多元连续函数的性质

多元连续函数的性质
多元连续函数的性质

毕业论文

题目:多元连续函数的性质

学院:数学与信息科学学院

专业:数学与应用数学

毕业年限:2012.6

学生姓名:马骥

学号:200871010428

指导教师:张春霞

多元连续函数的性质

马骥

(西北师范大学 数学与信息科学学院,甘肃 兰州 730070)

内容摘要:本文通过将一元连续函数在闭区间上的性质和二元连续函数在有界闭区域上的性质推广到

多元连续函数的性质. 我们一般可把区域分为有界区域和无界区域.本文分别探讨了多元连续函数在有界区域和无界区域上的性质,并得出一系列的结论.对于有界区域D ,对任意0P D ∈,

任意{}n P D ?,0n P P →时,lim ()n n f P →∞

存在,则函数f 在D 上有界,取得最大、最小值,一致连续.对于无界区域D ,

如果存在0r >,对任意P D ∈,P r >时,有()f P M ≤,则f 在D 上有界;若lim ()P f P →∞

=+∞,

则取得最小值;若lim ()P f P →∞

=-∞,则取得最大值.本文分别运用了区域的道路连通性和有界闭区域

完全覆盖原理两种方法证明了零点存在性定理,然后用零点存在性定理证明多元连续函数的介值性. 关键词:有界区域;无界区域;有界性;最值性;介值性;一致连续性

Properties of the Multivariate Continuous Function

Abstract :This paper popularize the properties of the continuous function of one variable or two variables on

closed interval with bound to the multivariate continuous function. Generally, the domain can be divided into two kinds: the bounded domain and the unbounded domain. This paper discusses the properties of the multivariate continuous function on the bounded domain or the unbounded domain and draws a series of conclusions. On bounded domain D , for any 0P D

∈, any

{}n P D ?,

if lim ()n n f P →∞

exists

while 0n P P →,then function f is bounded and uniformly continuous , and exist maximum and minimum value . On unbounded domain D , there is 0r > and for any P D ∈, P r > ,if ()f P M ≤,then the function f is bounded; if lim ()P f P →∞

=+∞, then the function f can get the minimum value; if

lim ()P f P →∞

=-∞, the function f will get the maximum value. This paper applies road connectivity and

complete coverage theorem on closed domain with bound respectively to proof of zero point theorem, then applies zero point theorem to proof of intermediate value theorem of the multivariate continuous function.

Keywords :Bounded domain ;unbounded domain ;boundedness ;maximum and minimum value ;

intermediate-value property ;uniformly continuous

一 引言

连续函数的性质在函数的研究中具有很重要的意义和广泛的应用价值.在文献[1]中,利用闭区间上一元连续函数的性质推广到有界闭区域2D R ?上二元连续函数的性质,在文献[2]中研究了在有界闭区域n D R ?上连续函数:m

f D R →的性质.在文献[3] [4] [5]中,也探讨了从闭区间到一般区间附加一定条件下连续函数的有界性、取得最大值和最小值性、介值性以及一致连续性问题.但在实际运用过程中,我们经常接触到的不仅仅是区间,还有区域,因此,本文研究了在区域n D R ?上连续函数

:f D R →的性质,并得出一系列的结论,为连续函数的性质在实际中更广泛地应用提供了一定的理

论依据.

一般地,我们可以把9种形式的区间分为三类:①闭区间[],a b ;②开区间(),a b ,(),a +∞,

(),b -∞,(),-∞+∞;③半开半闭区间[),a b ,(],a b ,[),a +∞,(],b -∞.同样地,我们也可以把区域分为:①

有界闭区域;②有界开区域;③无界区域.例如,{}(,)|,S x y a x b c y d =≤≤≤≤为有界闭区域,

{}222(,)|5C x y x y =+<为有界开区域,{}(,)|,D x y x y =-∞<<-∞+∞<<+∞为无界区域.由于

在有界闭区域上连续函数的性质,在诸多数学分析教材中已有研究,因此,本文主要研究在有界区域和无界区域上多元连续函数的性质.

二 预备知识

文中用D 表示D 的闭包,0

D 表示D 的内部,D ?表示D 的边界,d

D D ()表示的直径,P 表示点P 到原点的距离, 1D D -表示集合1D 在集合D 中的余集.

定义1[1] 设D 是开集,如果对于D 内任何两点,都可用折线连接起来,且该折线上的点都属于

D ,则称D 是连通的.连通的开集称为区域或开区域.开区域连同它的边界一起,称为闭区域.

定义2[2] 设n D R ?,若对任意x y D ∈,,存在()[]()0,1,n t C R α∈,使得对任意[]0,1t ∈有

()t D α∈且()0x α=,()1y α=,则称D 是道路连通的,其中()t α叫做D 中的一条道路,()0α和()1α分别称为该道路的起点和终点.

定义3 设D 是一个区域.如果对于任何两点x ,y ,存在着D 中的一条从x 到y 的道路,我们

则称D 是一个道路连通区域.

引理1[1](完全覆盖) 有界闭区域D 的任意一个完全覆盖都包含D 的一个分割,即存在D 的

闭子区域12n D D D ,,,,使得{}|1i D i n C ≤≤?,i D D n

i=1

=

且任意1i ≤,j n ≤,当i j ≠时,

i j d D D ()=0,其中i j d D D ()表示i j D D 的直径.

引理2[2] 设n D R ?为一有界闭集,若:m f D R →为D 上的连续函数,则()m f D R ?必定也

是一个有界闭集.

