第二章粘土矿物

粘土矿物在扫描电镜下的识别

10自生粘土矿物鉴定 根据矿物的形态特征和成分特点进行鉴定. 10.1高岭石 10.1.1形态特征 用扫描电子显微镜观察,沉积岩中自生高岭石呈蠕虫状(图版I-b)、书页状(图版I-c)集合体赋存子粒间.其单晶为六方板状(图版I—a),常与自生石英、方解石等自生矿物共生.10.1.2成分特征 用能谱测定高岭石的化学成分.主要元素为硅(Si)、铝(Al),其Si02/Al2O3的比值为1·1-1.3。 10.2蒙皂石 10.2.1形态特征 用扫描电子显微镜观察.沉积岩中自生蒙皂石呈蜂窝状(图版I-a、b、c)赋存子粒表,星棉絮状、片状赋存予粒间. 10.2.2成分特征 用能谱测定其成分.主要成分为硅(Si)、铝(Al)、钙(Ca)、钠(Na),氧化钾(K2O)含量低,通常小于1.5%. 10.3伊利石 10.3.1形态特征 用扫描电子显微镜观察,自生伊利石呈片状(图版I-a、c)或丝状(图版I-b)集合体,赋存子粒表和粒同. 10.3.2成分特征 用能谱测定伊利石成分.主要元素为硅(Si)、铝(Al)、钾(K).其氧化钾(K20)值通常大于7.5%. 10.4绿泥石 10.4.1形态特征 用扫描电子显微镜观察,自生绿泥石墨绒球状(图版Ⅳ-a)赋存子粒间,或以针叶状(图版Ⅳ-b)赋存于粒表,其单晶结构为叶片状(图版Ⅳ-c). 10.4.2成分特征 用能谱测定绿泥石成分.主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg).除硅、铝外,富含铁、镁是其主要特征. 10.5伊/蒙混层 10.5.1形态特征 用扫描电子显微镜观察,伊/蒙混层呈丝状(图版Va、b、c),是蒙皂石向伊利石过渡期的粘土矿物.形态特征是蒙皂石特征逐渐消失,伊利石特征逐渐增强,赋存于粒表和粒间.10.5.2成分特征 用能谱测定伊/蒙混层成分,主要元素为硅(Si)、铝(Al)、钾(K)、钙(Ca)、钠(Na).其成分特征主要反映在氧化钾(K2O)含量为1.5%~7.5%.确定为过渡期的混层粘土矿物.10.6绿/蒙混层 10.6.1形态特征 用扫描电子显微镜观察,绿/蒙混层粘土矿物呈蜂窝状(图版Ⅵ-a、b)和丝状结构(图版Ⅵ-c).是蒙皂石向绿泥石过渡期的粘土矿物,具有蒙皂石和绿泥石的形态特征. 10.6.2成分特征 用能谱测定绿/蒙混层成分,主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg)、钙(Ca)。其铁、镁含量较高是主要特征.

粘土在我国不同区域分布的岩土工程特性

粘土在我国不同区域分布的岩土工程特性 (资源学院地质11—6班05112208) 摘要:由于形成条件、形成年代、组成成分、应力历史不同,土的工程性质具有明显的区域性。广阔的中国大陆上分布着各种各样的土,北部的黄土、南部的红土、中部的老 粘土以及东南近海的海洋软土(包括沿海的软土)。本文将以区域性不同土为依据,阐明我国 不同区域土的工程性质的特性以及分析其差异性形成的原因。 关键字:区域性土;岩土工程特性;红土;黄土;海洋软土;膨胀土 0 前言 我国大地上分布着各种具有地区特点的区域性土,其中最主有特色的是黄河以北的黄土、长江以南的红土、黄河长江之间的老粘土(胀缩性粘土和非胀缩胀性的下蜀粘土)以及东南沿海的海洋土。这些“区域性土”有着不同于一般粘性土的比较特殊的工程特性,如黄土的湿陷性、红土的高强度、粘土的胀缩性和海洋土的高压缩性,这是大家所熟知的。但这些土是怎么形成的,为什么有明显的区域性,则它们与本地区的气候条件、其形成年代、组成成分、应力历史都密切相关。本文将对各类“区域性土”的分布和工程特性形成以及影响因素加以简单介绍。 1 粘土及其工程特性的介绍 土是由固体(矿物、岩石碎屑)、水和气体组成的质地较松散的三相地质集合体。固体颗粒、水和气体之间的比例关系随着周围条件的变化而变化。土固体颗粒的大小、成分及三项之间的比例关系,反映出土的不同性质,如干湿、松密、轻重、软硬等等。 土的工程特性主要包括土的物理性质、土的水理性质以及土的力学性质。其中,土的物理性质是指土体的成分、结构、可塑性和击实性等方面的特征。而表征这些物理性质的指标多种多样,如:天然重度、干重度、含水量、孔隙度、含水比、相对密度、最大干密度等等。土的水理性质是指土的渗透性、吸水或失水的胀缩性、浸水时的软化性和在水中的可溶性等方面的特征。土的力学性质是指土在力的作用下变形和破坏特性,通常用压缩系数、压缩模量、变形模量、泊松比、固结系数、粘聚力等指标来表示土的力学特性。 2 不同区域土为何具有不同的工程性质 无论是什么土,它们颗粒之间都存在着一定的“胶结联系”,所不同的只是“胶结联系”的材料性质和胶结强度有差异而已。有些土的“胶结联系”很弱,弱到在工程上可以忽略不计,这种土最常见,通常称之为一般粘性土。可是,某些区域的土颗粒之间却存在着较多性质不同的“胶结联系”,这种胶结联系的性质可以分成水稳性、非水稳性以及介于两者之间的性质。水稳性的胶结材料主要是微晶氧化铁(赤铁矿、针铁矿),非水稳性的胶结材料主要是微晶氯化钠和微晶碳酸钙等,介于两者之间的主要是含水氧化铁(水铁矿)和粘粒

