乙丙橡胶与SBR、NBR共混改性的综述

乙丙橡胶与SBR、NBR共混改性的综述
乙丙橡胶与SBR、NBR共混改性的综述

乙丙橡胶与SBR、NBR共混改性的综述

赵阳

(中石油吉林石化公司有机合成厂,吉林132021)

摘要:三元乙丙橡胶(EPDM)是一种性能优异且广泛应用的特种橡胶。随着当今世界对其材料性能要求越来越高,利用其优点与其他橡胶或塑料等材料共混的研究,改变材料的使用性能、加工性能以及降低成本,也变得越来越重要和有意义。把EPDM与其他橡胶共混,一方面可以提高共混胶的物理机械性能,满足实际工程的需要;另一方面还可以扩展EPDM及其他橡胶的使用范围;同时加工性能得到改善,成本也有所降低。

关键词:三元乙丙橡胶;丁苯橡胶;丁腈橡胶;共混改性

一、乙丙橡胶与丁苯橡胶(SBR)共混改性的综述

SBR是一种不饱和的橡胶耐热、寒性差,强度低。EPDM对SBR改性可以提高SBR橡胶的耐老化性和耐高温性能,同时SBR也可以提高EPDM的粘合性;SBR与EPDM并用可制作汽车密封条,效果比较理想。吕咏梅指出,SBR中加入一定的EPDM,可使SBR耐臭氧龟裂性能提高24倍。有人研究了过氧化物和硫黄共硫化体系对EPDM/SBR并用硫化胶性能的影响,得出结论:用过氧化物和硫黄做共硫化体系时,可以用低成本的乳聚SBR替代EPDM (最多30份),同时制品的物理机械性能没有下降。彭雪丽研究了次磺酰胺类促进剂对EPDM/SBR 并用胶性能的影响。结果表明:用次磺酰胺类促进剂硫化的混炼胶与用过氧化物和硫黄做共硫化体系形成的硫化胶的物理机械性能是相似的[1]。

唐远旺等人在《混炼工艺对超细全硫化粉末SBR/EPDM并用胶结构和性能的影响》中研究开炼机和密炼机混炼工艺对超细全硫化粉末SBR(UFPSBR)/EPDM 并用胶结构和性能的影响。在开炼机混炼工艺为:将双辊开炼机辊距调至小,加入EPDM塑炼至包辊,然后加入UFPSBR混炼均匀,再加入硫化剂DCP混炼均匀,将辊距调至1.5mm出片。密炼机混炼工艺:将EPDM加入密炼机中塑炼至转子转矩恒定,转子转速为80r?min-1。然后加入UFPSBR混炼6min,再加入硫化剂DCP,并将转子转速调至40~60r?min-1。严格控制融体温度低于115℃,混炼均匀。

。研究结果表明,胶料在25t平板硫化机上硫化,硫化条件为160℃/15MPa×t

90

采用开炼机混炼工艺,UFPSBR影响EPDM的硫化,使EPDM的硫化程度降低;采

用密炼机混炼工艺,UFPSBR促进EPDM的硫化,使EPDM的硫化程度提高。相对于开炼机混炼工艺,采用密炼机混炼工艺时UFPSBR在EPDM基体中的分散尺寸较小,两相界面结合较好。UFPSBR/EPDM并用胶的拉伸强度和撕裂强度随着UFPSBR 用量的增大先迅速提高后呈总体降低趋势,且采用密炼机混炼工艺制备的并用胶降幅较大(其所使用的三元乙丙橡胶为吉化生产的4045#牌号产品)[2]。