引理3[2] 设n D R ?为一有界闭集,若:m f D R →为D 上的连续函数,则f 在D 上必定一致

连续.即对于任给的0ε>,存在只依赖于ε的0δ>,只要'

''

,x x D ∈,且满足'"x x δ-<,就有

'"()()f x f x ε-<.

引理4[6](Bolzano-Weierstrass 引理) 设{}n P 是n R 中的有界序列,则它必有收敛的子序

列.

在引理2,引理3中,当1m =时我们可以很容易得到以下推论.

推论1 设在有界闭区域n D R ?上函数:f D R →连续,则函数f 在D 上有界.

推论2 设在有界闭区域n D R ?上函数:f D R →连续,则函数f 在D 上能取得最大值与最小

值.

推论3 设在有界闭区域n D R ?上函数:f D R →连续,则函数f 在D 上一致连续.

三 多元连续函数的性质

定理1 设在有界区域n D R ?上函数:f D R →连续,且对任意0P D ∈,任意

{}n P D ?,0n P P →时,lim ()n n f P →∞

存在,则函数f 在D 上有界. 证明 定义:F D R →如下:

当P D ∈时,定义()()F P f P =.

当P D ∈?时,定义()()lim n n F P f P →∞

=,其中n P P →,n P D ∈.事实上,对D 中任意两个趋于0

P 的点列{}n P ,{}n Q ,则0lim lim n n n n P

Q P →∞

→∞

==.设{}{}1122,,,,,,,

n n n R Q P Q P Q P =,则{}n R D ?,

0n R P →,lim ()n n f R →∞

存在.

由于lim ()n n f R →∞

存在,故

lim ()lim ()lim ()n n n n n n f P f Q f R →∞

→∞

→∞

==.

所以,F 的定义有意义.

下面证明函数:F D R →连续.即对任意一点0P D ∈,任意{}0,n n P

D P P ?→时,有 0lim ()()n n F P F P →∞

=.

1.当0P D ∈时,取0n P P →.当n 充分大时,n P D ∈,则n n F P f P ()=().所以

00lim ()lim ()()()n n n n F P f P f P F P →∞

→∞

===.

2.当0P D ∈?时, 对任意{}n P D ?,0n P

P →,构造一点列{}

'n P D ?,使得'1

n n P P n

-<,'1

()()n n F P F P n

-<

.找{}'n P 的方法如下: ① 当n P D ∈时,取'

n n P P =.

② 当n P D ∈?时,存在一点列{}m Q D ?,m n Q P →,且lim ()()m n m f Q F P →∞

=.即存在

0M >,m M >,1m n Q P n -<

,1()()m n f Q F P n

-<.此时取'1n M P Q +=,因为'

n P D ∈,故''()()n n F P f P =.

所以,'0lim lim n n n n P P P →∞

→∞

==,由于'n P D ∈,由定理条件知,'

lim ()n n f P →∞

存在.故有

''lim ()lim ()lim ()n n n n n n F P f P F P →∞

→∞

→∞

==.

由F 的定义知:

'0()lim ()lim ()n n n n F P f P F P →∞

→∞

==.

从而:F D R →连续.

由于有界闭区域D 是紧致空间,而连续函数在紧致空间上有界,故F 在有界闭区域D 上有界,从而F 在D 上有界,而在D 上F f =,故f 在D 上有界.

定理2 设在无界区域n D R ?上函数:f D R →连续,如果存在0r >,对任意P D ∈,P r

>时,有()f P M ≤,则函数f 在D 上有界.

证明 设()1,D D B O r =,则1D 为有界闭集.已知f 在D 上连续,则f 在1D 上连续,而1

D 为有界闭区域,由推论1可知f 在1D 上有界.即对任意0N >,对任意1P D ∈,有()f P N <.

由定理条件知,对任意1P D D ∈-,有()f P M ≤. 于是 ,存在{}0max ,M N M

=,对任意P D ∈,有

0()f P M ≤.所以,函数f 在区域D 上有界.

定理 3 设在有界区域n D R ?上函数:f D R →连续,对任意0P D ∈,对任意{}n P D ?,

0n P P →时,lim ()n n f P →∞

存在;且存在Q D ∈,对任意P D ∈?,有()l i m n n P P

f Q f P →≥()

,则函数f 在D 内能取得最大值.

证明 将函数f 在闭区域D 上作连续延拓,令

lim ()n n F P f P →∞

()=,其中{}n P D ?,n P P →,P D ∈.

由定理1的证明过程可知,函数()F P 在D D D =?上连续,由()F P 在有界闭区域D 上连续可

知,F 在有界闭区域D 上有最大值,从而()F P 在D 上取得最大值.

设F 在D 上的最大值为0()F P ,0P D ∈,则对任意P D ∈,有

0()()()F P f P F P =≤.

若0P D ∈,则00()()F P f P =,显然()0f P 为f 在D 内的最大值. 若0P D ∈?,则存在{}0,n n P D P P ?→,则有

()0lim ()n n F P f P f Q →∞

≤()=.

故对任意P D ∈,都有()()()0F P F P f Q ≤≤,所以()f Q 为f 在D 内的最大值.

定理4 设在有界区域n D R ?上函数:f D R →连续,对任意0P D ∈,

任意{}n P D ?,0n P P →时,lim ()n n f P →∞

存在;且存在Q D ∈,对任意,lim n n P P

P D f Q f P →∈?≤有(

)(),则函数f 在D 内能取得最小值.

