斯特林发动机循环分析 工程热力学

斯特林发动机循环分析 工程热力学
斯特林发动机循环分析 工程热力学

斯特林发动机循环分析

(北京交通大学机电)

摘要:斯特林发动机不仅理论热效率高,等于卡诺循环效率,而且作为外燃机其排放特性非常好,所以近三十年来一直是研究的热点。本文介绍了斯特林发动机的装置特点、动力性能等,并对理论循环进行了分析,提出了提高循环热效率的方法及措施。

关键词:斯特林发动机,斯特林循环,热效率

1.斯特林发动机介绍

1.1斯特林发动机的装置特点

热气机是一种外燃的、闭式循环往复活塞式热力发动机。

热气机可用氢、氮、氦或空气等作为工质,按斯特林循环工作。在热气机封闭的气缸内充有一定容积的工质。气缸一端为热腔,另一端为冷腔。工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀作功燃料在气缸外的燃烧室内连续燃烧,通过加热器传给工质,工质不直接参与燃烧,也不更换。

已设计制造的热气机有多种结构,可利用各种能源,已在航天、陆上、水上和水下等各个领域进行应用。试验热气机的功率传递机构分为曲柄连杆传动、菱形传动、斜盘或摆盘传动、液压传动和自由活塞传动等。

按缸内循环的组成形式分,热气机主要有配气活塞式和双作用式两类。在一个气缸内有两个活塞作规律的相对运动,冷腔与热腔之间用冷却器、回热器和加热器连接,配气活塞推动工质在冷热腔之间往返流动。

1.2斯特林发动机的应用现状

1.2.1 国内发展状况

我国从七十年代末即开始斯特林发动机的研究开发工作,已设计出功率150W-IOkW发动机11种,多数已在实验室正常运转。现从事此项工作的约300人,并正筹建中国热气机研究会。北京农业工程大学凌泽芝同志在能源政策研究通讯1991年第一期“发展热气机、促进农村电气化”一文中介绍国内外斯特林发动机的发展概况及其特点后建议:“充分利用我国农村丰富的生物质能源和部分地区丰富的太阳能资源以解决农业用电问题”。并希望纳入国家“八五”科技规划和组织有关单位联合攻关。上海711研究所研制出热气机,是一种具有国际水准的科研成果,而排放的污染气体比目前市面上的其它发动机都要小,达到欧洲排放标准。

1.2.2 国外应用现状

1)用于热电联产型

充分利用它环境污染小的特点,在大城市里可以以天燃气作燃料,通过斯特林发动机的内部的冷却装置,冷却水被加热并回收烟气,即可采暖。1台25kW的斯特林外燃机完全可以满足500—1500建筑平方米采暖。

这种使用斯特林发动机的热电联产装置实际上相当于一台副产电力的供热锅炉,一

般情况下是根据供热需求来确定其运行状态的,其电力系统可以与电网连接,多余的电力通过配电盘向外界供电。如果配备相应的热水型吸收式制冷机的话,夏季就可以利用热能制取空调所需的冷却水,从而部分地取代目前广泛使用的耗电量可观的蒸汽压缩式空调制冷装置。显然,不仅在冬季的供暖期,而且在夏天的供冷期,热电联产装置都能发挥重要的作用。

目前,农用动力斯特林发动机,已引起各国的极大兴趣。在农村,可以燃烧各种物质如木屑、米糠、棉秆、椰子皮壳和谷壳等进行工作的。以空气为工质,运转时,噪音低,振动小,无污染。不用润滑,即可取暖,又可发电,非熟练工人也能操作[1]。

2)斯特林太阳能发电装置

利用斯特林发动机外燃的特性,将多面反光镜聚焦在发动机的热腔,利用太阳的能量加温热腔发电,发电功率达到20kW,设备可以自动跟踪太阳旋转。它还可以有另一个独具匠心的设计是在太阳落山后或阳光不足以发电时,自动合闭热腔,利用燃料燃烧发电,一机两用,节省了蓄电池投资,提高了能源供应设备的利用效率。而造价仅仅为硅晶光伏电池的三分之一,投资效益极好。

3)低能级的余热回收利用型

斯特林发动机的另一优势是余热回收,而且大大简化了工艺技术。利用热腔温度达到700℃即可发电的特性,不需要任何介质或热能转换装置,直接将热腔伸入热源之中,将余热转换成高价值的电能。例如:炼油厂、化工厂、焦化厂、冶炼厂等,均可使用。每个外燃机可以回收25kW电能和44kW热能。

4)推进车用动力型

利用斯特林发动机的排气污染低以及多种燃料的高度适应性的优点,美国机槭技术公司(MTI)在执行ASE计划期间共发展了两代样机。以小型汽车为例,电机的功率约为40kW左右,而斯特林发动机的功率只需15kW左右,两者的连接既可串联,又可并联。在城市内,用电机推进;在高速公路上,主要靠斯特林发动机推进,辅之于电机。混合推进的优点是:在市内,完全是电动汽车,最大限度地保护了环境;在郊区,依然具有斯特林发动机汽车的全部优点(良好的经济性、污染少和适应多种燃料),同时简化了控制系统,使其在成本上更具竞争力。

5)低温差发电动力型

近几年来,比较热门的研究领域就是低温差斯特林发动机。日前,已有很多低温差模型斯特林发动机问世,最著名的当属美国威斯康辛大学Senft教授研制的Ringbom斯特林发动机,只需0.5℃的温差就能以60r/min的速度运转。日本人研制出150W低温差斯特林发动机,工作温差为100℃。指示效率为50%。低温差斯特林发动机由于工作参数低,因此结构简单、造价便宜、寿命长,适合于作废热回收发电动力。这样,100~300℃的废热均可用来发电[2]。

6)其他利用型

斯特林发动机可用在汽车、潜水艇、宇宙飞船、人造心脏等等上,充分发挥其体积小、排热量低、噪音小等特点,研究应用十分广泛。

1.3性能分析

1.3.1动力性能

由于外燃机避免了传统内燃机的震爆做功问题,从而实现了高效率、低噪音、低污染和低运行成本。外燃机可以燃烧各种可燃气体,如:天然气、沼气、石油气、氢气、煤气等,也可燃烧柴油、液化石油气等液体燃料,还可以燃烧木材,以及利用太阳能等。只要热腔达到700℃,设备即可做功运行,环境温度越低,发电效率越高。外燃机最大的优点是出力和效率不受海拔高度影响,非常适合于高海拔地区使用。

但是,斯特林发动机还有许多问题要解决,例如膨胀室、压缩室、加热器、冷却室、再生器等的成本高,热量损失是内燃发动机的2-3倍等。所以,还不能成为大批量使用的发动机。

由于热源来自外部,因此发动机需要经过一段时间才能响应用于气缸的热量变化(通过气缸壁将热量传导给发动机内的气体需要很长时间)。这意味着:1)发动机在提供有效动力之前需要时间暖机。

2)发动机不能快速改变其动力输出。

斯特林发动机目前有报道,已经开始研究在计算机主板的散热风扇上使用,通过北桥芯片的发热来带动斯特林发动机,以此来给硬件降温,该研究还处于研究阶段。

1.3.2经济性

1)制造成本较高。

2)通过考虑初投资、运行费用、维护费和使用年限来得到各种组合的净收益和回收期,从而对其经济性分析比较。设备投资可按下列价格估算,斯特林发动机8000元/kW(包括基建和设备安装),而双效溴化锂、湿能空调、水源热泵投资相当,约为1000元/kW,空气源热泵400元/kWh。冷价按国内分体电空调平均水平COP为2.8计算,得出冷价为0.22元/kWh,热价按供暖平均价格,为0.27元/kWh,电价和天然气价格按目前价格(为0.61元/kWh,2.1元/m3)。卫生热水价格按燃气锅炉COP=0.9计算,为0.24元/kWh。年运行供暖或供冷时间各2000h。计算见表1。

表1 各种三联供的燃烧每1m3燃气的经济性比较[3]最经济的模式为热气机加水源热泵方式,但收益主要来自夏季产生的大量热水,斯

特林机组和湿能空调系统是一种比较先进的高效清洁联供技术方案,特别是我国在这两项技术上享有自主知识产权,应该成为研发重点。

1.3.3环保性

中国是富煤国家,是世界上煤储量最多的国家之一。煤炭作为发电能源,有两种用法。一是在常规炉直接燃烧,在流化床燃烧更完全些。另一种是将煤液化或气化。然则无论哪种方式,煤炭都必须先行清洁处理,洗煤的废水和废料的处置始终是个麻烦,也会增加巨额成本。事实上,我们只是让二氧化碳污染的排放推后而已。而太阳能斯特林发动机的无污染和可再生是不争的事实。