粘土矿物对储层物性的影响_李娟

中国西部科技
2011年08月(上旬)第10卷第22期总 第255期
粘土矿物对储层物性的影响
李 娟 于 斌
(成都理工大学“油气藏地质及开发工程”国家重点实验室,四川 成都 610059) 摘 要:依据化学成分的不同,可将粘土矿物分为五类,高岭石、蒙皂石、伊利石、绿泥石、伊利石-蒙皂石和绿泥石- 蒙皂石混层。粘土矿物的类型、含量、产状和物理性质对储层的物性有较大的影响,粘土矿物含量越高,砂岩的孔隙度 和渗透率越低,储集性能越差;粘土矿物的产状与油气层的渗透率有密切联系,其中搭桥式对储层的渗透率影响最大; 粘土矿物因其具有膨胀性,对酸敏感性,也严重影响着储层物性。 关键词:粘土矿物;孔隙度;渗透率;含量;产状 DOI:10.3969/j.issn.1671-6396.2011.22.004 1 引言 中的绿泥石富含镁、铁,具有较强的酸敏性。伊利石-蒙皂 石混层和绿泥石-蒙皂石混层以薄膜式贴附在砂岩颗粒表 面,分别具有两种矿物的性质,具有较高的膨胀性。 3 粘土矿物成岩作用 粘土矿物的演化对储层研究有重要意义,它既可以充
在砂岩储层中粘土矿物的组成、含量、产状和分布特 征直接影响到对砂岩储层的评价,它与油层储层敏感性密 切相关,粘土矿物分布的广泛性和特有的物理化学性质, 使它与石油地质和油气田的开发诸多发面联系起来。不同 类型的粘土矿物与砂岩的渗透率有不同的相关关系,同一 种粘土矿物形态和产状的不同与渗透率相关性也有差异, 基于粘土矿物的重要性及复杂性对其做深入的了解。 2 粘土矿物的类型与物理性质 根据化学成分的不同,可将粘土矿物划分为五种类 型:高岭石、蒙皂石、伊利石、绿泥石、伊利石-蒙皂石和 绿泥石-蒙皂石混层。 高岭石在砂岩孔隙中常以书页状、蠕虫状等各种形态 的集合体形式存在,高岭石具有颗粒大、对砂岩颗粒的附 着力弱两大特征。蒙皂石常以薄膜式贴附在碎屑颗粒表 面,具有较大的比表面积,在岩层中的存在形态有多种, 有时呈现出波状、褶皱层状等,蒙皂石是膨胀性很强的粘 土矿物。伊利石是砂岩中最常见的粘土矿物,在地质剖面 上从上至下均有分布,但存在形态有变化,在较浅的砂岩 中呈鳞片状贴附在砂岩颗粒表面;在深部,伊利石呈毛发 状、纤维状或条片状呈搭桥式生长[1],把砂岩中可流动的粒 间孔隙变为微细束缚孔隙,它常常是我国低渗透-特低渗透 砂岩储层及致密非储集砂岩粘土矿物的主要特征之一 。伊 利石膨胀性介于高岭石与蒙皂石之间。绿泥石常见于较深 的地层中,存在形态有板状,柳叶状,集合体状等,油层
[2]
填粒间孔隙,减少孔隙空间,还可以通过影响储层敏感性 降低储层的渗透率。粘土矿物纵向上演化具有一定的规律 性,随着埋藏深度和温度的增加,砂岩中的蒙皂石要向伊 利石或绿泥石转化,同时伊利石的结晶程度随着埋藏深度 的增加而变好。 油气对砂岩粘土矿物的成岩作用的影响。油气进入储 层以后抑制自生粘土矿物的进一步演化,如英国北海盆地 侏罗系Brent砂岩,在油水界面之上的砂岩只含高岭石,很 少含伊利石,而在油水界面之下的砂岩则以含伊利石为 主,而且有证据证明伊利石呈高岭石假象,其是成岩过程 中高岭石与孔隙水不断发生反应的结果。因此,油层粘土 矿物的演化程度可以用来推断油气进入储层的时间[3]。 孔隙水流动特征影响粘土矿物的成岩作用。砂岩储层 中孔隙流体的流动特征决定了成岩过程中物质的迁移和再 分配,影响粘土矿物在砂岩储层中的分布特征。 4 粘土矿物对储层渗透率的影响 4.1 粘土矿物含量的影响 国内外的研究表明,在沉积成岩条件大致相同的情况 下,粘土矿物绝对含量越高,砂岩的孔隙度和渗透率越 低,储集性能越差,砂岩的粘土含量为1%~5%时,为储集
图1 粘土矿物含量与孔渗关系[5] 收稿日期:2011-05-27 修回日期:2011-06-19 作者简介:李娟(1986-),女,硕士,研究方向为矿产普查与勘探。
08