证明方法同理与定理3.

定理5 设在有界区域n D R ?上函数:f D R →连续,对任意0P D ∈?,任意{}n P D ?,

0n P P →时,有lim ()n n f P →∞

=+∞,则函数f 在D 内能取得最小值.

证明 先证f 有下界.若f 无下界,则存在{}n P D ?,使lim ()n n f P →∞

=-∞.因为{}n P 有界,故

存在收敛子序列{}

k n P ,满足0k n P P →,且lim ()k n n f P →∞

=-∞.

若0P D ∈,则()0lim ()k n n f P f P →∞

=,这与lim ()k n n f P →∞

=-∞矛盾.

若0P D ∈?,则lim ()k n n f P →∞

=+∞,这与lim ()k n n f P →∞

=-∞矛盾.

故f 有下界.现设()inf m f D =,可证存在点Q D ∈,使()f Q m =.如果不然,对任意点P D ∈,都有()0f P m ->.可设

()()1

F P f P m

=

-.

定义:G D R →如下:

()()0.

F P P D

G P P D ∈??=?

∈???,,

, 则:G D R →连续(证明方法同定理1证明过程中:F D R →连续的证明).

又因f 在D 上不能达到下确界m ,所以存在点列{}

'n P D ?,使'

lim ()n n f P m →∞

=.因为{}

'

n P 有界,

故存在收敛子序列{}

'

k n P ,满足'

k n P P →,P D ∈,由于G 在D 上连续,得

()

()'lim k n k G P G P →∞

=.

因为'

k n P D ∈,由G 的定义,得

()()

()'''

1lim lim lim

k k k

n n k k n n G P F P f P

m

→∞

→∞

→∞

===+∞-.

这与前面()

()'

lim k n k G P G P →∞

=相矛盾.从而证得函数f 在D 内能取得最小值.

定理6 设在有界区域n D R ?上函数:f D R →连续,对任意0P D ∈?,任意{}n P D ?,

0n P P →时,有lim ()n n f P →∞

=-∞,则函数f 在D 内能取得最大值.

证明 令()()g P f P =-,则lim ()lim ()n n n n g P f P →∞

→∞

=-=+∞,根据定理5可知,g 在D 内能取

得最小值,则f 在D 内能取得最大值.

定理7 设在无界区域n D R ?上函数:f D R →连续,如果lim ()P f P →∞

=+∞,则函数f 在D 上

取得最小值.

证明 因为lim ()P f P →∞

=+∞,所以任取1P D ∈,对常数1()f P ,存在0r >,当P r >时,有

1()()f P f P >.

设()1,D D

B O r =,则1D 为有界闭集.由于f 在D 上连续,则f 在1D 上连续,而1D 为有界闭区

域,所以f 在1D 上必取得最小值,设为2()f P ,对任意1P D ∈,有2()()f P f P ≥.

综上所述,取{}012()min (),()f P f P f P =,对任意P D ∈,有0()()f P f P ≥,其中当12()()f P f P ≥时,02P P D =∈;当12()()f P f P ≤时,01P P D =∈.

定理8 设在无界区域n D R ?上函数:f D R →连续,如果lim ()P f P →∞

=-∞,则函数f 在D 上

取得最大值.

证明 令()()g P f P =-,则lim ()lim ()P P g P f P →∞

→∞

=-=+∞,根据定理7可知,g 在D 内能

取得最小值,则f 在D 内能取得最大值.

定理9(零点存在性定理)[2] 设函数f 在道路连通区域D 上连续,且在D 的两点1P 和2P 上

的值异号,即12()()0f P f P <,则在D 内连接1P

和2P 的一条道路上,一定存在点00,()0P D f P ∈=使得.

证明(方法一) 由于区域D 具有道路连通性,故D 中存在一条从1P 2到P 的道路,设

[]12:0,1,(0),(1),n g D R g P g P →?==且有由于f 在区域D 上连续,由复合映射的连续性可知,[]:0,1f g R →也是连续的,记[]()(),0,1h t f g t t =∈,则有

12(0)(1)((0))((1))((0))((1))()()0h h f g f g f g f g f P f P ===<.

由一元函数的零点存在性定理知,存在[]000,1,()0t h t ∈=使得.即 ()000()(())0h t f

g t f g t === .

令00000(),,()0,g t P P D f P P D =∈=∈则有.从而定理得证.

方法二(反证法) 假设在D 上不存在点0P ,使得0()0f P =,则对任意00,()0P D f P ∈≠.由连续函数的保号性,存在000()0,(;())P P U P P δδ>∈使得时,0()()f P f P 与同号.设'D 为D 的连通闭子

集,且'

12P P D ∈,,令C =﹛'E D ?|E 是'D 的闭子区域且是某个00(;())U P P δ的子集﹜,则C 是'D 的一个完全覆盖.由完全覆盖引理,C 包含'D 的一个分割12n D D D ,,,,而i D 与

1i D +12,1i n =-(,,)有公共界点.由于在i D 12,1i n =-(,,)上()f P 不变号,故若在1D 上

()0f P >,便可由1D 与2D 有公共界点推出在2D 上有()0f P >,由此依次可推出在所有的i D 12,1i n =-(,,)上都有()0f P >.从而1()0f P >,2()0f P >,则12()()0f P f P >.这与定理条

件的12()()0f P f P <矛盾.从而定理得证.

定理10(介值性定理)[2] 设函数f 在道路连通区域D 上连续,若12P P ,为D 内任意两点,且

12()()f P f P <,则对任何满足不等式12()()f P u f P <<的实数u ,必存在点00,()P D f P u ∈=使得.