此外,其最大优势是,发动机维修率低,短期内回收投资。太阳能斯特林发动机不象柴油机和蒸汽轮机,无需许多额外辅件。在太阳能斯特林发动机工作的流体永久密封。引擎在设计寿命期内不必更换或处理。相对蒸汽轮机的锅炉和柴油发动机的燃烧室,其没完没了的保养和维修大大增加业者的经营成本。再者,不论锅炉蒸汽机还是柴油引擎,排气系统所造成的污染早已恶名昭著,毋庸赘述。归根结底,不论是国家策还是地方措施,能源越是独立,成本越低,污染越少,环境越美。不论站在任何立场,选择使用太阳能斯特林发动机,改进能源的独立性,都是最可行的解决方案。中国正处于现代化建设非常关键的阶段,科学发展观要求人与自然和谐,整个会需要与世界和谐。

2.斯特林发动机组成及理论分析

斯特林引擎的基本工作原理是,通过工作气体的的加热膨胀、冷却收缩来做功实现的,通过气缸的外部对密闭空间内的工作气体进行控制,加热时活塞下降,冷却时活塞上升。实用性斯特林引擎是通过配置多个活塞和热交换器,从外部连续加热冷却使工作气体的压力发生变化来实现高速运转。本章将介绍斯特林发动机的基本组成、运动形式和配气活塞式斯特林引擎的工作原理。

2.1斯特林发动机的组成

斯特林发动机是一种热—机械能的转换装置,因此,他的主要组成与内燃机等热机是类似的,即由热的发生系统、热—机械能转换系统、动力传递系统以及其他的保证发动机正常运转的一些辅助系统。一台能独立工作的斯特林发动机由下列系统组成:外部供热(燃烧)系统、闭式循环系统(热—机械能转换系统)、动力传动系统(包括工质密封系统)、负荷控调系统以及辅传动、冷却、起动等的辅助系统。斯特林发动机区别内燃机根本所在是外部供热(燃烧)系统和闭式循环系统。如图l所示。

外部燃烧系统的作用是给闭式循环系统提供能源,因此,凡是温度在450℃以上的任何发热装置都可以成为斯特林发动机的外部热源,例如:各种矿物燃料的燃烧装置、原子反应堆(可控核裂变热装置和放射性同位素的衰变热装置)、化学反应生成热装置、各种形式的蓄热装置、太阳能和激光能都可以作为斯特林发动机的外部热源。

闭式循环系统的功能是在较低的温度和压力水平下压缩闭式循环回路中的工质,并在较高的温度和压力下进行膨胀,获得正的膨胀功。在现代斯特林发动机中,闭式循环回路由冷腔、冷却器、回热器、加热器和热腔组成,并按上述顺序依次串联在一起,冷腔和冷却器处于循环的低温部分,压缩热量由冷却器导至外界;热腔和加热器处循环的高温部分,膨胀热由加热器供给。工质在系统中来回流动一次,完成一个循环,循环周期为2π。

1)热膨胀腔

在循环过程中膨胀腔永远处于高温状态,在膨胀时相当部分的工质居于热膨胀腔。根据热气机的循环特性,膨胀腔必须能承受高温和高压,对它的要求比柴油机的燃烧室高的多,有相当一部分的热损失是由热的膨胀腔传出的。

2)冷压缩腔

在循环过程中冷压缩腔始终处于比环境温度,或比冷却水温度稍高一些的温度下,在压缩过程中有相当一部分工质居于压缩腔。

3)加热器

加热器的职能是将外部热源的热能传给系统,达到对工质加热膨胀的目的。加热器管的一端与膨胀腔联通,另一端与回热器沟通。

4)回热器

回热器串联在加热器和冷却器之间,是循环系统的一个内部换热器,它交替地从工质吸收和向工质释放热量,使工质反复地受到冷却和加热。从完成热力循环的箔度来说,回热器并不是不可缺少的,但是,从运行经济性来看,回热器是一个极其重要的不可缺少的组件,是一个重要的节能装置。在性能较高的实际热气机中,回热器的蓄放热能力,约为加热器传热能力的3~5倍,为冷却器冷却能力的8~10倍。因此,如果取消回热器,在保证膨胀温度和压缩温度不变的情况下,不仅会导致加热器和冷却器容量大幅度增大,而且会使发动机的功率和效率降到不能接受的程度。

5)冷却器

冷却器位于回热器和压缩腔之问,其功能是将压缩热导到外界,保证工质在较低的

温度下进行压缩。

凡是柴油机或汽油机能利用的传动系统,例如普通的曲柄连杆机构、斜盘或摆盘机构和液压传动机构等均可用于斯特林发动机。

图1 斯特林发动机结构示意图[4]

2.2 斯特林发动机的工作原理

由于是对小功率的斯特林发动机的研究,所以本文重点是研究单作用配气活塞式斯特林发动机,下面就重点介绍配气活塞式斯特林发动机的工作原理。

配气活塞式斯特林发动机只有一个气缸,其内置有两个活塞。靠近加热器一侧的活塞叫配气活塞,靠近冷却器一侧的活塞叫动力活塞。配气活塞的上方叫热腔(膨胀腔),配气活塞下方与动力活塞上方所组成的腔室叫冷腔(压缩腔)。热腔、加热器、回热器、冷却器和冷腔串联在一起,形成一个完整的循环回路。如图2所示。同样,热腔和加热器处于循环的最高温度下,叫热区;冷腔和冷却器处于循环的低温区,叫冷区。因为配气活塞上下端的压力是一致的,所以它既不向外界输出功,也不从外界接受功,其功用是使工质在循环回路中来回流动,故有配气活塞之称。因为工质的来回流动是由配气活塞完成的,所以称为配气活塞式斯特林发动机。这类斯特林发动机的一个特点是,热腔是由配气活塞(热活塞)单独控制的,而冷腔则是由配气活塞和动力活塞联合控制的。

图2 单缸单作用斯特林发动机结构简图

图3 斯特林发动机热力循环的p-v图与T-S图

斯特林发动机的热力过程是按斯特林循环进行的。如图3所示。斯特林循环是由两个等温过程和两个等容过程组成的。

1)等温压缩过程1-2。压缩开始时,动力活塞处于下止点,配气活塞位于上止点,此时工作腔容积最大,温度最低,压力最小,即V1=V max ,T1=T min=T C ,P1=P mi n 。

在压缩过程1-2的期间内,配气活塞在上止点保持不动,动力活塞从下止点向上止点运动,工作腔容积随着动力活塞的向上运动而逐渐变小,工质被压缩,压力也随之逐渐增大。压缩热由冷却器导至外界,而保持温度T C不变,实现等温压缩。待动力活塞运动到上止点后压缩过程结束,此时工作腔容积最小,即V2=V min。为在恒定的温度T C下实现等温压缩,工质必须通过冷却器向外界释出压缩热Q C;同时,在压缩过程中外界必须对工质做功,外界所输入的压缩W1-2等于工质在等温压缩下向外界释出的热量Q C,工质内能不变,而熵减小。

2)等容加热过程2-3。在这一过程中动力活塞在上止点保持不动,配气活塞向下止点运动。由于动力活塞保持不动,不论配气活塞如何运动,工作腔容积始终不变(配

气活塞向下移动式,活塞上端增大的容积等于下端减少的容积,即热腔所增加的容积等于冷腔缩小的容积),即V 3=V 2=V min 。配气活塞从上止点向下止点运动的结果,工质从冷腔流入热腔,在流经回热器获得热量Q R ,使工质温度从T 2升高到T 3,而T 3=T E ,压力也相应地从p 2升高到p 3,但容积不变,实现了等容加热。在这一过程中,工质与外界无热交换,也不做功,但工质的内能和熵都增大。

3)等温膨胀过程3-4。在这一过程中,工质在最高循环温度T E 下完成等温膨胀,并向外界做功。膨胀开始时,配气活塞继续向下止点运动,而动力活塞也从其上止点向下止点运动,过程结束时两个活塞同时到达下止点。由于动力活塞从上止点运动到下止点,工作腔容积从V 3=V min 增大到V 4=V max 。工质在最高的循环温度T 3=T 4=T E =T max 的状态下完成等温膨胀,必须由加热器从外界向工质提供热量Q E 。工质在膨胀过程中向外界做功,其值W 3-4。等于外界供给工质的热量Q E 。工质内能不变,但熵增大。