1粘土矿物的结晶结构及基本特征

3粘土矿物的结晶结构及基本特征 3.1粘土矿物概念、类型及其结构化学特征 粘土的本质是粘土矿物。粘土矿物是细分散的含水的层状硅酸盐和含水的非晶质硅酸盐矿物的总称。晶质含水层状硅酸盐矿物有高岭石、蒙脱石、伊利石、绿泥石等: 含水非晶质硅酸盐矿物有水铝英石、胶硅铁石等。粘土矿物决定了整个粘土类或岩石的性质,它是最活泼的组分。 粘土矿物的晶体结构主要是由两个最基本结构单元组成,即硅氧四面体和铝氧八面体,并沿X 轴方向发展。四 面体的中心是四价的硅Si 4+,而四个二价的氧O 2- 分布于四面体的四个顶角,四面体的四个面均为等边三角形(如图3.1- (a)),有时四面体中的氧原子为氢氧原子所代替,四面体的底面落在同一平面上,以三个尖顶彼此连结,第四个尖顶均指向同一个方向,在平面上组成六角形网格状结构或链状结构(如图3.1- (b)),成为四面体层(片)。八面体由六 个氧或氢氧原子以等距排列而成,A13+(或Mg 2+ )居于中心(如图3.2- ( a )),八面体亦排列成层状态结构,成为八面体层(片)(如图3.2- (b))。 由于单位晶格的大小相近似,四面体层与八面体层很容易沿C 轴叠合而成为统一的结构层,此结构层称为结构单位层,简称晶层,几个结构层组成晶胞。四面体层与八面体层的不同组合堆叠重复,便构成了各种粘土矿物的不同层状结构。由一个四面体层与一个八面体层重复堆叠的称为1:1型结构单位层(如高岭石等),也称为二层型; 由两个四面体层间夹一个八面体层重复堆叠的称为2:1型结构单位层(如蒙脱石、伊利石等),也称为三层型;在层状结构中,四面体层与八面体层间共用一个氧原子层,故四面体层与八面体层间的键力大,联结较强,但在1:1型或2:1型结构单位层间并不共用氧原子层,层间的联结较弱。 在高岭石类粘土矿物中,结构单位层间为O 与HO(或OH 与OH)相邻(如图3.3 ),堆叠时,在相邻两晶层之间,除了范德华(Van der waals)力增扩的静电能外,主要为表层(羟)基及氧原子之间的氢键力,将相邻两晶层紧密地结合起来,使水不易进入晶层之间。即使有表面水合能撑开晶层,但不足以克服晶层间大的内聚力,几乎无阳离子交换(阳离子交换容量很小,其CEC 值为3-15毫克当量/100克干土)和类质同象置换现象,其基本层是中性的。同时,高岭石晶体基面间距(C 轴间距或doo1值)小(约7.2 A ),没有容纳阳离子的地方,即晶层无阳离子存在。高岭石晶体只有外表面,没有内表面,比表面积很小(一般远小于100m 2 /g ),被吸附的交换性阳 离子(如Na + 、Ca 2+等)仅存于高岭石矿物外表面,这对晶层水合无重要影响,所以高岭石是较稳定的非膨胀性粘土矿物,层间联结强,晶格活动性小,最活跃的表面是在晶体断口、破坏的及残缺部位的边缘部分,浸水后结构单位层间的距离(C 轴间距或doo1值)不变,使高岭石膨胀性和压缩性都较小,但有较好的解理面。 蒙脱石类粘土矿物中的结构单位层间为O 与 O(如图3.4 ),相邻两晶层之间的联结力主要为范德华(Van der waals)力,层间联结极弱,易于拆开。蒙脱石既有外表

粘土类矿物的概述

立志当早,存高远 粘土类矿物的概述 在可浮性分类中粘土类矿物属氧化物及硅酸盐、铝硅酸盐类矿物。粘土 一般指天然产出,以含水铝硅酸为主的土状集合体。除含少量粗粒外,大部分 粒度很细,直径数微米或1 微米以上,其矿物组成复杂。本节的粘土(类)是 指粒度极细、可浮性较差的各种极性硅(铝—硅)酸盐土状矿物原料,可以包 括高岭土、耐火粘土、膨润土(蒙脱石土)、酸性白土和海泡石等。其中几个 代表矿物的组成如表1。这些粘土类矿物原料,用途相当广泛。可用作陶瓷和 耐火材料的原料、纸张、橡胶、肥皂的充填剂、脱色剂、粘合剂、钻探泥浆、 催化剂等等。对这类矿物原料的技术加工和产品要求,因用途不同差别很大。 本节以研究较深入的高岭土为基础从浮选加工的角度,对极性粘土原料的浮选 略加介绍。高岭土原料的加工,可能包括下列过程:破碎—磨矿—浮选(磁选)—分级—漂白—浓密—过滤—干燥。其中:浮选用于脱去锐钛矿 (TiO2),磁选(强磁或高梯度磁选)用于除去氧化铁。漂白用氯气、二氧化 硫或硫氰化锌作漂白剂,目的是溶去铁锈等有色物质,增加产品白度(对某些 粘土矿物,还要进行活化处理)。其余过程的目的和原理与一般选矿过程相 同。表1 代表性的极性粘土矿物矿物化学式比重零电点其它高岭土埃洛石蒙脱 石海泡石坡缕石Al2Si2O3(OH)4(Na,Ca)0.33(Al,Mg)2Si4O10(OH)2 H2OAl2Si2O3 (OH)4·nH2OMg3Si12O30 (OH)4·(OH2)4·8H2OMg3Si8O20 (OH)2·(OH2)4·4H2O2.6092-2.83.4 其主要成分为硅酸盐或铝硅酸盐的粘土矿物,表面电位多为3~4。由于粒度小,比表面大,特别是海泡石等矿物晶体呈 凹凸交替的长条形,有很大的离子交换容量,在浮选中有如下几个共同的特 点:(1)药剂消耗量大(脂肪酸类用量可以高达2.5gk/t)(2)浮选浓度低,有较好的选择性。浮选的矿浆浓度以10%最适宜,载体浮选(背负浮选)

粘土矿物分析

作为岩石组分的粘土矿物其含量、种类及其分布、产状等对地层伤害有着非常密切的关系。由于粘土矿物颗粒细小(<0.01mm),比表面极大,并具有特殊的结构组成,因此它们对外来作业流体如注入水、压裂液、酸化液、压井液等的侵入极为敏感。当与外来流体接触时,粘土矿物往往会发生膨胀、微粒运移、生成某种沉淀等从而堵塞储层油气流动的孔隙通道,造成储层渗流能力的下降,损害油气层。因此了解粘土矿物的性质对油田开发十分重要。 通过X射线衍射分析和扫描电子显微镜技术可以确定岩石中粘土矿物的含量、分布及产状等。选取了西泉5井的部分岩石样品进行了上述测定,测定结果见表1。 表1 西泉5井区三叠系储层粘土矿物含量统计表 根据X衍射和扫描电镜分析,韭菜园子组砂层以蒙皂石(包括蒙脱石和皂石两个亚族)为主,63%~98%,平均87.8%;其次为伊/蒙混层(20%~99%,平均72.76%),绿泥石(1%~55%,平均9.33%),另有高岭石(1%~12%,平均5.74%)和伊利石(2%~16%,平均6.24%)(见表1)。 对韭菜园子组敏感性的简单分析:(供参考) 韭菜园子组伊/蒙混层和绿/蒙混层含量较多,伊/蒙混层和绿/蒙混层是遇水易膨胀的矿物,易发生粘土膨胀和分散造成地层伤害。 韭菜园子组绿泥石含量相对较高(平均9.33%),绿泥石是酸敏性矿物,酸化时易造成氢氧化铁胶体沉淀(酸敏)。另外伊利石和高岭石是速敏性矿物,易造成颗粒运移堵塞地层。