证明 令()()F P f P u =-,则()F P 在区域D 上连续,且

1122()()0,()()0F P f P u F P f P u =-<=->,

根据定理9,在区域D 必存在点0P ,使得

00()()0F P f P u =-=,

即,有0()f P u = .

定理得证.

定理11[1] 设在区域n D R ?上函数:f D R →连续,则f D (

)必定是一个区间. 证明 在区域D 上任取两点12P P ,,且12()()f P f P <,根据定理10知,存在0P D ∈,使得

0()f P u =,满足

12()()f P u f P <<.

于是,

[]12()(),()f D f P f P ?.

所以,f D (

)是一个区间. 定理12 设在有界区域n D R ?上函数:f D R →连续,对任意0P D ∈,任意{}n P D ?,

0n P P →时,lim ()n n f P →∞

存在,则函数f 在D 上一致连续.

证明(方法一) 将函数f 在闭区域D 上作连续延拓,令

lim ()n n F P f P →∞

()=,其中{},n n P D P P ?→,P D ∈.

由定理1的证明过程可知,函数()F P 在D D D =?上连续,则由推论3可知,F 在有界闭区域

D 上一致连续,从而F 在D 上一致连续,由于P D ∈时,()()F P f P =,因此函数f 在区域D 上一

致连续.

(方法二) 假设f 在D 上不一致连续,则存在00ε>,对于任意小的1

n

,总有相应的n P ,

n Q D ∈,虽然()1

,n n P Q n

ρ<

,但仍有()()0n n f P f Q ε-≥. 由于D 为有界区域,因此存在收敛子列{}

{}k n n P P ?,并设0lim k n k P P D →∞

=∈.同样地,我们可以在

{}n Q 中取得收敛子列{}k

n Q ,则因

()

1

0,0,k k n n k

P Q k n ρ≤<

→→∞, 所以有0lim lim k k n n k k Q P P →∞

→∞

==.设

{}{}1

1

2233,,,,,,

k

n n n n n n n R P Q

P Q P Q =,

0lim lim lim k k k n n n k k k R Q P P →∞

→∞

→∞

===.

又因为{}k n R ,{}k n P ,{}k n Q D ?,且0lim lim lim k k k n n n k k k R Q P P →∞

→∞

→∞

===,()

lim k n k f R →∞

,()

lim k n k f Q →∞

,

()

lim k n k f P →∞

都存在,所以有

()()()

lim lim lim k k k n n n k k k f R f Q f P →∞

→∞

→∞

==,

则有

()()()()

lim lim lim 0k k k k n n n n k k k f P f Q f P f Q →∞

→∞

→∞

-=-=.

这与()()0

0k k n n f P f Q ε

-≥>相矛盾.所以f 在D 上一致连续.

参考文献

[1]华东师范大学数学系.数学分析(下册)[M].第三版,北京:人民教育出版社,2001.6.

[2]毛羽辉.数学分析选论[M].第一版,北京:科学出版社,2003.9.

[3]龚国勇.开区间与无穷区间内连续函数的性质[J].玉林师范高等专科学校学报(自然科学).2000,21(3):1—3.

[4]邹慧超.一般区间上连续函数的性质[J].烟台师范学院报(自然科学).2002,18(4):241—246.

[5]夏丹,夏军.闭区间上连续函数的性质推广[J].广西右江民族师专学报.2005,18(6):13—14.

[6]黄玉民,李成章.数学分析(下册)[M].第一版,北京:科学出版社,1999.5.

[7]张国才.闭区域上连续函数的性质的证明[J].锦州师范学院报.2000,21(3):61—62.

[8]吴国民.连续函数性质的推广一例[J].孝感教院学报.1999,7(1):47—49.

说明:1.成绩评定均采用五级分制,即优、良、中、及格、不及格.

2. 评语内容包括:学术价值、实际意义、达到水平、学术观点及论证有无错误等.

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

函数的连续性极其性质

了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 无穷大量和无穷小量 无穷大量 我们先来看一个例子: 已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。为此我 们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当 时,成立,则称函数当时为无穷大量。 记为:(表示为无穷大量,实际它是没有极限的) 同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函 数当x→∞时是无穷大量,记为:。 无穷小量 以零为极限的变量称为无穷小量。 定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量. 记作:(或) 注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.。 关于无穷小量的两个定理 定理一:如果函数在(或x→∞)时有极限A,则差是当(或x→∞)时的无穷小量,反之亦成立。 定理二:无穷小量的有利运算定理 a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量. 无穷小量的比较 通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