4)等容冷却过程4-1。配气活塞从下止点迅速返回上止点,而动力活塞在下止点保持不动,待配气活塞到达上止点后过程结束,完成一个循环。由于配气活塞从下止点返回上止点,其结果是使工质从热腔返回冷腔;流经回热器时,回热器吸收了工质的部分热量,使工质的温度从循环最高温度T 4=T E =T max 下降到最低温度T C =T max =T 1。因为动力活塞不动,故工作腔容积不变,V 4=V 1=V min ,过程是等容的。循环压力也由P 4下降到P 1。至此,全部参数回复到循环的起始状态。回热器将从工质中吸收的热量贮存起来,在下一个循环的等容加热过程2-3中再传给工质。在等容冷却过程中,工质与外界无热交换,也不做功,但内能和熵均下降[5]。

2.3 斯特林发动机热效率分析

依据上述循环系统的热力分析得:

斯特林发动机的循环效率为:

[])]

1)(1(+ln )1[(]ln )1)(1[(=ln )1(+)1)(1(ln )(=0000τεV γV τγV γτεT nC V T T nR ηE V C E ——l——————— (2-1)

其中,回热器有效性ε定义为:ε=(T 'E -T C )/(T E -T C );系数τ=T C /T E ;γ=C P /C V ;V 0=V 1/V 2;

由此可以看出若回热器工作不完善时,ε<1,循环效率η<ηC (卡诺效率);但当回热器工作完美时,有ε=1,即,η=ηC =1-τ。则在理论上斯特林发动机的循环效率与卡诺循环的效率是相等的。一般回热器的效率ε=0.98~0.99,所以斯特林发动机有较高的热效率。并且由图2-3所示,用两条等容线代替了卡诺循环的两条等熵线(3—3’,1—1’)斯特林循环具有大的示功面积,在压力、温度和容积变化的上下限相同的情况下斯特林循环要比卡诺循环多做功,因此,斯特林发动机高的行程容积功率是普通的活塞式内燃机所望尘莫及的[6]。

2.4 提高热效率的方法

1)太阳能斯特林热机循环热损失主要包括穿梭传热损失、泵气损失、回热损失、导热损失、回热气温度不均匀损失和其他损失,各种热损失与斯特林发动机的多种结构参数和性能参数密切相关,比如,气缸直径、活塞有效长度、活塞行程、径向间隙等结构参数,此外,循环热损失也受材料、工质、温度以及转速等性能参数影响。由于循环热

损失的存在,势必降低工作循环热效率。

2)在各种热损失中,穿梭传热损失和导热损失所占的幅度相对较大,又以导热损失QT最为显著。随着热腔温度T的变化,它们的值变化趋势明显。同时,在各种导热损失中,回热器壳体的导热损失在总的导热损失中占的比例最大。

3)在斯特林热机的性能参数的初步设计中,尽量提高热腔的温度T大于750 K,从而能获得比较大的热效率,计算热效率ES与卡诺效率值E的比值变化平缓。

4)在保证一定工作循环功率的条件下,增大加热管内壁的温度,降低转速值,可以提高太阳能斯特林发动机循环热效率值。当热腔的温度T大于750K,太阳能斯特林发动机的循环热效率值在相应卡诺效率的65%~80%之间浮动[7]。

3.结论

通过此次研究性教学,我们对斯特林发动机的原理、过程、应用和改进有了进一步的了解,对工程热力学课上所学的知识也得到了更深入的掌握。

参考文献

[1]金东寒,斯特林发动机技术[M],哈尔滨: 哈尔滨工程大学出版社,2009。

[2]袁都奇、刘宗修,斯特林热机的性能优化分析[J],热能动力工程,1996,11(5):282-284。

[3]严子浚,卡诺热机的最佳效率与功率间的关系[J],工程热物理学报,1985,6(1):1-5。

[4]苏国珍、严子浚,斯特林机的优化性能[J],应用科学学报,1999,17(2):206-210。

[5]高瑶、韩东,流动阻力损失对斯特林热机功率和效率影响的理论分析[J],能源研究与利用,2006(2):41-43。

[6]钱国柱,热气机[M],北京: 国防工业出版社,1982。

[7]赵耀,太阳能斯特林热气机热交换系统的设计与研究[D],合肥:合肥工业大学,2009。

斯特林发动机原理图解

斯特林发动机原理图解 如图1 把橡皮绑在容器口上,我们能容易瞭解到受热时橡皮会膨胀(图2),冷却时橡皮会缩收(图3),这是加热时,内部气体压力作用在橡皮上(图2),当然人的眼睛是无法看到气体压力的。 A2移气器 如果我们放入一个移气器(Displacer)到容器内(图4),而这个移气器的直径比容器的内径小一些,当移气器自由上下移动时,即可以把容器内的气体挤下或挤上。这个时候,如果我们在容器底端加热,而在容器上端冷却,使上下两端具有足够的温差,即可看见此时橡皮会不断膨胀及收缩。其原理如下: 当移气器上移,容器内的气体被挤至容器底端,此时由於容器底端加热,因此气体受热,压力变大,此压力经由活塞与容器间的空隙传到橡皮,使得橡皮会膨胀(图5)。 相反的,若施以适当的力量把移气器下移,则容器内的气体被挤至容器上端,此时由於容器上端為冷却区,因此气体被冷却,使气体温度降低,压力变小,而使得橡皮会缩收(图5)。 如此,不断使移气器自由上下移动,即可看见此时橡皮会不断膨胀及收缩。 由此,可知移气器的功用主要在於移动气体,使气体在冷热两端之间来回流动。国立成功大学航太系郑金祥教授把 Displacer 命名為”移气器”,实在更為贴切,也比较不容易混淆,比较不会使人误以為它的作用跟输出功率的动力活塞一样。

A3 曲柄机构 要让移气器上下移动,只要将移气器与一曲轴连结(图6) 。当曲轴旋转时,移气器就会被带上及带下。将移气器与曲轴连结完毕之后,在容器底端加热上端冷却,只要用手转动曲轴,使得移气器移上及移下,此时橡皮便会重复膨胀及收缩(图7)。 A4 动力活塞 橡皮的膨胀及收缩运动,可以转换為动力输出,此时,橡皮的作用即如同一动力活塞。我们可以另加一根连桿接到上述的曲轴上,便可将橡皮的膨胀及收缩运动转换為曲轴的旋转运动。连接到移气器的曲轴部位与连接到动力活塞的曲轴部位必须呈固定的角度差,一般是90度(图8,9)。橡皮的膨胀及缩收所產生的曲轴的旋转运动提供了移气器上下移动的力量,多餘的力量则可以输出。必须注意的是,移气器本身不会动,而是被曲轴带动,动力来源是动力活塞。

工程热力学13---动-力-循-环讲课讲稿

工程热力学13---动- 力-循-环

动 力 循 环 一、动力循环的分析方法 1.热力学第一定律分析方法(以热效率t η为指标): 热力学第一定律效率= 投入系统的能量 有效利用的能量 动力循环 Q W t = η 121212111T T S T S T Q Q Q W t -=??-=-==η (S TdS T ?≡?? ) 理想 1 2 1T T C -=η 循环完善性 充满系数= ABCDA abcda 面积面积对应卡诺循环功量实际循环功量= 2.热力学第二定律分析方法(以火用效率ex η为指标): 热力学第二定律效率= 投入系统的可用能 有效利用的可用能 T

动力循环 sup ,x t ex E W = η 或 sup ,,0sup ,11x i g x i ex E S T E I ∑∑-=-=η sup ,x E 核算起点不同,可有两种结果: ① 以投入的燃料的化学能为起点 Q E E F x x ==,sup , ② 以释放热量的可用能为起点 ??? ? ?-==T T Q E E Q x x 0,sup ,1 两种分析法,一个考虑能量的“数量”,一个考虑能量的“质量”。各有侧重,相辅相成,不可偏废。两者的结合才能全面反映能量的经济性。 如书上本章*10-6 对蒸气动力循环的火用分析, 用热一律分析: 乏汽排热能量损耗最大,冷凝器散热损失约占总热量的 54.26%, 但因放热温度低,火用损失并不大,约占总火用的2.22%; 用热二律分析:锅炉的燃烧与传热火用损失最大,约占总火用的58.91% /35.84%;但其热损失仅为10%。 13 蒸汽动力循环 13.1 朗肯循环 根据热力学第二定律,在一定温度范围内卡诺循环的效率最高。 如果采用