粘土矿物分析在储层潜在敏感性评价中的应用 一、粘土矿物类型 粘土矿物(clay minerals)是粘土和粘土岩中晶体一般小于2微米,主要是含水的铝、铁和镁的层状结构硅酸盐矿物。有的在其成分中还有某些碱金属或碱土金属存在。粘土矿物包括高岭石族矿物、蒙皂石、蛭石、粘土级云母、伊利石、海绿石、绿泥石和膨胀绿泥石以及有关的混层结构矿物,此外还包括具过渡性的层链状结构的坡缕石(凹凸棒石)和海泡石以及非晶质的水铝英石。除水铝英石外均属层状或层链状结构硅酸盐,因此粘土矿物可按层状结构硅酸盐矿物的分类来划分。粘土矿物按成因可分为他生粘土矿物和自生粘土矿物两类,他生粘土矿物主要是来自沉积物源区的陆源矿物,矿物成分与母源区岩石类型关系密切;自生粘土矿物为储层在特定成岩阶段化学反应析出的矿物,如自生绿泥石、自生高岭石等。不同成因粘土矿物通常具有不同的矿物组合、产状、晶形和分布规律等特征。 粘土矿物的粒度细小,其大小和形态需用电子显微镜才能测定。多数粘土矿物如伊利石等呈鳞片状,结晶良好的高岭石则呈完整的假六方片状。少数粘土矿物呈管状(埃洛石)或纤维状(坡缕石和海泡石)。 晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、CI-、(PO4)3-、(NO3)-。产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。阴离子交换则是晶格外露羟基离子的交代作用。②粘土-水系统特点。粘土矿物中的水以吸附水、层间水和结构水的形式存在。结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。③粘土矿物与有机质的反应特点。有些粘土矿物与有机质反应形成有机复合体,改善了它的性能,扩大了应用范围,还可作为分析鉴定矿物的依据。此外,粘土矿物晶格内离子置换和层间水变化常影响光学性质的变化。蒙皂石族矿物中的铁、镁离子置换八面体中的铝,或者层间水分子的失去,都使折光率与双折射率增大。 粘土矿物的形成方式有三种:①与风化作用有关。风化原岩的种类和介质条件如水、气候、地貌、植被和时间等因素决定了矿物种和保存与否。②热液和温泉水作用于围岩,可以形成粘土矿物的蚀变富集带。③由沉积作用、成岩作用生成粘土矿物。 高岭土主要用作陶瓷原料、造纸的填料和涂层;主要由蒙脱石构成的膨润土用于作

(完整word版)1粘土矿物的结晶结构及基本特征

3粘土矿物的结晶结构及基本特征 3.1粘土矿物概念、类型及其结构化学特征 粘土的本质是粘土矿物。粘土矿物是细分散的含水的层状硅酸盐和含水的非晶质硅酸盐矿物的总称。晶质含水层状硅酸盐矿物有高岭石、蒙脱石、伊利石、绿泥石等: 含水非晶质硅酸盐矿物有水铝英石、胶硅铁石等。粘土矿物决定了整个粘土类或岩石的性质,它是最活泼的组分。 粘土矿物的晶体结构主要是由两个最基本结构单元组成,即硅氧四面体和铝氧八面体,并沿X轴方向发展。四面体的中心是四价的硅Si4+,而四个二价的氧O2-分布于四面体的四个顶角,四面体的四个面均为等边三角形(如图3.1- (a)),有时四面体中的氧原子为氢氧原子所代替,四面体的底面落在同一平面上,以三个尖顶彼此连结,第四个尖顶均指向同一个方向,在平面上组成六角形网格状结构或链状结构(如图3.1- (b)),成为四面体层(片)。八面体由六个氧或氢氧原子以等距排列而成,A13+(或Mg2+)居于中心(如图3.2- ( a )),八面体亦排列成层状态结构,成为八面体层(片)(如图3.2- (b))。 由于单位晶格的大小相近似,四面体层与八面体层很容易沿C轴叠合而成为统一的结构层,此结构层称为结构单位层,简称晶层,几个结构层组成晶胞。四面体层与八面体层的不同组合堆叠重复,便构成了各种粘土矿物的不同层状结构。由一个四面体层与一个八面体层重复 堆叠的称为1:1型结构单位层(如高岭石等),也称为 二层型; 由两个四面体层间夹一个八面体层重复堆 叠的称为2:1型结构单位层(如蒙脱石、伊利石等), 也称为三层型;在层状结构中,四面体层与八面体层 间共用一个氧原子层,故四面体层与八面体层间的 键力大,联结较强,但在1:1型或2:1型结构单位层 间并不共用氧原子层,层间的联结较弱。 在高岭石类粘土矿物中,结构单位层间为O 与HO(或OH与OH)相邻(如图3.3 ),堆叠时,在相 邻两晶层之间,除了范德华(Van der waals)力增扩的 静电能外,主要为表层(羟)基及氧原子之间的氢键 力,将相邻两晶层紧密地结合起来,使水不易进入 晶层之间。即使有表面水合能撑开晶层,但不足以 克服晶层间大的内聚力,几乎无阳离子交换(阳离子 交换容量很小,其CEC值为3-15毫克当量/100克 干土)和类质同象置换现象,其基本层是中性的。同 时,高岭石晶体基面间距(C轴间距或doo1值)小(约 7.2 A ),没有容纳阳离子的地方,即晶层无阳离子 存在。高岭石晶体只有外表面,没有内表面,比表 面积很小(一般远小于100m2/g ),被吸附的交换性阳 离子(如Na+、Ca2+等)仅存于高岭石矿物外表面,这 对晶层水合无重要影响,所以高岭石是较稳定的非 膨胀性粘土矿物,层间联结强,晶格活动性小,最 活跃的表面是在晶体断口、破坏的及残缺部位的边 缘部分,浸水后结构单位层间的距离(C轴间距或 doo1值)不变,使高岭石膨胀性和压缩性都较小,但 有较好的解理面。 蒙脱石类粘土矿物中的结构单位层间为O与 O(如图3.4 ),相邻两晶层之间的联结力主要为范德华(Van der waals)力,层间联结极弱,易于拆开。蒙脱石既有外表