浅论闭区间上连续函数的性质.doc

浅论闭区间上连续函数的性质 中山大学数学与应用数学04级数统基地班黎俊彬 摘要:本文就闭区间上连续函数的性质进行了一定程度上的探讨,从直观感觉和理论论证两面方面论述了有界性,最值定理,介值定理和一致连续性定理,并且将之与开区间上连续函数及不连续函数作一定的对比. 关键字:闭区间连续函数实数的连续性和闭区间的紧致性 实数的连续性和闭区间的紧致性,使闭区间上的连续函数有丰富的性质,而且可由实数的各等价命题推出?本文主要从对连续函数的直观理解深入到纯分析的论证?在论证过程屮,严格地不出现微分学和积分学的内容,只是从连续函数本身的性质及实数系的性质入手. 从直观上理解,连续函数的图像是一条连续不断的曲线,这对于一?般初等函数來说都是成立的?而闭区间b"]上的连续函数/(X)的图像两端必须紧紧地连接着定义在端点处的点(67,/?)),(/>,/⑹X-8 v ./(Q),/⑹V +8)上形成一条封闭的曲线,即与直线x = a,x = b.y =0形成一个或多个封闭的区域.直观理解虽然不完全正确,但却能帮助我们了解和发现闭区间连续函数的性质,某些时候还能帮助我们找到证明.但直观的认识不一定是正确的,的确存在一些连续函数,其图像并不能作岀来?直观认识,在科学里面只是充当一个开路先锋的角色,到最后,一定要用严格的推理来证明. 先看何谓闭区间上的连续函数?连续的定义首先是点连续的定义. 称/(X)在兀=兀0连续,如果lim /(%) = /(x0), 2X() B|j/(x)4x o附近有定义W > 0,? > 0,当X G u(x°0)时有|/(x)-/(x°)| < 称/⑴在兀=兀0左连续,如果w > o,? > 0,当兀w (兀0 - 兀0 ]时有(兀)-f(兀0 )| < £? 称 f(x)在兀=%右连续,如果>0,3^ >0,当x w [x0,x0 +5)时有|/(兀)-/(%)| < 若函数该点的极限值不等于函数值,经验告诉我们函数在该点必定断开,连续的定义与我们的直观认识相符合?而若函数在[G,b]连续,是指函数在区间的每点都连续,在左端点右连续,右端点左连续.下面讨论闭区间连续函数的相关性质, 并从直观和理论上与非闭区间的情况作比较,体会闭区间的独特的性质.

(整理)函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2, n x x n ≠=,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A +- →→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ? ?? ?? ? ? ? +? -?? () 2 11c o s ~2(1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ?φ≤≤(,且 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

函数的连续性的例题与习题集

函数的连续性的例题与习题 函数连续性这个内容所涉及到的练习与考试题目,大致有3大类。第一类是计算或证明连续性;第二类是对间断点(或区间)的判断,包括间断点的类型;第三类是利用闭区间上的连续函数的几个性质(最值性质,零点存在性质),进行理论分析。 下面就这三大类问题,提供若干例题和习题。还是那句老话:看到题目不要看解答,而是先思考先试着做!这是与看文学小说的最大区别。 要提醒的是,例题里有不少是《函数连续性(一)(二)》中没有给出解答的例题,你事先独立做了吗?如果没有做,是不会做好是根本不想做,还是没有时间? 一.函数的连续 例1.1(例1.20(一),这个序号值的是《函数连续性(一)中的例题号,请对照) 设()f x 满足()()()f x y f x f y +=+,且()f x 在0x =连续。证明:()f x 在任意点x 处连续。 分析:证明题是我们很多同学的软肋,不知道从何下手。其实,如果你的基本概念比较清晰,证明题要比计算题号做,因为它有明确的方向,不像计算题,不知道正确的答案是什么 在本题里,要证的是“()f x 在任意点x 处连续”,那么我们就先固定一个点x ,用函数连续的定义来证明在x 处连续。你可能要问:函数连续的定义有好几个,用哪一个? 这要看已知条件,哪个容易用,就用那一个。在本题中,提供了条件()()()f x y f x f y +=+,也就是()()()f x y f x f y +-=,你的脑海里就要想到,如果设y x =?,那么就有 ()()()y f x x f x f x ?=+?-=?;这个时候,你应该立即“闪过”,要用题目给的第二个条件了:()f x 在0x =连续!它意味着:0 lim (0)(0)x f x f ?→+?=。 证明的思路就此产生! 证明:因为 ()()()f x y f x f y +=+,取0y =,则有 ()()(0)f x f x f =+,所以(0)0f =。 (#) 对于固定的x (任意的!),若取y x =?,有 ()()()y f x x f x f x ?=+?-=?, (+) 在(+)式两边取0x ?→的极限,那么

半连续函数的性质与应用

摘要 函数的种类极为复杂. 在函数论中, 连续函数的性质和应用占有相当重要的地位. 有一类函数虽然不连续, 但却具有一些与连续函数相近的性质, 即连续函数的一个推广——半连续函数. 从而得到了比连续函数更广泛的一类函数的性质. 通过对半连续函数的研究, 对半连续函数在数学分析中的应用奠定了理论基础. 首先简述连续函数的性质与应用, 之后重点讨论半连续函数的性质, 详细介绍运算性, 保号性, 以及拓扑空间上半连续函数性质定理. 推广到紧致空间中半连续函数的应用. 最后辨析连续函数与半连续函数性质、应用, 最终应用连续函数性质解决半连续函数的问题.实际上半连续函数理论在古典分析和现代分析中都有着较为广泛的应用. 比如在最优化问题、变分不等式问题、相补问题及对策论问题都有着举足轻重的作用. 关键词:半连续;连续;函数

Abstract Category of function is very complicated. Characterization and application of continuous functions are very important in the function theory. Although a kind of function is also continuous, its characterization is similar with the continuous functions, which is called extension of the continuous functions semi-continuous functions, thus a kind of function with more winder characterization is obtained. Through the study, half of the continuous function in the mathematical analysis continuous function which lay a theoretical foundation for the application. First, this paper expounds the nature of the continuous function and application, and then discusses the nature of the semi-continuous functions, detailed mathematical and application, introduced the number of topological space, and the first half of the continuous function theorem of generalized to nature. Tight space in the application of semi-continuous functions. Finally differentiate continuous function and semi-continuous functions properties, application, and finally application continuous function semi-continuous functions nature solution of the problem. Half a continuous function in the classical theory analysis and modern analysis has a wide range of applications. For example, in the most problems, variational inequalities, phase problems and countermeasures for the theory of and so on all has a pivotal role. Key words:semi-continuous;continuous;functions;

