则b a -2的值为____________. 7. 如果x <y <0,那么x x ||+xy xy ||化简结果为____________. 8. 化简y x y x --2 2的结果为____________. 9. 计算22+-x x -2 2-+x x =____________. 二、判断正误并改正: (每小题4分,共16分) 1. a b a b a a b a a b a --+=--+=0( ) 2. 1 1)1(1 )1(1 )1()1(1 )1(22222-=--=---=-+-x x x x x x x x x ( ) 3. )(21 21 21 2222y x y x +=+( ) 4.2 22b a c b a c b a c +=-++( ) 三、认真选一选:(每小题4分,共8分) 1. 如果x >y >0,那么x y x y -++11的值是( )

专题训练七分式化简求值解题技巧

专题训练七分式化简求值 解题技巧 Prepared on 21 November 2021

【专题训练七】 分式化简求值解题技巧 例1、(1)如果242114x x x =++,那么42251553x x x -+= 。 (2)若 a b c d b c d a ===,则a b c d a b c d -+-=+-+ 。 例2、若a b c 、、满足1111a b c a b c ++=++,则a b c 、、中 ( ) A 、必有两个数相等 B 、必有两个数互为相反数 C 、必有两个数互为倒数 D 、每两个数都不相等 例3、化简求值:22214( )2442a a a a a a a a ----÷++++,其中a 满足2210a a +-= 。 例4、已知2410,a a ++=且42321533a ma a ma a ++=++,求m 的值。 例5、已知a b c 、、满足222222222 1222b c a c a b a b c bc ac ab +-+-+-++=,求证:这三个分数的值有两个为1,一个为1-。 针对性训练 1、已知30,x y -=那么22 2()2x y x y x xy y +?-=-+ 。 2、已知7x y +=且12xy =,则当x y <时,11x y -= 。 3、已知0abc ≠,且 a b c b c a ==,则3223a b c a b c ++=-- 。 4、已知2310x x -+=,则2 421 x x x =++ 。 5、已知0abc ≠,0,a b c ++=则111111()()()a b c b c c a a b +++++= 。 6、已知323x y -=,则23796x y xy xy y x --=+- 。 7、若4360,270(0)x y z x y z xyz --=+-=≠,则代数式222 222 522310x y z x y z +-=-- 。

相关文档
最新文档