粘土主要矿物的结构与性质

粘土主要矿物的结构与性质 摘要 主要论述了粘土中主要矿物的结构特点,并对各种矿物的主要性能(如可塑性、干燥收缩和膨润性等)进行了综述。 关键词:粘土,高岭石,蒙脱石,伊利石,晶体结构,可塑性,膨润性 ABSTRACT Mainly discusses the main structure characteristics of clay minerals, and a variety of mineral properties ( such as plasticity, drying shrinkage and swelling etc.) are reviewed. KEY WORDS: Clay, kaolinite, montmorillonite, illite, crystal structure, plasticity, swelling 粘土类原料是日用陶瓷、耐火材料等的主要原料之一,它主要是由粘土矿物和其它矿物组成的并具有一定特性的(其中主要是具有可塑性)土状岩石。粘土矿物主要是一些含水铝硅酸盐矿物,其晶体结构是由[SiO4]四面体组成的(Si2O5)n层和一层由铝氧八面体组成的AlO(OH)2层相互以顶角联接起来的层状结构,这种结构在很大程度上决定了粘土矿物的各种性能。 粘土很少由单一矿物组成,而是多种微细矿物的混合体,其主要矿物是被统称为“粘土矿物”的一些含水铝硅酸盐矿物。根据矿物的结构和组成的不同,可把粘土中的主要矿物分为高岭石类、蒙脱石类和伊利石类等三种。 在粘土的使用过程中,由于对各种主要矿物的结构认识不足,常常在生产中造成资源的浪费,并且产品达不到理想的性能。材料的结构决定性能,只有掌握了矿物的的结构与性能的关系,才能对矿物进行合理、充分的利用。为此,我主要分析一下三种主要粘土矿物的结构与性能。

粘土矿物在地质、环境、材料科学领域中的应用

粘土矿物在地质、环境、材料科学领域中的应用 随着人类对粘土矿物研究的日益深入以及粘土矿物在各领域中的应用日益加深,粘土矿物的独特性质正越来越受到人们的关注。粘土矿物分布的广泛性、特有的物理、化学、晶体结构的性质及其形成机理的独特性,决定了它在地质、环境、材料科学领域应用中的重要意义。 1.粘土矿物的结构特征概述 粘土矿物是颗粒细小(<0.1mm)的含水层状结构硅酸盐矿物,其结构单元层是由si-o四面体片与Al-o八面体片按不同的规律连结起来而构成,按其连结方式的不同把粘土矿物分为1:1和2:1两种结构类型,前者如高岭石,后者如蒙脱石、伊利石、凹凸棒石等。粘土矿物结构单元层内部因发生离子的类质同象置换,比如四面体中Si离子被Ai离子置换,八面体中Ai离子被Fe、Mg离子置换,从而使其单元层表面具有电性。此外,粘土矿物颗粒细小,比表面积大,因而,粘土矿物会表现吸附性、离子交换性、胶体性、分散性和催化性,这些特征在地质、环境、材料科学领域中具有十分重要的意义。 在粘土矿物中,硅、铝、氧是其中最主要的元素。在这些粘土矿物中,硅和氧结合生成硅氧四面体,铝和氧结合生成铝氧八面体,其中硅氧四面体分布在同一个平面内,彼此以三个角顶相连,从而形成二维延展的网层即四面体片。同样,铝氧八面体共用边角形成了八面体片。这些铝氧四面体片和硅氧八面体片又共用氧原子,将不同的片结合在一起,形成层状结构。 粘土矿物除少数为非晶质外,大多是是由按四面体配位阳离子(Si4+、Al3+、Fe3+)和按八面体配位阳离子(Al3+、Fe3+、Fe2+、Mg2+)组成层状或链状的硅酸盐化合物。层状硅酸盐的基本结构单元是硅氧四面体层或水镁石层或三水铝石八面体层。粘土矿物可分为高岭石类、蒙脱石类和云母类等。高岭石为1:1型结构,基本式为Si4Ai4O10(OH)8,个单元层间距小,小分子或阳离子很少有机会进入层际空隙中,故层际通常不发生离子交换,而是在粘土的表面和边、角发生。蒙脱石类和云母类粘土均为2:1型结构其基本式为Si3Ai4O20(OH)4·nH2O,由于同晶置换,这两种类型的粘土矿的离子交换除在层面的边、脚上发生,更多是由层际间的阳离子交换而形成。 2.粘土矿物在石油地质中的应用

粘土矿物扫描电镜描述升级版

、扫描电镜照片,粘土矿物的镜下特征及描述 1、高岭石 高岭石 硅铝酸盐矿物,是长石的蚀变产物,呈书页状、蠕虫状、手风琴状,多以孔隙充填的形式存在于粒间孔隙。其晶间结构比较松,在流体的冲刷下容易随流体移动,堵塞、分割孔隙和吼道,尤其在细小吼道中,影响很大,是重要的速敏矿物。 2、伊蒙混层 伊蒙混层 蒙脱石向伊利石过渡的矿物,呈蜂窝状、半蜂窝状、棉絮状等,随埋深加大 和温压的升高而含量增多,有较强的水敏性。 3、绿泥石

绿泥石 铝硅酸盐矿物,常与自生石英共生。在电镜扫描下,其单晶形态呈薄六角板状或叶片状,常见粒径为2卩?3 [1;聚集形态常常为:由叶片组成的蜂窝状、玫瑰花朵状、绒球状、针叶状和叠片状,在孔隙中的产状有孔隙衬垫及孔隙充填,有时也可见其杂乱堆积状态。一般针叶状绿泥石多为孔隙衬垫包于颗粒表面,绒球状和玫瑰花状的则充填在孔隙中。绿泥石可由黑云母、角闪石、蒙脱石等矿物转化而来,自生绿泥石一般富含高价铁离子,与钻井液中的HCL等酸液作用容易产生沉淀,而造成储层伤害,是酸敏性矿物。 4、伊利石 伊利石形态:鳞片状、羽毛状、丝缕状。分布:多分布于颗粒表面,或以粘土桥形式分布于 颗粒间 伊利石 铝硅酸盐矿物,伊利石晶体呈不规则的鳞片状,个别呈六边形,鳞片大 小不等,一般在1?1间。在电镜扫描下常见的单体形态呈丝带状、条片状和羽毛状等贴附于颗粒表面或充填于粒间孔隙内,集合体形态呈蜂窝状、丝缕状和丝带状。伊利石往往在孔隙中形成搭桥式生长或构成丝缕状、发丝状网络(图1,图2)。片状等微晶把孔隙分割成许多小孔隙,增加了迂回度;丝发状的容易被水冲移,堵塞孔隙和吼道,降低孔隙度和渗透率。 5、蒙脱石蒙脱石形态:鳞片状、蜂巢状、棉絮状。分布:多分布于颗粒表面。分子式: (AIMg)2[Si4O10](OH)24H2O 分布于埋藏较浅、成岩作用较弱的地层中,随加埋藏深、成岩作用加强趋于消