连续函数性质

§ 连续函数的性质 ? 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值0()f x 。从而,根据函数极限的性质能推断出函数f 在0()U x 的性态。 定理1(局部有界性) 若函数f 在点0x 连续,,则f 在某0()U x 内有界。 定理2(局部保号性) 若函数f 在点0x 连续,且0()0f x >(或0<),则对任何正数0()r f x < (或0()r f x <-),存在某0()U x ,使得对一切 0()x U x ∈有()f x r >(或()f x r <-)。 注: 在具体应用局部保号性时,常取01 ()2 r f x =, 则当0()0f x >时,存在某0()U x ,使在其内有01 ()()2 f x f x > 。 定理3(四则运算) 若函数f 和g 在点0x 连续,则,, f f g f g g ±?(这里0()0g x ≠)也都在点0x 连续。 关于复合函数的连续性,有如下定理: 定理4 若函数f 在点0x 连续,g 在点0u 连续,00()u f x =,则复合 函数g f 在点0x 连续。 证明:由于g 在点0u 连续,10,0εδ?>?>,使得当01||u u δ-<时有 0|()()|g u g u ε-<。 (1)

又由00()u f x =及()u f x =f 在点0x 连续,故对上述1δ,存在0δ>, 使得当0||x x δ-<时有001|||()()|u u f x f x δ-=-<,联系(1)式得:对任 给的0ε>,存在0δ>,使得当0||x x δ-<时有 0|(())(())|g f x g f x ε -<。 这就证明了g f 在点0x 连续。 注:根据连续必的定义,上述定理的结论可表为 0lim (())(lim ())(())x x x x g f x g f x g f x →→== 定理 5 ()x f x x 0 lim →存在的充要条件是()() 0lim 00 0+=+→x f x f x x 与 ()()0lim 00 0-=-→x f x f x x 存在并且相等. 证明:必要性显然,仅须证充分性.设()A x f x x =+→0 0lim ()x f x x 00 lim -→=,从 而对任给的0>ε,存在01>δ和02 >δ,当 100δ<-=δδδ 时,当δ<-<00x x 时,则 δ <-<00x x 和 00<-<-x x δ 二者必居其一,从而满足①或②,所以 ()ε<-A x f . 定理 6 函数()x f 在0x 点连续的充要条件是()x f 左连续且右连续. 证明:()x f 在0x 点连续即为()()00 lim x f x f x x =→.注意左连续即为()()000x f x f =-,右连续即为()()000x f x f =+,用定理5即可证. 此外,在讨论函数的极限时往往必须把连续变量离散化,下面我们来讨论这方面的问题.

连续函数的性质1

§2连续函数的性质 Ⅰ. 教学目的与要求 1.理解连续函数的局部有界性、局部保号性、保不等式性. 2.掌握连续函数的四则运算法则、连续函数的复合函数及反函数的连续性,会利用其讨 论函数的连续性. 3.掌握闭区间上连续函数的性质,会利用其讨论相关命题. 4.理解函数一致连续性的概念. Ⅱ. 教学重点与难点: 重点: 闭区间上连续函数的性质. 难点:. 闭区间上连续函数的性质,函数一致连续性的概念. Ⅲ. 讲授内容 一 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值()0x f .从而,根据 函数极限的性质能推断出函数f 在()0x U 的性态. 定理4.2(局部有界性) 若函数f 在点0x 连续,则f 在某()0x U 内有界. 定理4.3(局部保号性) 若函数f 在点0x 连续,且()0x f 0> (或0<),则对任何正 数()0x f r < (或()0x f r -<),存在某()0x U ,使得对一切∈x ()0x U 有 ()r x f >,()r x f -<或(). 注 在具体应用局部保号性时,常取()021x f r = 则(当()0x f 0>时)存在某()0x U 使在其内有()>x f ()02 1x f . 定理4.4(四则运算) 若函数f 和g 在点0x 连续,则g f g f g f ,,?±(这里 ()00≠x g )也都在点0x 连续. 以上三个定理的证明,都可从函数极限的有关定理直接推得. 对常量函数c y =和函数x y =反复应用定理4.4,能推出多项式函数 ()n n n n a x a x a x a x P +++=--1110 和有理函数()()() x Q x P x R =(Q P ,为多项式)在其定义域的每一点都是连续的. 同样,由x sin 和x cos 在R 上的连续性,可推出x tan 与x cot 在其定义域的每一点 都连续. 关于复合函数的连续性,有如下定理: 定理4.5 若函数f 在点0x 连续,g 在点0u 连续,()00x f u =,则复合函数f g 在点

二元函数的连续、偏导数、可微之间的关系

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1二元函数连续、偏导数、可微三个概念的定义 (1) 2二元函数连续、偏导数、可微三个概念之间的关系 (2) 2.1二元函数连续与偏导数存在之间的关系 (2) 2.2二元函数连续与可微之间的关系 (3) 2.3二元函数可微与偏导数存在之间的关系 (3) 2.4二元函数可微与偏导数连续之间的关系 (4) 二元函数连续、偏导数、可微的关系图 (6) 参考文献 (7) 致谢 (8)