工程热力学15制冷循环.doc

15. 制冷循环 15.1制冷与逆卡诺循环 将物体冷却到低于周围环境的温度,并且维持这一低温,称为制冷。为实现这一目的,需要将热量从低温物体(如冷藏室)移向高温物体(如环境)。由热力学第二定律可知,这一过程不能自发实现,必须消耗外部可用能,通常是消耗机械能或高温热源所提供的热能。因此制冷循环是一种逆向循环。如果循环的目的是从低 温物体取走热量,以维持物体的低温状态,称之为制冷循环。 前已述及,在两个恒温热源间的动力循环中,卡诺循环的热效率最高。按照 图15-1,由两个定温过程和两个定熵过程按照与卡诺循环相反方向(逆时针)运行的循环称为逆卡诺循环。可以证明在两个恒温热源间,逆卡诺循环的制 冷系数最大,为 L H L T T T -= max ε (15-1) 式中,H T 和L T 分别是高温热源与低温热源的温度。 L H L L Q Q Q W Q -== ε ← L L H H T Q T Q ≤ 从式中可以看出,和卡诺循环一样,逆卡诺循环的制冷系数也只与高温热源与低 温热源的温度有关。 15.2 空气压缩式制冷循环 利用空气作为制冷工质构成空气压缩制冷循环——逆布雷顿循环。和下节将要讲到的蒸汽制冷循环不同的是:在空气制冷循环中,工质不会发生相变,而是依靠显热在定压情况下吸收和放出热量,因此制冷量较小,偏离逆卡诺循环较远,经济性较低。

鉴于空气定温吸热、放热不易实现,改用两个定压过程代替,因而压缩空气制冷循环实为逆向的布雷顿循环。 分析:低温热源(冷库)吸热 412h h q -= 高温热源(环境)放热 321 h h q -= 耗功 ()()413221h h h h q q w ---=-= 制冷系数 ()()()()1 14 1324132414132412---=----=----== T T T T T T T T T T h h h h h h w q ε 过程1-2、 3-4 定熵, 43112 12T T p p T T =??? ? ??=-κ κ → κκπ1 1 24132-==--T T T T T T 故 1 1 1-= -κ κπ ε (15-2) 可见 ↑→ ↓ επ 减小增压比,可使 制冷系数提高, 但这会使 膨胀温降减小,制冷量下降。 压缩空气制冷循环的 优点:工质易得,安全。 缺点:制冷量不大。(空气热容小,增加↑π → ↓ε) 故一般在普冷(50->℃)很少用(除了用于飞机空调,直排),在深冷(100-<℃)可用于导弹内红外探测器的冷却,不计成本效率)。 为增大制冷量须增大流量,活塞式的压气机、膨胀机让位于 叶轮式的压气

斯特林发动机的工作原理及应用前景

斯特林发动机的工作原理及应用前景 【摘要】随着全球能源危机的发展与环境的恶化,传统的化石燃料日益枯竭,且燃烧的排放物造成了温室效应、雾霾天气及极端的气候等人为的灾害,为了地球的可持续发展和人类生活水平的改善,人们清楚地认识到开发利用新能源的重要性。其中,可再生能源的利用越来越广泛,可再生能源对环境无害或危害极小,且资源分布广泛。越来越多的国家采取鼓励生产和使用可再生能源的政策和措施,中国也确立了到2020年可再生能源占总能源比重15%的目标。外部燃烧系统的作用是给闭式循环系统提供能源,闭式循环系统由冷腔、冷却器、回热器、加热器和热腔组成,工质在闭式循环系统中来回流动一次,完成一个斯特林循环。 【关键词】发动机;原理;前景 1 斯特林发动机闭式循环系统的组件简介 (1)冷腔处于循环的低温部分,和冷却器联接,压缩热量由冷却器导至外界,在压缩过程中有相当一部分工质居于冷腔。 (2)冷却器位于回热器和冷腔之间,功能是将压缩热传到外界,保证工质在较低的温度下进行压缩。 (3)回热器串联在加热器和冷却器之间,是循环系统的一个内部换热器,它交替从工质吸热和向工质放热,使工质反复地受到冷却和加热。回热器并不是必需装置,但它对发动机的效率影响极大。在往复式斯特林发动机中,回热器的使用既使斯特林循环的热效率明显提高,但又增加了工质的阻力和压力损失,工质吸热、散热交替进行,限制了斯特林发动机的转速,影响了功率的输出。因此,优化回热器的设计是斯特林发动机的核心技术问题。 (4)加热器加热器是将外部热源的热能传给工质,使其受热膨胀。加热器的一端与热腔联接,另一端与回热器联接。 (5)热腔始终处于循环的高温部分,连续地将外部热源传给工质,在膨胀时相当部分的工质居于热腔。因此其必须能承受高温和高压,大量的热损失是由热腔散失的。 2 斯特林发动机的基本结构 根据工作空间和回热器的布置方式,斯特林发动机可以分为α、β和γ三种基本类型。 α型斯特林发动机的结构最简单,具有两个汽缸,两个汽缸中间通过加热器、回热器、冷却器连通,热活塞和冷活塞分别位于各自的汽缸内,热活塞负责工质

工程热力学—动力循环

7 动力循环(Power Cycles) 热能向机械能转换需要通过工质地循环,理想地循环是卡诺循环,但卡诺循环并不实用,其中地等温过程就难以实现.利用相变过程固然可以实现等温过程,但在吸热温度、压力方面却不遂人愿,所以实际循环与卡诺循环地差异比较大.但实际循环与卡诺循环并不是一点关系也没有,实际循环与卡诺循环一样,也有吸热、作功、放热、压缩四种过程组成,其中吸热常常伴随燃料燃烧放热. 为了提高动力循环地能量转换地经济性,必须依照热力学基本定律对动力循环进行分析,以寻求提高经济性地方向及途径. 实际动力循环都是不可逆地,为提高循环地热经济性而采取地各种措施又使循环变得非常复杂.为使分析简化,突出热功转换地主要过程,一般采用下述手段:首先将实际循环抽象概括成为简单可逆理论循环,分析该理论循环,找出影响其循环热效率地主要因素和提高热效率地可逆措施;然后分析实际循环与理论循环地偏离之处和偏离程度,找出实际损失地部位、大小、原因及改进办法.本课程主要关心循环中地能量转换关系,减少实际损失是具体设备课程地任务,因此我们主要论及前者. 7.1 内燃动力循环 内燃机地燃料燃烧(吸热)、工质膨胀、压缩等过程都是在同一设备——气缸–活塞装置中进行地,结构紧凑.由于燃烧是在作功设备

内进行地,所以称为内燃机. 汽车最常用地动力机是内燃机,但是随着技术地进步、环境保护标准地提高与石油天然气资源紧缺,使用蓄电池、燃料电池或太阳能电池地电动汽车已经呼之欲出.目前提到汽车发动机仍然主要是指内燃机. 内燃机具有结构紧凑、体积小、移动灵活、热效率高和操作方便等特点,广泛用于交通运输、工程机械、农业机械和小型发电设备等领域.它是仿照蒸汽机地结构发明地,最初使用煤气作为燃料.随着石油工业地发展,内燃机获得了更合适地燃料——汽油和柴油.德国人奥托(Nicolaus A. Otto)首先于1877年制成了实用地点燃式四 1—气缸盖和气缸体;2—活塞;3—连杆;4—水泵;5—飞轮;6 —曲轴;7—润滑油管;8—油底壳;9—润滑油泵;10—化油器; 11—进气管;12—进气门;13—排气门;14—火花塞 图7-1 单缸四冲程内燃机结构

简易斯特林发动机制作原理

简易斯特林发动机制作原理 史特灵引擎属於外燃引擎,只要高温热源温度够高,无论是使用太阳能、废热、核原料、牛粪、丙烷、天然气、沼气(甲烷)、丁烷与石油在内的任何燃料,皆可使之运转,不同於必须使用特定燃料的汽油引擎、柴油引擎等内燃引擎。 A.基础篇 A1气体的特性 如图1把橡皮绑在容器口上,我们能容易瞭解到受热时橡皮会膨胀(图2),冷却时橡皮会缩收(图3),这是加热时,内部气体压力作用在橡皮上(图2),当然人的眼睛是无法看到气体压力的。 A2移气器 如果我们放入一个移气器(Displacer)到容器内(图4),而这个移气器的直径比容器的内径小一些,当移气器自由上下移动时,即可以把容器内的气体挤下或挤上。这个时候,如果我们在容器底端加热,而在容器上端冷却,使上下两端具有足够的温差,即可看见此时橡皮会不断膨胀及收缩。其原理如下:当移气器上移,容器内的气体被挤至容器底端,此时由於容器底端加热,因此气体受热,压力变大,此压力经由活塞与容器间的空隙传到橡皮,使得橡皮会膨胀(图5)。 相反的,若施以适当的力量把移气器下移,则容器内的气体被挤至容器上端,此时由於容器上端为冷却区,因此气体被冷却,使气体温度降低,压力变小,而使得橡皮会缩收(图5)。 如此,不断使移气器自由上下移动,即可看见此时橡皮会不断膨胀及收缩。 由此,可知移气器的功用主要在於移动气体,使气体在冷热两端之间来回流动。国立成功大学航太系郑金祥教授把Displacer命名为”移气器”,实在更为贴