南黄海表层沉积物黏土矿物分布及物源_蓝先洪

2011年6月 海洋地质与第四纪地质 Vol.31,No.3第31卷第3期 MARINE GEOLOGY &QUATERNARY GEOLOGY June,2011DOI:10.3724/SP.J.1140.2011.03011 南黄海表层沉积物黏土矿物分布及物源 蓝先洪1,张宪军2,刘新波1,李日辉1,张志珣1 (1青岛海洋地质研究所,青岛266071; 2山东省物化探勘查院,济南250013) 摘要:通过对南黄海表层沉积物295个站位的黏土矿物含量分析,研究了南黄海表层沉积物黏土矿物的组合特征、分布规律及与物质来源的关系。南黄海表层沉积物中伊利石含量最高,蒙脱石和高岭石含量次之,绿泥石含量最低;黏土矿物的组合类型以伊利石-蒙脱石-高岭石-绿泥石型为主,伊利石-高岭石-蒙脱石-绿泥石型次之;南黄海表层沉积物黏土矿物主要为陆源成因,物质主要来源于黄河和长江的供给。现代黄河物质及老黄河物质主要沉积于南黄海的西部和中部;长江物质主要在南黄海的西南和中北部区域沉积,东部物质反映来自朝鲜半岛的物质对南黄海东部的作用。 关键词:黏土矿物;分布特征;物源;南黄海 中图分类号:P736.21 文献标识码:A 文章编号:0256-1492(2011)03-0011-06 南黄海处于构造相对稳定的冰后期沉溺盆地,泥质沉积广泛发育,黏土矿物构成了区内沉积物的重要组分,其类型多样,分布广泛,是各种地质作用信息的重要载体。由于黏土矿物具有独特的特点,它对地质作用和地质环境的变化反映敏感,因而,黏土矿物的组分、组合、形态和结构等特征在海洋沉积作用、物质来源、沉积环境分析以及地层划分、古气候和古环境演变研究中得到了广泛的应用[1-8]。 前人对南黄海沉积物黏土矿物进行了许多研究,积累了大量资料,取得了许多重要成果[9-16]。杨作升[12]根据黄河、长江黏土矿物含量差异特征和化学元素组合对东海北部陆架沉积物的来源和分区进行了研究,认为海域外陆架沉积物泥质部分主要属黄河型,长江入海沉积物的影响仅限制在长江口外123°E以西的海域。魏建伟等[13]用X射线衍射技术分析了南黄海88个表层沉积物样品的黏土矿物,对其含量及组合特征分析认为南黄海中部泥质沉积可分为南北2个部分,并依据地理位置及各种黏土矿物含量与黄河、长江沉积物黏土矿物含量特征的关系将南黄海泥质区划分为以黄河(包括老黄河)物质为主的北部和“多源”混合沉积而成的中部和南部。中国学者主要研究了南黄海的中部和西部[9-13],而韩国学者对南黄海的东部做了一些研究[14-16]。国土资源地质大调查取得的大量资料,使 基金项目:国土资源大调查项目(200211000001) 作者简介:蓝先洪(1958—),男,研究员,从事海洋地质研究,E-mail:lanxh@qingdaonews.com 收稿日期:2010-09-11;改回日期:2010-10-29. 张光威编辑 我们能够对南黄海表层沉积物黏土矿物分布规律进行全面的分析和研究,并对其沉积物的物质来源进行探讨。 1 样品与方法 2001—2003年在南黄海区域进行了沉积物取样,用抓斗和箱式取样器采集。室内对表层沉积物295站位(图1)样品作了黏土矿物X射线衍射分析鉴定。 黏土矿物X射线衍射分析鉴定由青岛海洋地质研究所测试中心完成。黏土矿物的提取根据表层沉积物样品中泥质组分的多寡,将约40~70g的样品放入2 000mL的烧杯中,加入蒸馏水充分洗涤搅拌成悬浮液。对于含有机质较多的样品,则先用适量的双氧水处理,以除去有机质,然后搅拌成悬浮液。按斯托克斯沉降定理,提取<2μm的黏土组分。 将提取到的黏土组分,分别制成甘油饱和定向片及自然定向片。保留剩余的黏土组分,以备进行其他测试和验证用。因样品含铁、钙质不高,仅用双氧水处理后样品即可充分分散,为尽量保持样品中黏土矿物的原始特征,故未进行去铁、钙处理。 所采用的X射线衍射仪为日本理学D/Max-RA型高功率转靶X射线衍射仪。黏土矿物的定性鉴定主要是根据经甘油饱和处理后的定向片的X射线衍射图谱进行的。黏土矿物半定量分析时的含量计算以甘油饱和处理的衍射扫描图谱为准,量取各黏土矿物峰高强度值(峰顶至背景线的距离),权