本科生毕业论文 2 二元函数的连续、偏导数、可微之间的关系 摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性. 关键词 二元函数 连续 偏导数 可微 The Relationship among Continuation, Partial Derivatives and Differentiability in Binary Function Abstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common.. Key words binary function continuation partial derivatives differentiability 引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系. 1 二元函数连续、偏导数、可微三个概念的定义 定义1 设f 为定义在点集2D R ?上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ?∈, 就有0)||()(f P f P ε<-,则称f 关于集合 D 在点0P 连续. 定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内 有定义,则当极限00000000(,))(,) (,lim lim x x x f x y f x y f x x y x x ?→?→+-=????存在时,则称这个极限 为函数f 在点00,)(y x 关于x 的偏导数,记作0 (,) |x y f x ??. 定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义, 对于0()U P 中的点00,)(,)(y P x y x x y ++=??,若函数f 在点0P 处的全增量可表示为

(整理)闭区间上连续函数的性质

§4.2 闭区间上连续函数的性质 一、 性质的证明 定理1.(有界性)若函数)(x f 在闭区间[a,b]连续,则函数)(x f 在闭区间[a,b]有界,即?M >0,∈?x [a,b],有|)(x f |≤M . 证法:由已知条件得到函数)(x f 在[a,b]的每一点的某个邻域有界.要将函数 )(x f 在每一点的邻域有界扩充到在闭区间[a,b]有界,可应用有限覆盖定理,从 而得到M >0. 证明:已知函数)(x f 在[a,b]连续,根据连续定义, ∈?a [a,b],取0ε=1,0δ?>0,∈?x (00,δδ+-a a )?[a,b],有 |)(x f )(a f -|<1.从而∈?x (00,δδ+-a a )?[a,b]有 |)(x f |≤|)(x f )(a f -|+|)(|a f <|)(|a f +1 即∈?a [a,b],函数)(x f 在开区间(00,δδ+-a a )有界。显然开区间集 { (00,δδ+-a a )|∈a [a,b] }覆盖闭区间[a,b].根据有限覆盖定理(4.1定理3),存在有限个开区间,设有n 个开区间 {(k k a k a k a a δδ+-,)|∈k a [a,b] },k=1,2,3,…,n 也覆盖闭区间[a,b] ,且 ∈?x (k k a k a k a a δδ+-,)|∈k a [a,b],有|)(x f |≤|)(|k a f +1,k=1,2,3,…,n 取M =max{|)(||,......,)(||,)(|21n a f a f a f }+1. 于是∈?x [a,b],∈?i {1,2,…,n},且∈x (i i a i a i a a δδ+-,)?[a,b], 有|)(x f |≤|)(|i a f +1≤M 定理2(最值性):若函数()f x 在闭区间[],a b 连续,则函数()f x 在区间

多元函数的极限与连续习题

多元函数的极限与连续习题 1. 用极限定义证明:14)23(lim 1 2=+→→y x y x 。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-=),(; (2) y x y x y x f 1sin 1sin )(),(+=; (3) y x y x y x f ++=23 3),(; (4) x y y x f 1 sin ),(=。 3. 求极限 (1)2 20 ) (lim 22 y x x y x y +→→; (2)1 1lim 2 2 220 0-+++→→y x y x y x ; (3)2 20 01 sin )(lim y x y x y x ++→→; (4)22220 0) sin(lim y x y x y x ++→→。 4. 试证明函数?? ???=≠+=0 0)1ln(),(x y x x xy y x f 在其定义域上是连续的。

1. 用极限定义证明:14)23(lim 2 1 2=+→→y x y x 。 因为1,2→→y x ,不妨设0|1|,0|2|<-<-y x , 有54|2||42||2|<+-≤+-=+x x x , |22123||1423|2 2 -+-=-+y x y x |1|2|2|15|1|2|2||2|3-+-<-++-≤y x y x x |]1||2[|15-+-?ε,要使不等式 ε<-+-<-+|]1||2[|15|1423|2 y x y x 成立 取}1,30 min{ ε δ=,于是 0>?ε, 0}1,30 min{ >=?ε δ,),(y x ?:δδ<-<-|1|,|2|y x 且 )1,2(),(≠y x ,有ε<-+|1423|2 y x ,即证。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-= ),(; 1lim lim 00=+-→→y x y x y x , 1lim lim 00-=+-→→y x y x x y , 二重极限不存在。 或 0lim 0=+-=→y x y x x y x , 3 1lim 20-=+-=→y x y x x y x 。

连续函数及连续函数的性质

连续函数及连续函数的性质 张柏忱 数学与统计学院 09级汉本 (三) 班 09041100434 摘要:数学分析的发展史告示我们,无论在理论上或在应用中都应从连续函数开始。这是因为,一方面在生产实际中所遇到的函数多是连续函数;另一方面,我们常常直接或间接地借助于连续函数讨论一些不连续的函数。于是连续函数就成为数学分析研究的主要对象。 关键词:连续 该变量 间断点 有界性 最值性 介值性、 一. 连续函数概念 已知函数f(x)在a 存在极限b ,即a b x f a x ,)(lim =→可能属于函数f(x)的定义域;f(a)也 一定等于b 。但是,当f(a)=b 时,有着特殊意义。 定义 设函数f(x)在U(a)有定义。若函数f(x)在a 存在极限,且极限就是f(a),即 )()(lim a f x f a x =→ (1) 则称函数f(x)在a 连续,a 是函数f(x)的连续点。 函数f(x)在a 连续,不仅a 属于函数f(x)的定义域,且有(1)式极限。因此函数f(x)在a 连续比函数f(x)在a 存在极限有更高的要求。 用极限的“δε- 定义”,函数f(x)在a 连续(即(1)式极限).|f(a)-f(x)|,|:|,0,0εδδε<<-?>?>??有a x x 将(1)式极限改写为、 0)]()([lim =-→a f x f a x (2) 设x a x x x a x ?-=??+=.或称为自变数a x 在的改变量。设 ),()()()(a f x a f a f x f y -?+=-=? y ?称为函数y 在a 的改变量.如图3.1..0→??→x a x 于是,由(2)式 函数.0lim )(0 =??→?y a x f x 连续在 有时只需要讨论函数a x f 在)(左侧或右侧的连续性,有下面左右连续概念: 定义 设函数a x f 在以)(为左(右)端点的区间有定义。若 ))0()()(lim )(0()()(lim -==+==- + →→a f a f x f a f a f x f a x a x