切,也比较不容易混淆,比较不会使人误以为它的作用跟输出功率的动力活塞一样。 A3曲柄机构 要让移气器上下移动,只要将移气器与一曲轴连结(图6)。当曲轴旋转时,移气器就会被带上及带下。将移气器与曲轴连结完毕之后,在容器底端加热上端冷却,只要用手转动曲轴,使得移气器移上及移下,此时橡皮便会重复膨胀及收缩(图7)。 A4动力活塞 橡皮的膨胀及收缩运动,可以转换为动力输出,此时,橡皮的作用即如同一动力活塞。我们可以另加一根连桿接到上述的曲轴上,便可将橡皮的膨胀及收缩运动转换为曲轴的旋转运动。连接到移气器的曲轴部位与连接到动力活塞的曲轴部位必须呈固定的角度差,一般是90度(图8,9)。橡皮的膨胀及缩收所產生的曲轴的旋转运动提供了移气器上下移动的力量,多餘的力量则可以输出。必须注意的是,移气器本身不会动,而是被曲轴带动,动力来源是动力活塞。

工程热力学与传热学(第十七讲)11_1、2、3

第十一章蒸汽压缩制冷循环 制冷:对物体进行冷却,使其温度低于周围环境温度,并维持这个低温,称为制冷。 制冷技术广泛应用于生产、科研、生活中。 制冷循环的目的:是将低温热源的热量转移到高温热源。 根据热力学第二定律,为了达到这个目的,必须提供机械能或热能作为代价。 根据所消耗的能量形式不同,一般可将逆循环分为两大类: ①消耗机械能的压缩式制冷循环。 包括:空气压缩制冷循环和蒸汽压缩制冷循环。 ②消耗热能的制冷循环。 包括:蒸汽喷射式制冷循环和吸收式制冷循环。 本章介绍最常用的蒸汽压缩制冷循环,并分析提高其经济性的途径。 第一节制冷剂及p-h图 制冷剂是制冷装置的工质,主要是低沸点物质。蒸汽压缩制冷装置中的制冷剂主要是氟里昂和液氨。 常用的氟利昂有:氟利昂12(CF2Cl2)、氟利昂22(CHF2Cl)、氟利昂134a (C2H2F4)、氨等。物理性质见表11-1。

制冷剂在制冷循环中存在汽-液相变,为了计算制冷循环中个过程的能量变化和状态参数,需要查找制冷剂的饱和蒸汽表和过热蒸汽表。 但是,工程上更多的是应用制冷剂的压-焓图(p-h图)进行分析。 p-h图是根据制冷剂蒸汽性质表绘制的。 p-h图是以logp为纵坐标、以h为横坐标建立的半对数坐标图。 如图11-1所示。 说明:①采用logp为坐标,可以使压力从0.001~0.01Mpa,从0.01~0.1Mpa,从0.1~1Mpa所占的坐标高度相同,使低压区图线面积增大,读数更准确。 ②因为实际蒸汽压缩制冷循环常用的工作压力围都远低于临界压力,所以工程上使用的p-h图都没有绘制较高压力部分。 p-h图分析:全图共有六条线、三个区(未饱和液体区、湿蒸汽区、过热蒸汽区)和一个点临界点C)。

工程热力学第十章蒸汽动力装置循环教案

第十章 蒸汽动力循环 蒸汽动力装置:是实现热能→机械能的动力装置之一。 工质 :水蒸汽。 用途 :电力生产、化工厂原材料、船舶、机车等动力上的应用。 本章重点: 1、蒸汽动力装置的基本循环 朗肯循环匀速回热循环 2、蒸汽动力装置循环热效率分析 y T 的计算公式 y T 的影响因素分析 y T 的提高途径 10-1 水蒸气作为工质的卡诺循环 热力学第二定律通过卡诺定理证明了在相同的温度界限间,卡诺循环的热效率最高,但实际上存在种种困难和不利因素,使得实际循环(蒸汽动力循环)至今不能采用卡诺循环但卡诺循环在理论上具有很大的意义。 二、为什么不能采用卡诺循环 若超过饱和区的范围而进入过热区则不易保证定温加热和定温放热,即不能按卡诺循环进行。 1-2 绝热膨胀(汽轮机) 2-C 定温放热(冷凝汽) 可以实现 5-1 定温加热(锅炉) C-5 绝热压缩(压缩机) 难以实现 原因:2-C 过程压缩的工质处于低干度的湿汽状态 1、水与汽的混合物压缩有困难,压缩机工作不稳定,而且3点的湿蒸汽比容比 水大的多'23νν>'232000νν≈需比水泵大得多的压缩机使得输出的净功大大 p v

减少,同时对压缩机不利。 2、循环仅限于饱和区,上限T1受临界温度的限制,即使是实现卡诺循环,其理论效率也不高。 3、膨胀末期,湿蒸汽所含的水分太多不利于动机 为了改进上述的压缩过程人们将汽凝结成水,同时为了提高上 限温这就需要对卡诺循环进行改进,温度采用过热蒸汽使T1高于临界温度,改进的结果就是下面要讨论的另一种循环—朗肯循环。 10-2 朗肯循环 过程: 从锅炉过热器与出来的过热蒸汽通过管道进入汽轮机T,蒸汽部分热能在T 中转换为机械带动发电机发电,作了功的低压乏汽排入C,对冷却水放出γ,凝结成水,凝结成的水由给水泵P送进省煤器D′进行预热,然后在锅炉内吸热汽化,饱和蒸汽进入S继续吸热成过热蒸汽,过程可理想化为两个定压过程,两个绝热过程—朗诺循环。 1-2 绝热膨胀过程,对外作功 2-3 定温(定压)冷凝过程(放热过程) 3-4 绝热压缩过程,消耗外界功 4-1 定压吸热过程,(三个状态) 4-1过程:水在锅炉和过热器中吸热由未饱和水变为过热蒸汽过程中工质与外界无技术功交换。 1-2过程:过热蒸汽在汽抡机中绝热膨胀,对外作功,在汽轮机出口工质达到低压低温蒸汽状态称乏汽。 2-3过程:在冷凝器中乏汽对冷却水放热凝结为饱和水。 3-4过程:水泵将凝结水压力提高,再次送入锅炉,过程中消耗外功。

斯特林发动机原理与制作

简介:斯特林引擎(Stirling Engine)的优势特色与问题 从Stirling Engine 的原理与结构来看,它有几项颇具优势的特点: 1.、其使用外部热源,因此只要是能够产生热,皆可用来做为推动的能源, 所以并不仅限于可燃烧的燃料。而由于内燃机常令人诟病其排放的废气,会产环境污染的问题,因此能够使用地热、太阳能等自然的能源来运作StirlingEngine,显然在此方面是具有优势的。 斯特林发动机原理 2.、虽然Stirling Engine 常被归类于外燃机,但实际上,只要能够产生温差, 就能够成为运作的能源,因此使用低温流体,如乾冰、或冰水,同样可使Stirling Engine 进行运作。 3.、由于Stirling Engine 外部热源与工作气体(Working gas)是分开的,因 此没有燃烧废弃物堆积于内部的问题,使用的润滑油周期较持久。 4、由于热源位于外部,因此在调整控制上,比内燃机容易得多。 5、热源的提供是连续性的,较不会有燃料燃烧不全的情形。 6、比起其他引擎,它的构造很简单,不需要阀门,也没有化油器等机构。 7、运作的温度与压力比起蒸气引擎或内燃式引擎要低且安全的多,因此引擎强度与重量不需要很要求很高。 8、没有燃烧爆炸的作用,运作也很安静,没有剧烈的震动。 以上就是Stirling Engine 的发展优势。然而,既然Stirling Engine 具有优势,但为何当初它并没有成为普遍的动力系统?显然它仍然有一些问题有待克服或替代方桉:

斯特林发动机原理 1、无法避免热源对热室的侵蚀。毕竟高温差使得其运作效率提高,但也相对的会使活塞机构产生高温或低温侵蚀性的影响,引响运作寿命。 2、虽然在低温差可以运作,但要在低温差下产生大量的动能时,引擎的体积就会很巨大。 3、高低温差的控制很困难,尤其取决于引擎的隔热包装技术。如果无法有效控制,会徒增能源的散逸,减低效率。 4、刚开始Stirling Engine 无法迅速运转,它必须经过一段“暖机时间”。 5、要改变它的能量输出等级是很难的,它无法像内燃机一样用燃油多寡直接去控制动力的大小。 6. 最好的工作气体是使用氢等分子量小的气体,但这些气体不易保存。 所以,以上的这些特性与问题,造成了Stirling Engine 发展的兴衰。以目 尽管如此,Stirling Engine 仍被利用在进行乾淨、环保的长时期稳定运作的电力生产与低温冷冻上。

斯特林发动机循环分析 工程热力学

斯特林发动机循环分析 (北京交通大学机电) 摘要:斯特林发动机不仅理论热效率高,等于卡诺循环效率,而且作为外燃机其排放特性非常好,所以近三十年来一直是研究的热点。本文介绍了斯特林发动机的装置特点、动力性能等,并对理论循环进行了分析,提出了提高循环热效率的方法及措施。 关键词:斯特林发动机,斯特林循环,热效率 1.斯特林发动机介绍 1.1斯特林发动机的装置特点 热气机是一种外燃的、闭式循环往复活塞式热力发动机。 热气机可用氢、氮、氦或空气等作为工质,按斯特林循环工作。在热气机封闭的气缸内充有一定容积的工质。气缸一端为热腔,另一端为冷腔。工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀作功燃料在气缸外的燃烧室内连续燃烧,通过加热器传给工质,工质不直接参与燃烧,也不更换。 已设计制造的热气机有多种结构,可利用各种能源,已在航天、陆上、水上和水下等各个领域进行应用。试验热气机的功率传递机构分为曲柄连杆传动、菱形传动、斜盘或摆盘传动、液压传动和自由活塞传动等。 按缸内循环的组成形式分,热气机主要有配气活塞式和双作用式两类。在一个气缸内有两个活塞作规律的相对运动,冷腔与热腔之间用冷却器、回热器和加热器连接,配气活塞推动工质在冷热腔之间往返流动。 1.2斯特林发动机的应用现状 1.2.1 国内发展状况 我国从七十年代末即开始斯特林发动机的研究开发工作,已设计出功率150W-IOkW发动机11种,多数已在实验室正常运转。现从事此项工作的约300人,并正筹建中国热气机研究会。北京农业工程大学凌泽芝同志在能源政策研究通讯1991年第一期“发展热气机、促进农村电气化”一文中介绍国内外斯特林发动机的发展概况及其特点后建议:“充分利用我国农村丰富的生物质能源和部分地区丰富的太阳能资源以解决农业用电问题”。并希望纳入国家“八五”科技规划和组织有关单位联合攻关。上海711研究所研制出热气机,是一种具有国际水准的科研成果,而排放的污染气体比目前市面上的其它发动机都要小,达到欧洲排放标准。 1.2.2 国外应用现状 1)用于热电联产型 充分利用它环境污染小的特点,在大城市里可以以天燃气作燃料,通过斯特林发动机的内部的冷却装置,冷却水被加热并回收烟气,即可采暖。1台25kW的斯特林外燃机完全可以满足500—1500建筑平方米采暖。 这种使用斯特林发动机的热电联产装置实际上相当于一台副产电力的供热锅炉,一

循环过程,卡诺循环,热机效率,致冷系数

1. 摩尔理想气体在400K 与300K 之间完成一个卡诺循环,在400K 的等温线上,起始体积为0.0010m 3,最后体积为0.0050m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量。 解答 卡诺循环的效率 %25400 300 1112=-=- =T T η (2分) 从高温热源吸收的热量 2110.005 ln 8.31400ln 53500.001 V Q RT V ==??=(J ) (3分) 循环中所作的功 10.2553501338A Q η==?=(J ) (2分) 传给低温热源的热量 21(1)(10.25)53504013Q Q η=-=-?=(J ) (3分) 2. 一热机在1000K 和300K 的两热源之间工作。如果⑴高温热源提高到1100K ,⑵低温热源降到200K ,求理论上的热机效率各增加多少?为了提高热机效率哪一种方案更好? 解答: (1) 效率 %701000300 1112=-=- =T T η 2分 效率 %7.721100 300 1112=-=- ='T T η 2分 效率增加 %7.2%70%7.72=-=-'='?ηηη 2分 (2) 效率 %801000 2001112=-=- =''T T η 2分 效率增加 %10%70%80=-=-''=''?ηηη 2分 提高高温热源交果好

3.以理想气体为工作热质的热机循环,如图所示。试证明其效率为 1112121-??? ? ??-???? ??-=P P V V γη 解答: )(22211V p V p R C T C M M Q V V mol -=?= 3分 )(22122V p V p R C T C M M Q p P mol -=?= 3分 )1()1( 1)()(112 12 1 222122121 2---=--- =- =p p V V V p V p C V p V p C Q Q V p γη 4. 如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED 是任意过程,组成一个循环。若图中EDCE 所包围的面积为70 J ,EABE 所包围的面积为30 J ,过程中系统放热100 J ,求BED 过程中系统吸热为多少? 解:正循环EDCE 包围的面积为70 J ,表示系统对外作正功70 J ;EABE 的面积为30 J ,因图中表示为逆循环,故系统对外作负功,所以整个循环过程系统对外 作功为: W =70+(-30)=40 J 3 分 设CEA 过程中吸热Q 1,BED 过程中吸热Q 2 ,由热一律, W =Q 1+ Q 2 =40 J 3 分 p V O A B E D C 2 V 1 V p p

工程热力学13动力循环.doc

动 力 循 环 一、动力循环的分析方法 1.热力学第一定律分析方法(以热效率t η为指标): 热力学第一定律效率= 投入系统的能量 有效利用的能量 动力循环 Q W t = η 121212111T T S T S T Q Q Q W t -=??-=-==η (S TdS T ?≡?? ) 理想 1 2 1T T C -=η 循环完善性 充满系数= ABCDA abcda 面积面积对应卡诺循环功量实际循环功量= 2.热力学第二定律分析方法(以火用效率ex η为指标): 热力学第二定律效率= 投入系统的可用能 有效利用的可用能 动力循环 sup ,x t ex E W = η 或 sup ,,0sup ,11x i g x i ex E S T E I ∑∑-=-=η T

sup ,x E 核算起点不同,可有两种结果: ① 以投入的燃料的化学能为起点 Q E E F x x ==,sup , ② 以释放热量的可用能为起点 ??? ? ?-==T T Q E E Q x x 0,sup ,1 两种分析法,一个考虑能量的“数量”,一个考虑能量的“质量”。各有侧重,相辅相成,不可偏废。两者的结合才能全面反映能量的经济性。 如书上本章*10-6 对蒸气动力循环的火用分析, 用热一律分析: 乏汽排热能量损耗最大,冷凝器散热损失约占总热量的54.26%, 但因放热温度低,火用损失并不大,约占总火用的2.22%; 用热二律分析:锅炉的燃烧与传热火用损失最大,约占总火用的58.91% /35.84%; 但其热损失仅为10%。 13 蒸汽动力循环 13.1 朗肯循环 根据热力学第二定律,在一定温度范围内卡诺循环的效率最高。 如果采用气体作为工质,则很难实现卡诺循环中的等温吸热和等温放热这两个过程。 然而我们已经知道,在湿蒸汽区内,蒸汽的 吸热和放热都是等温过程,同时也是等压过程。因此如果以饱和蒸汽作为工质,可以在蒸汽的湿蒸汽区内实现卡诺循环。图 13-1给出了饱和蒸汽卡诺循环的T -s 图。等温吸热过程4-1为在锅炉中的定压吸热过程;等温放热过程2-3