粘土矿物分析在储层潜在敏感性评价中的应用

粘土矿物分析在储层潜在敏感性评价中的应用 一、粘土矿物类型 粘土矿物(clay minerals)是粘土和粘土岩中晶体一般小于2微米,主要是含水的铝、铁和镁的层状结构硅酸盐矿物。有的在其成分中还有某些碱金属或碱土金属存在。粘土矿物包括高岭石族矿物、蒙皂石、蛭石、粘土级云母、伊利石、海绿石、绿泥石和膨胀绿泥石以及有关的混层结构矿物,此外还包括具过渡性的层链状结构的坡缕石(凹凸棒石)和海泡石以及非晶质的水铝英石。除水铝英石外均属层状或层链状结构硅酸盐,因此粘土矿物可按层状结构硅酸盐矿物的分类来划分。粘土矿物按成因可分为他生粘土矿物和自生粘土矿物两类,他生粘土矿物主要是来自沉积物源区的陆源矿物,矿物成分与母源区岩石类型关系密切;自生粘土矿物为储层在特定成岩阶段化学反应析出的矿物,如自生绿泥石、自生高岭石等。不同成因粘土矿物通常具有不同的矿物组合、产状、晶形和分布规律等特征。 粘土矿物的粒度细小,其大小和形态需用电子显微镜才能测定。多数粘土矿物如伊利石等呈鳞片状,结晶良好的高岭石则呈完整的假六方片状。少数粘土矿物呈管状(埃洛石)或纤维状(坡缕石和海泡石)。 晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、CI-、(PO4)3-、(NO3)-。产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。阴离子交换则是晶格外露羟基离子的交代作用。②粘土-水系统特点。粘土矿物中的水以吸附水、层间水和结构水的形式存在。结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。③粘土矿物与有机质的反应特点。有些粘土矿物与有机质反应形成有机复合体,改善了它的性能,扩大了应用范围,还可作为分析鉴定矿物的依据。此外,粘土矿物晶格内离子置换和层间水变化常影响光学性质的变化。蒙皂石族矿物中的铁、镁离子置换八面体中的铝,或者层间水分子的失去,都使折光率与双折射率增大。 粘土矿物的形成方式有三种:①与风化作用有关。风化原岩的种类和介质条件如水、气候、地貌、植被和时间等因素决定了矿物种和保存与否。②热液和温泉水作用于围岩,可以形成粘土矿物的蚀变富集带。③由沉积作用、成岩作用生成粘土矿物。 高岭土主要用作陶瓷原料、造纸的填料和涂层;主要由蒙脱石构成的膨润土用于作钻井泥浆、精炼石油的催化剂和漂白剂、铁矿球团的粘结剂和铸形砂粘合剂;凹凸棒石粘土和海泡石粘土是制造抗盐泥浆的优质原料、油脂的脱色剂和吸收剂。 下面我们介绍一下常见的几种粘土矿物: 1、蒙脱石

粘土矿物

主要粘粒矿物的形成环境

影响粘粒矿物形成的环境因素主要有:酸度、盐基物质、有关离子的浓度、湿度等。 例如高岭石的形成条件是高温多湿与少盐基、强酸性等,则必然以分布在华南的红壤地带为主,但它在北方的古红土母质中也会出现,那是古气候影响的残迹;又如蒙脱石的形成条件是碱性与高镁等,则必然以出现在北方土壤中为主,但它在热带的燥红土中也有,则表明燥红土有特殊的干燥气候与酸度偏碱的成土环境;再如赤铁矿与三水铝石等氧化物矿物都属于风化阶段的最后产物,一般来说,他们应分布在以红壤与砖红壤地带为主,如果不是,则表明另有特殊的局部成土环境。 ——陆景岗《土壤地质学》(1997)

粘土矿物自然色 无色——高岭石矿物、蒙脱石、绢云母 绿色——绿泥石、蛇纹石、铁蒙脱石、滑石、黑高岭土 褐色——铁蒙脱石、黑铁高岭土、黑硬绿泥石 黄色——囊脱石 蓝绿色——海绿石、绿鳞石 PS:采集时为绿色,在空气中放置后变成褐色粘土矿物为多铁的蒙脱石或多铁的蛇纹石,可能是由于亚铁被氧化。 ——须腾俊男《粘土矿物》(1959) 粘土矿物在石油地质中地应用 (A)粘土矿物判断古环境: 1、代表干旱气候的矿物组合类型 粘土矿物对周围环境很敏感,干旱的古气候通过具有较高盐度和某些离子的水介质而影响粘土矿物组合类型。根据粘土矿物组合类型研究古气候效果较好。 (1)以伊利石含量占优势的伊利石+绿泥石矿物组合和伊利石+伊/蒙有序间层+绿泥石矿物组合,一般代表干旱古气候和富含K+离子的盐湖水介质。 (2)伊利石+绿/蒙间层(包括柯绿泥石)+绿泥石矿物组合,则往往代表干旱-半干旱古气候和富Fe2+、Mg2+离子中等盐度且偏碱性的水介质。 (3)伊利石+蒙皂石(或伊/蒙无序问层)+坡缕石+绿泥石矿物组合,则代表干旱-半干旱古气候和碱性(pH值为8~9)且富Mg2+离子的水介质。 (4)伊利石+伊/蒙无序间层+绿泥石矿物组合,往往处于(1)与(3)之间的古气候和古水介质。 以上几种组合的共同特点是不含高岭石。 2.代表潮湿气候的矿物类型