高中数学必修1函数概念及性质知识点总结

数学必修1函数概念及性质(知识点总结) (一)函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 2.构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础. (3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等. 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成. (2) 画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质; 2、利用数形结合的方法分析解题的思路。提高解题的速度。

多元连续函数的性质

毕业论文 题目:多元连续函数的性质 学院:数学与信息科学学院 专业:数学与应用数学 毕业年限:2012.6 学生姓名:马骥 学号:200871010428 指导教师:张春霞

多元连续函数的性质 马骥 (西北师范大学 数学与信息科学学院,甘肃 兰州 730070) 内容摘要:本文通过将一元连续函数在闭区间上的性质和二元连续函数在有界闭区域上的性质推广到 多元连续函数的性质. 我们一般可把区域分为有界区域和无界区域.本文分别探讨了多元连续函数在有界区域和无界区域上的性质,并得出一系列的结论.对于有界区域D ,对任意0P D ∈, 任意{}n P D ?,0n P P →时,lim ()n n f P →∞ 存在,则函数f 在D 上有界,取得最大、最小值,一致连续.对于无界区域D , 如果存在0r >,对任意P D ∈,P r >时,有()f P M ≤,则f 在D 上有界;若lim ()P f P →∞ =+∞, 则取得最小值;若lim ()P f P →∞ =-∞,则取得最大值.本文分别运用了区域的道路连通性和有界闭区域 完全覆盖原理两种方法证明了零点存在性定理,然后用零点存在性定理证明多元连续函数的介值性. 关键词:有界区域;无界区域;有界性;最值性;介值性;一致连续性 Properties of the Multivariate Continuous Function Abstract :This paper popularize the properties of the continuous function of one variable or two variables on closed interval with bound to the multivariate continuous function. Generally, the domain can be divided into two kinds: the bounded domain and the unbounded domain. This paper discusses the properties of the multivariate continuous function on the bounded domain or the unbounded domain and draws a series of conclusions. On bounded domain D , for any 0P D ∈, any {}n P D ?, if lim ()n n f P →∞ exists while 0n P P →,then function f is bounded and uniformly continuous , and exist maximum and minimum value . On unbounded domain D , there is 0r > and for any P D ∈, P r > ,if ()f P M ≤,then the function f is bounded; if lim ()P f P →∞ =+∞, then the function f can get the minimum value; if lim ()P f P →∞ =-∞, the function f will get the maximum value. This paper applies road connectivity and complete coverage theorem on closed domain with bound respectively to proof of zero point theorem, then applies zero point theorem to proof of intermediate value theorem of the multivariate continuous function. Keywords :Bounded domain ;unbounded domain ;boundedness ;maximum and minimum value ; intermediate-value property ;uniformly continuous

二元函数连续可微偏导之间的关系解读

一、引言 对于一元函数而言,函数y=f(x在点x0处连续、导数存在、可微这三个概念的关系是很清楚的,即可微一定连续,但连续不一定可微,可微和导数存在是等价的。对多元函数而言,由于偏导数的出现,使得他们之间的关系要复杂的多。下面以二元函数为例,探讨其在点(x0,y0处连续、偏导数存在、可微、偏导数连续之间的关系。 二、二元函数连续、偏导数存在、可微、偏导数连续之间的关系 1.可微与连续的关系 若函数f(x,y在点(x0,y0处可微,则在该点连续,但反之不成立(同一元函数。 证明:因为f(x,y在点(x0,y0处可微,因此有0≤f(x0+△x,y0+△y- f(x0,y0≤A△x+B△y+O(O→(△x→0,△y→0, 所以lim (△x,△y→(0,0 f(x0+△x,y0+△y=f(x0,y0,故f(x,y在 点(x0,y0处连续。反之不成立。 例1.f(x,y= x2y x2+y2 ,x2+y2≠0 0,x2+y2= $

在点(0,0处连续, 但在该点不可微。 2.偏导数存在与可微的关系 由定理17.1[1](可微的必要条件,函数f(x,y在点(x0,y0处可微,则f(x,y在点 (x0,y0的偏导数一定存在;但反之不成立,如例1中函数f(x,y在点(0,0处偏导数存在,但在此点不可微。 3.偏导数连续与可微的关系 由定理17.2[2](可微的充分条件知,函数f(x,y在点(x0,y0处偏导数连续,则f(x,y 在点(x0,y0处可微;但反之不成立, 例2.f(x,y=(x2+y2sin1 x2+y2 ,x2+y2≠0 0,x2+y2= % ’ ’ ’ & ’ ’

相关文档
最新文档