工程热力学第十章蒸汽动力装置循环教案

工程热力学第十章蒸汽动力装置循环教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十章 蒸汽动力循环 蒸汽动力装置:是实现热能→机械能的动力装置之一。 工质 :水蒸汽。 用途 :电力生产、化工厂原材料、船舶、机车等动力上的应用。 本章重点: 1、蒸汽动力装置的基本循环 朗肯循环匀速 回热循环 2、蒸汽动力装置循环热效率分析 y T 的计算公式 y T 的影响因素分析 y T 的提高途径 10-1 水蒸气作为工质的卡诺循环 热力学第二定律通过卡诺定理证明了在相同的温度界限间,卡诺循环的热效率最高,但实际上存在种种困难和不利因素,使得实际循环 (蒸汽动力循环)至今不能采用卡诺循环但卡诺循环在理论上具有很大的意义。 二、为什么不能采用卡诺循环 若超过饱和区的范围而进入过热区则不易保证定温加热和定温放热,即不能按卡诺循环进行。 1-2 绝热膨胀(汽轮机) 2-C 定温放热(冷凝汽) 可以实现 5-1 定温加热(锅炉) C-5 绝热压缩(压缩机) 难以实现 原因:2-C 过程压缩的工质处于低干度的湿汽状态 1、水与汽的混合物压缩有困难,压缩机工作不稳定,而且3点的湿蒸汽比容比水大的多'23νν>' 232000νν≈需比水泵大得多的压缩机使得输出的净功大大减少,同时对压缩机不利。 p v

2、循环仅限于饱和区,上限T1受临界温度的限制,即使是实现卡诺循环,其理论效率也不高。 3、膨胀末期,湿蒸汽所含的水分太多不利于动机 为了改进上述的压缩过程人们将汽凝结成水,同时为了提高上 限温这就需要对卡诺循环进行改进,温度采用过热蒸汽使T1高于临界温度,改进的结果就是下面要讨论的另一种循环—朗肯循环。 10-2 朗肯循环 过程: 从锅炉过热器与出来的过热蒸汽通过管道进入汽轮机T,蒸汽部分热能在T中转换为机械带动发电机发电,作了功的低压乏汽排入C,对冷却水放出γ,凝结成水,凝结成的水由给水泵P送进省煤器D′进行预热,然后在锅炉内吸热汽化,饱和蒸汽进入S继续吸热成过热蒸汽,过程可理想化为两个定压过程,两个绝热过程—朗诺循环。 1-2 绝热膨胀过程,对外作功 2-3 定温(定压)冷凝过程(放热过程) 3-4 绝热压缩过程,消耗外界功 4-1 定压吸热过程,(三个状态) 4-1过程:水在锅炉和过热器中吸热由未饱和水变为过热蒸汽过程中工质与外界无技术功交换。 1-2过程:过热蒸汽在汽抡机中绝热膨胀,对外作功,在汽轮机出口工质达到低压低温蒸汽状态称乏汽。 2-3过程:在冷凝器中乏汽对冷却水放热凝结为饱和水。 3-4过程:水泵将凝结水压力提高,再次送入锅炉,过程中消耗外功。朗肯循环与卡诺循环

斯特林发动机原理图解(经典)

斯特林发动机原理图解 2010-02-10 18:53 如图1 把橡皮绑在容器口上,我们能容易瞭解到受热时橡皮会膨胀(图2),冷却时橡皮会缩收(图3),这是加热时,内部气体压力作用在橡皮上(图2),当然人的眼睛是无法看到气体压力的。 A2移气器 如果我们放入一个移气器(Displacer)到容器内(图4),而这个移气器的直径比容器的内径小一些,当移气器自由上下移动时,即可以把容器内的气体挤下或挤上。这个时候,如果我们在容器底端加热,而在容器上端冷却,使上下两端具有足够的温差,即可看见此时橡皮会不断膨胀及收缩。其原理如下: 当移气器上移,容器内的气体被挤至容器底端,此时由於容器底端加热,因此气体受热,压力变大,此压力经由活塞与容器间的空隙传到橡皮,使得橡皮会膨胀(图5)。 相反的,若施以适当的力量把移气器下移,则容器内的气体被挤至容器上端,此时由於容器上端為冷却区,因此气体被冷却,使气体温度降低,压力变小,而使得橡皮会缩收(图5)。 如此,不断使移气器自由上下移动,即可看见此时橡皮会不断膨胀及收缩。 由此,可知移气器的功用主要在於移动气体,使气体在冷热两端之间来回流动。国立成功大学航太系郑金祥教授把Displacer 命名為”移气器”,实在更為贴切,也比较不容易混淆,比较不会使人误以為它的作用跟输出功率的动力活塞一样。

A3 曲柄机构 要让移气器上下移动,只要将移气器与一曲轴连结(图6) 。当曲轴旋转时,移气器就会被带上及带下。将移气器与曲轴连结完毕之后,在容器底端加热上端冷却,只要用手转动曲轴,使得移气器移上及移下,此时橡皮便会重复膨胀及收缩(图7)。 A4 动力活塞 橡皮的膨胀及收缩运动,可以转换為动力输出,此时,橡皮的作用即如同一动 力活塞。我们可以另加一根连桿接到上述的曲轴上,便可将橡皮的膨胀及收缩运 动转换為曲轴的旋转运动。连接到移气器的曲轴部位与连接到动力活塞的曲轴部 位必须呈固定的角度差,一般是90度(图8,9)。橡皮的膨胀及缩收所產生的曲轴 的旋转运动提供了移气器上下移动的力量,多餘的力量则可以输出。必须注意的

工程热力学14 气体动力循环

14 气体动力循环 14.1 燃气轮机装置与定压加热循环 燃气轮机装置是以燃气为工质的热动力装置,最简单的燃气轮机装置示意图如图14-1所示,由压气机、燃烧室和燃气轮机三个基本部分组成。 在燃气轮机循环中,空气不断地被压气机吸入,经压缩升压后,送入燃烧室; 压缩空气在燃烧室中和供入的燃料在定压下燃烧,形成高温燃气;高温燃气与来自燃烧室夹层通道中的压缩空气混合,使混合气体的温度降到燃气轮机叶片所能承受的温度范围后,进入燃气轮机的喷管;燃气在喷管中膨胀加速,形成高速气流,冲击叶轮对外输出功量;做功后的废气排入环境。燃气轮机做出的功量除一部分带动压气机外,其余部分(循环净功)对外输出。 显然,上述燃气轮机循环是一个不可逆的开式循环,而且循环中工质的成分、 质量都有变化。为了便于分析,需要把实际循环作理想化的假设: ① 燃烧室中喷入的燃料质量忽略不计; ② 忽略阻力的影响,燃烧过程压力变化不大,可以把燃料燃烧的化学过程假 定为工质从高温热源吸收热量的定压吸热过程; ③ 燃气轮机 排出的废气压力和压气机吸入的气体压力都非常接近大

气压力,可以把废气的排放假定为 工质向冷源放热后,再返回到压气机的定压放热过程; ④ 工质在压气机和燃气轮机中向外散热很少,可以理想化为可逆绝热过 程,即定熵过程; ⑤ 工质为理想气体,比热容为定值。 通过上述假定,燃气轮机循环就被简化为定量工质完成的可逆的封闭循环。该循环由定熵压缩过程(1-2)、定压加热过程(2-3)、定熵膨胀过程(3-4) 和定压放热过程(4-1)四个可逆过程组成,称为燃气轮机装置的定压加热理想循环,又称布雷顿循环,其p-v 图和T-s 图如图14-2所示。 对组成布雷顿循环的各过程进行能量分析计算,可以得出其热效率如下: 吸热量(2-3): ()2323T T c h h q p H -=-= 放热量(4-1): ()1414T T c h h q p L -=-= 按照循环热效率的定义,可得: ()() 2 3142314111T T T T T T c T T c q q p p H L t --- =--- =- =η (14-1) 由于1-2以及3-4是定熵过程,并且23p p =,14p p =,可得,

工程热力学课后答案

第六章 水蒸气性质和蒸汽动力循环 思 考 题 1. 理想气体的热力学能只是温度的函数,而实际气体的热力学能则和温度及压力都有关。试根据水蒸气图表中的数据,举例计算过热水蒸气的热力学能以验证上述结论。 [答]: 以500℃的过热水蒸汽为例,当压力分别为1bar 、30bar 、100bar 及300bar 时,从表中可查得它们的焓值及比容,然后可根据u h pv =-计算它们的热力学能,计算结果列于表中: 由表中所列热力学能值可见:虽然温度相同,但由于是实际气体比容不同,热力学能值也不同。 2. 根据式(3-31)c h T p p =?? ????? ??? ? ????可知:在定压过程中d h =c p d T 。这对任何物质都适用,只要过程是定压的。如果将此式应用于水的定压汽化过程,则得d h = c p d T =0 (因为水定压汽化时温度不变,d T =0)。然而众所周知 , 水在汽化时焓是增加的 (d h >0)。问题到底出在哪里? [答] :的确,d h =c p d T 可用于任何物质,只要过程是定压过程。水在汽化时,压力不变,温度也不变,但仍然吸收热量(汽化潜热)吸热而不改变温度,其比热应为无穷大,即此处的p C 亦即为T C ,而T C =∞。此时0dh =∞g =不定值,因此这时的焓差或热量(潜热)不同通过比热和温差的乘积来计算。 3. 物质的临界状态究竟是怎样一种状态? [答] :在较低压力下,饱和液体和饱和蒸汽虽具有相同的温度和压力,但它们的密度却有很大的差别,因此在重力场中有明显的界面(液面)将气液两相分开,随着压力升高,两饱和相的密度相互接近,而在逼近临界压力(相应地温度也逼近临界温度)时,两饱和相的密度差逐渐消失。流体的这种汽液两相无法区分的状态就是临界状态。由于在临界状态下,各微小局部的密度起伏较大,引起光线的散射形成所谓临界乳光。