王韶晖在《高硬度EPDM 配方设计技术》中指出EPDM 通常在耐油性要求不高,而要求具有良好的耐热性和耐天候老化的场合中得到应用。而一般用钒基催化体系得到的最高乙烯质量分数大约可达80%。EPDM 弹性体的结晶度与乙烯含量有关。对于给定的EPDM 胶料,胶料的硬度与EPDM弹性体的结晶度成正比。使EPDM高度结晶是获得高硬度EPDM胶料的另一种方法。研究结果表明使用高结晶性乙丙橡胶(HC-EPDM)是获得高硬度EPDM 胶料的好方法。乙烯质量分数超过75 的EPDM 用传统的橡胶加工设备难以加工。因此用乙烯质量分数超过75%的EPDM 很难得到高硬度的实用配方。本研究的结果表明,当采用共混比为70/30的半结晶性乙丙橡胶(SC-EPDM)和HC-EPDM 的共混胶时,可以得到综合性能优良的胶料,该胶料具有以下性能的良好平衡:快速混炼及良好的填料分散性;在开炼机上易于加工;在较宽的温度范围内具有良好的刚性(硬度和模量)保持率;良好的压缩永久变形性能;良好的低温性能;降低胶料的粘度。使用高苯乙烯质量分数的SBR、苯酚甲醛酚醛树脂或低相对分子质量的液体聚丁二烯可以进一步提高胶料的硬度。酚醛树脂和液体BR在较宽的温度范围内还具有良好的抗变形性[4]。

刘霞编译汇总在《促进剂对EPDM/SBR共混胶性能的影响》中研究指出EPDM/SBR(70/30)共混胶的理想促进剂是在EPDM 相中比在SBR相中的溶解度大的促进剂。EPDM相比SBR相的焦烧时间短和硫化速度快是必要的。次磺酰胺类促进剂(TBBS、CBS、DCBS)硫化的共混胶和过氧化物与硫活性助剂并用硫化的共混胶的力学性能相当.唯有高温热老化性能和压缩永久变形性能例外[5]。

二、乙丙橡胶与丁腈橡胶(NBR)共混改性的综述

EPDM 具有很高的化学稳定性 ,优异的耐臭氧、耐热老化、耐天候老化性及电绝缘性。NBR具有优异的耐油、耐磨性。两种橡胶并用,既可以改善EPDM的粘合性、耐油性,又可以提高NBR的耐臭氧老化性、耐天候老化及耐低温性能 ,

这样 EPDM 和 NBR的应用范围都大大拓宽。马琳等人在乙丙橡胶和丁腈橡胶的并用上进行了研究。研究结果表明:选用硫化速率较快的ENB型碘值较高的EPDM 类型 ,添加均匀剂R60 , H501可有效改善EPDM/ NBR共混胶的加工工艺性能 ,提高硫化速率,且对物理性能影响不;采用DCP +硫黄/促进剂的硫化体系制得的EPDM/NBR共混胶有较好的耐焦烧性能,较快的硫化速度及较好的综合性能。有人研究了丁腈橡胶与三元乙丙橡胶并用胶的共硫化性质 :发现在有双 (二异丙基) 硫化磷酰二硫化物(DIPDIS的情况下,通过二段硫化可以显著改善)其物理性能;同时发现 DIPDIS 除了有促进剂作用外,还可以起着橡胶 - 填料偶联剂的作用。叶舒展等人就丁腈橡胶与三元乙丙橡胶共混物对反应增容作用作了探讨。结果表明:添加 5 份经巯基官能化的乙烯—乙酸乙烯共聚物 ( EVAS H)可使NBR/EPDM (质量比为70:30) 共混物的力学性能显著提高。但是,用巯基改性的三元乙丙橡胶( EPDM SH作为 NBR/EPDM) 的增容剂却没有效果。K. P. SAU等人就EPDM/NBR共混胶的导电性研究表明:导电性的限制主要取决与共混胶的粘度;导电性随着温度、活化能、导电填料及NBR的含量增加而增加; EPDM /NBR加炭黑增强效果低于天然橡胶(NR),更低于NBR,主要是因为EPDM/NBR 之间的相容性不好[1]。