第二章土壤矿物质

第二章土壤矿物质 【教学目标】 ●土壤矿物 1.了解土壤原生矿物的种类。 2.重点掌握次生矿物的种类及特性。 ●矿物质土粒 1.了解矿物质土粒的分类系统。 2.掌握矿物质土粒水分物理特性。 ●土壤质地 1. 了解土壤质地的分类系统。 2.掌握不同质地土壤的水分物理特性。 1 土壤矿物 土壤母质来源于岩石、矿物的风化产物,岩石是由矿物所构成,是矿物的天然集合体。 1.1 几种主要岩石类型与特性 地壳中的岩石可分为岩浆岩(火成岩)、沉积岩和变质岩三大类。 岩浆岩(火成岩)由岩浆冷却凝固形成,如花岗岩、闪长岩、玄武岩等,它们含有石英、长石、深色矿物(如黑云母、辉石、角闪石等原生矿物)。 沉积岩是由岩石风化物经搬运、沉积再胶结而形成的,如花岗岩风化形成的石英沙沉入海底经地质变化胶结成的岩石,称为沙岩。 变质岩是火成岩或沉积岩在高温、高压下发生质变而形成的,如花岗岩变质形成片麻岩、沙岩和页岩变质形成石英岩和板岩,石灰岩变质可形成大理岩。 1.1.1 岩浆岩 (1)花岗岩为粗粒、中粒或细粒全晶质的岩石,呈红色、灰色或浅灰色。主要矿物有石英、正长石、黑云母,也有角闪石、斜长石,由于矿物结晶颗粒较大,组成复杂,容易发生物理风化。在干旱地区崩解成砂粒,在湿润地区暗色矿物被分解为含水氧化铁次生矿物,长石类矿物分解为高岭石,石英以砂粒残留于风化物中。 (2)流纹岩:化学成分与花岗岩基本相似,灰白、浅黄或浅红色。斑状结构,斑晶为圆柱状的石英和长方形透长石。因结晶颗粒较小,难以发生物理风化。在温暖湿润地区所形成深厚的风化层,多呈红色的粘壤土或砂质粘壤土。 (3)正长岩:其矿物组成以正长石和角闪石为主,不含石英,有少量的磷灰石,磁铁矿,色浅红,呈块状或粒状构造。风化后形成砂壤或壤质土壤,通气性良好,富含磷、钾、钙、镁等营养元素。土壤多为中性至微酸性反应。 (4)玄武岩:是基性喷出岩,在地壳中分布较广。化学成分与辉长岩相当。色暗近似黑色,隐晶质结构,常有气孔构造,风化后质地较黏,含盐基物质较多。 (5)橄榄岩:主要由橄榄石和辉石组成,一般为暗绿色或黑绿色,全晶质粗粒或中粒 结构,容易风化。 1.1.2 沉积岩 (1)砾岩砾岩是各种岩石碎块经过搬运沉积再经胶结硬化而成。直径一般(2mm,如经河水长途搬运,其棱角磨圆,其间有孔隙,易透水,风化后呈砂砾状。实物图片:砾岩 (2)砂岩一般由直径0.1-2.0mm的砂粒胶结而成,主要成分为石英,其次为长石、白云母、磁铁矿、石榴子石等。石英含量大于95%以上的为石英砂岩;长石含量达25%-60%的为长石砂岩。以氧化硅为胶结剂的称为硅质砂岩;以氧化铁为胶结剂的称为铁质砂岩;以

完整版粘土矿物扫描电镜描述文字 图片升级版

扫描电镜照片,粘土矿物的镜下特征及描述一、1、高岭石

高岭石孔硅铝酸盐矿物,是长石的蚀变产物,呈书页状、蠕虫状、手风琴状,多以在流体的冲刷下容易随流体的形式存在于粒间孔隙。隙充填其晶间结构比较松, 移动,堵塞、分割孔隙和吼道,尤其在细小吼道中,影响很大,是重要的速敏矿物。 2、伊蒙混层

伊蒙混层 蒙脱石向伊利石过渡的矿物,呈蜂窝状、半蜂窝状、棉絮状等,随埋深加大和温压的升高而含量增多,有较强的水敏性。 3、绿泥石

绿泥石 铝硅酸盐矿物,常与自生石英共生。在电镜扫描下,其单晶形态呈薄六角板状或叶片状,常见粒径为 2μ~ 3μ;聚集形态常常为 :由叶片组成的蜂窝状、 玫瑰花朵状、绒球状、针叶状和叠片状,在孔隙中的产状有孔隙衬垫及孔隙充填,有时也可见其杂乱堆积状态。一般针叶状绿泥石多为孔隙衬垫包于颗粒表面,绒球状和玫瑰花状的则充填在孔隙中。绿泥石可由黑云母、角闪石、蒙脱石等矿物转化而来,自生绿泥石一般富含高价铁离子,与钻井液中的HCL等酸液作用容易产生沉淀,而造成储层伤害,是酸敏性矿物。 4、伊利石

伊利石形态:鳞片状、羽毛状、丝缕状。分布:多分布于颗粒表面,或以粘土桥形式分布于颗粒间伊利石鳞片大个别呈六边形,铝硅酸盐矿物,伊利石晶体呈不规则的鳞片状, 。在电镜扫描下常见的单体形态呈丝带μ间 0.5 ,一般在 0.15μ~小不等 集合体形态呈蜂条片状和羽毛状等贴附于颗粒表面或充填于粒间孔隙内,状、、伊利石往往在孔隙中形成搭桥式生长或构成丝缕状窝状、丝缕状和丝带状。增加了迂回片状等微晶把孔隙分割成许多小孔隙,。图,图发丝状网络 ( 1 2) 度;丝发状的容易被水冲移,堵塞孔隙和吼道,降低孔隙度和渗透率。

第二章 矿物岩石复习

一、名词解释 矿物:是在各种地质作用下形成的具有相对固定化学组成和物理性质的均质物体,是组成岩石的基本单位。 条痕:是矿物在条痕板上擦划后留下的痕迹的颜色。 硬度:矿物抵抗外来某种机械作用的能力。 解理:矿物晶体在外力作用下,沿着一定的结晶方向破裂成一系列光滑平面的性能称为解理 岩石:由一种或多种矿物在各种地质作用下形成的集合体,是组成地壳和岩石圈的基本物质。 物理风化:指地表和靠近地表岩石因温度变化和孔隙中水的冻融以及盐类的结晶而产生的机械崩解过程。 化学风化:指地表和接近地表的岩石因与水溶液、气体等发生化学反应,不仅使岩石的物理状态改变,而且也可改变其化学成分、并形成新矿物的作用。 变质作用:岩石所处的环境与当初岩石形成时的环境有了变化,岩石的成分、结构和构造等往往也要随之变化,以便使岩石和环境之间达到新的平衡关系,这种变化总称为变质作用。 活火山:现在还处于周期性活动阶段的火山。 休眠火山:有历史记载以来曾经有过活动,但长期以来处于静止状态的火山。死火山:史前曾经有过喷发活动,但历史时期以来不再活动的火山。 二、填空 1、结晶习性大体分为三种类型:一向伸长、二向延展、三向等长。 2、矿物的颜色是矿物对可见光中不同波长光波选择性吸收和反射的物理性能的表征。分为自色、他色、假色。 3、矿物硬度大小主要取决于内部结构质点间连接力的强弱。德国莫氏(F.Mohs)选择了常见的10种矿物,将硬度由小到大排列,分为 10级,这就是习称的莫氏硬度计 计,其中,滑石硬度为 1 ,石英硬度为 7 ,刚玉硬度为 9 ,金刚石硬度为10 。野外鉴定矿物时,如找不到标准矿物,可利用一些代用品测试,如指甲(硬度 2-2.5 ),铜币(约 3 ) ,小钢刀(约 5.5-6 )。通常,可

相关文档
最新文档