斯特林发动机

斯特林发动机 求助编辑百科名片 斯特林发动机 这种发动机是伦敦的牧师罗巴特斯特林(Robert Stirling)于1816年发明的,所以命名为“斯特林发动机”(Stirling engine)。斯特林发动机是独特的热机,因为他们理论上的效率几乎等于理论最大效率,称为卡诺循环效率。斯特林发动机是通过气体受热膨胀、遇冷压缩而产生动力的。这是一种外燃发动机,使燃料连续地燃烧,蒸发的膨胀氢气(或氦)作为动力气体使活塞运动,膨胀气体在冷气室冷却,反复地进行这样的循环过程 目录 外燃机 外燃机优缺点 热气机

热气机工作原理 已研发改良的的外燃机热气机的优点 热气机存在的主要问题热气机的应用 小说中的斯特林发动机斯特林简介 斯特林发动机的发展展开 外燃机 外燃机优缺点 热气机 热气机工作原理 已研发改良的的外燃机热气机的优点 热气机存在的主要问题热气机的应用 小说中的斯特林发动机斯特林简介 斯特林发动机的发展展开

编辑本段外燃机外燃机是一种外燃的闭式循环往复活 塞式热力发动机,有别于依靠燃料在发动机内部燃烧获得动力的内燃机。新型外燃机使用氢气作为工质,在四个封闭的气缸内充有一定容积的工质。气缸一端为热腔,另一端为冷腔。工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀做功。燃料在气缸外的燃烧室内连续燃烧,通过加热器传给工质,工质不直接参与燃烧,也不更换。 编辑本段外燃机优缺点由于外燃机避免了传统内燃机 的震爆做功问题,从而实现了高效率、低噪音、低污染和低运行成本。外燃机可以燃烧各种可燃气体,如:天然气、沼气、石油气、氢气、煤气等,也可燃烧柴油、液化石油气等液体燃料,还可以燃烧木材,以及利用太阳能等。只要热腔达到700℃,设备即可做功运行,环境温度越低,发电效率越高。外燃机最大的优点是出力和效率不受海拔高度影响,非常适合于高海拔地区使用。 但是,斯特林发动机还有许多问题要解决,例如膨胀室、压缩室、加热器、冷却室、再生器等的成本高,热量损失是内燃发动机的2-3倍等。所以,还不能成为大批量使用的发动机。

斯特林发电机设计方案

6KW斯特林发电机设计方案 1. 斯特林发动机技术现状 斯特林发动机始于1816年。其后的若干年内,斯特林发动机的开发都没有实质进展。直到上世纪30年代,具有实用价值的现代斯特林发动机才问世。但结构复杂、体积庞大、密封困难等缺陷严重阻碍了其应用推广。只用于潜艇等特殊领域!瑞典考库姆公司在该技术领域居领先地位。装备世界海军的斯特林发动机都是采用该公司的技术方案。美国STM公司选择斜盘输出的技术路线,也成功开发出斯特林发动机。应用范围仍然有限。 自从上世纪三十年代荷兰菲利蒲斯发明现代斯特林发动机以来,通用汽车公司、福特公司、瑞典斯特林联合公司和德MAN公司分别于六十年代、七十年代购买此项专利。在轿车和公共汽车上进行了大量试验,都因经济原因无法推广。但是,斯特林发动机的发展潜力一直受到高度重视。早在1974年,美国人R.W.Richardson分析比较了各类发动机的优缺点后的预言:斯特林发动机是很有前途的发动机! 斯特林发动机的发展期待着结构的重大突破! 2007年12月19日,结构更合理的斯特林可逆热机申报中国发明专利,2011年6月15日获中国发明专利(专利号200710050949.2)。清除了阻碍斯特林发动机推广应用的所有障碍,使斯特林热机全面取代内燃机可以成为现实。2011年1月31日申请中国发明专利的一种斯特林热机工况控制器(申请号201110035499.6)为斯特林发动机提供了可靠的控制系统。 《新型斯特林发动机设计理论研究》一文针对斯特林可逆热机的结构,采用施密特分析法,建立了相应设计理论模型,推导出了准确进行理论计算的功率计算公式;提出了停机角、运转角等技术新概念;从输出功和停机角、运转角差值的正负,确定斯特林可逆热机是用于发动机或制冷机,从理论上阐明了斯特林可逆热机的可逆性。《斯特林发动机极限压力与平均温度关系探析》解决了施密特分析法理论计算必须的平均温度理论计算难题。 在这种技术条件下,相同功率的斯特林发动机比内燃机体积小,零件减少40%以上。噪声低、适应高海拔高寒条件等固有优势充分发挥,使用性能优于内燃机、制造成本低于内燃机的技术条件已经成熟。取代内燃机毫无悬念,只是时间问题。 上世纪三十年至七十年代,斯特林发动机在同内燃机的竞争中败北,其原因就是内燃机的体积小、密封容易。斯特林可逆热的体积比内燃机更小,密封问题也解决了。在新一轮竞争中,斯特林发动机将处于优势地位。国际斯特林发动机业界关于“二十一世纪是斯特林发动机的世纪。”的论断很有科学预见性。 该6KW斯特林发电机设计方案采用斯特林可逆热机的结构,按照施密特分析法进行理论计算。 斯特林可逆热机在结构上与美国STM公司的斜盘输出结构有相似性,都是四个工作腔均匀分布在园周上,相邻活塞组的冷区热区气缸相连,形成热区气缸容积变化超前冷区气缸容积变化90度的相位关系。图一就清楚描述了这种相位关系。 虽然美国STM公司的斜盘输出结构相对菱形结构、双曲柄结构空间利用率高,但是密封、冷却、相邻工作腔之间窜气等问题同样导致其可靠性低。 斯特林可逆热机结构较斜盘输出结构的突出优点在于:1、独特的两级密封

工程热力学思考题答案,第十一章

工程热力学思考题答案,第 十一章 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第十一章 制冷循环 1.家用冰箱的使用说明书上指出,冰箱应放置在通风处,并距墙壁适当距离,以及不要把冰箱温度设置过低,为什么 答:为了维持冰箱的低温,需要将热量不断地传输到高温热源(环境大气),如果冰箱传输到环境大气中的热量不能及时散去,会使高温热源温度升高,从而使制冷系数降低,所以为了维持较低的稳定的高温热源温度,应将冰箱放置在通风处,并距墙壁适当距离。 在一定环境温度下,冷库温度愈低,制冷系数愈小,因此为取得良好的经济效益,没有必要把冷库的温度定的超乎需要的低。 2.为什么压缩空气制冷循环不采用逆向卡诺循环 答:由于空气定温加热和定温放热不易实现,故不能按逆向卡诺循环运行。在压缩空气制冷循环中,用两个定压过程来代替逆向卡诺循环的两个定温过程。 3.压缩蒸气制冷循环采用节流阀来代替膨胀机,压缩空气制冷循环是否也可以采用这种方法为什么 答:压缩空气制冷循环不能采用节流阀来代替膨胀机。工质在节流阀中的过程是不可逆绝热过程,不可逆绝热节流熵增大,所以不但减少了制冷量也损失了可逆绝热膨胀可以带来的功量。而压缩蒸气制冷循环在膨胀过程中,因为工质的干度很小,所以能得到的膨胀功也极小。而增加一台膨胀机,既增加了系统的投资,又降低了系统工作的可靠性。因此,为了装置的简化及运行的可靠性等实际原因采用节流阀作绝热节流。 4.压缩空气制冷循环的制冷系数、循环压缩比、循环制冷量三者之间的关系如何 答: T (a (b ) 压缩空气制冷循环状态参数图

相关文档
最新文档