宋智彬等人在《丁腈橡胶与三元乙丙橡胶共混研究》中采用该基础配方:NBR,70;EPDM,30;氧化锌,5.0;SA,1.0;TMTD,0.2;S,1;CPE,10;炭黑,50;DBP,10;DCP,1.5。得出如下结论:(1)在以NBR为主胶种的并用胶中加入EPDM 可以改善NBR的耐老化性、电绝缘性,而在以EPDM为主胶种的并用胶中加入NBR 可以改善EPDM的耐油性及耐磨性。(2)增容剂能改善并用胶的力学性能,但用量不宜太大。CPE用量在5~10份左右为宜。(3)为了得到比较好的效果,混炼工艺可采用NBR和EPDM分别混炼再按比例掺混的混炼方法[6]。

亓贯林等人在《EPDM/NBR并用胶的制备及性能》研究过程中采用吉化生产的4045#牌号产品,得出EPDM与NBR进行共混时,并用胶的混合平衡扭矩明显低于纯的三元乙丙橡胶和丁腈橡胶的混合平衡扭矩;硫化并用胶的力学性能也明显低于纯的硫化三元乙丙橡胶和硫化丁腈橡胶;尽管不同的促进剂对硫化并用胶的力学性能有一些影响,但使用单一促进剂的效果都不是很好;用过氧化物硫化时,硫化并用胶的力学性能降低较小。总之,由于EPDM与NBR的极性相差很大,

又没有特殊的相互作用,导致了二者的相容性很差,因此并用时,体系会产生相分离。虽然通过硫化体系的调整,硫化并用胶的力学性能会有所改善,但效果都不是很好。要想进一步提高硫化并用胶的力学性能,必须要通过物理或化学手段来增加EPDM与NBR的相容性[7]。

董凌波等人在《填充型NBR/EPDM导电复合材料的研究》一文中得出如下结论:(1)随着NBR用量的减少,NBR/EPDM复合材料拉伸强度、撕裂强度和拉断伸长率均降低,纯EPDM硫化胶的力学性能较好。(2)相对于EPDM来说,NBR与填料的结合作用强,Payne效应较弱;NBR/EPDM并用后填料分散性变差,Payne效应和损耗因子都增大。(3)NBR/EPDM并用胶电阻率明显低于相应的2种纯胶。恒温变压下复合材料电阻率随压力增大先减小后增大;恒压变温下复合材料电阻率随温度升高而减小;与2种纯胶相比,并用胶电阻率下降较大时所对应的温度有所降低[8]。

结论:

目前吉化公司有机合成厂能够生产的橡胶种类主要是二元乙丙橡胶(EPM),三元乙丙橡胶(EPDM),丁苯橡胶(SBR)和丁腈橡胶(NBR),所以本文着重从该几种橡胶中选出能够共混几种情况,并且主要选取了使用吉化生产的三元乙丙橡胶作为实验原材料的部分论文,对日后开展工作寻找相关文献做好了铺垫。

参考文献:

[1] 贾芳,陈福林,张兴华,周彦号.三元乙丙橡胶共混改性的研究进展.特种橡

胶制品.2008,29(2):46

[2] 唐远旺,田明,卢咏来,张立. EPDM/HDPE热塑性硫化胶的结构与性能研究.

橡胶工业.2007,54(5):261

[3] 金梁,张晓红,刘轶群.橡塑共混物性能连续调节技术的研究[A].2001

年全国高分子学术论文报告会论文集(下册).郑州:2001.243—244

[4] 王韶晖.高硬度EPDM 配方设计技术.橡胶参考资料,2O03,33(4):18

[5] 刘霞.促进剂对EPDM/SBR共混胶性能的影响. 橡胶参考资料,

2O01,31(7):32

[6] 宋智彬,刘冬,宗成中.丁腈橡胶与三元乙丙橡胶共混研究.世界橡胶工

业.2009,36(7):7

[7] 亓贯林,党文修,许军. EPDM/NBR并用胶的制备及性能.济南大学学

报.2008,22(3):248

[8] 董凌波,翟俊学,张萍,赵树高. 填充型NBR/EPDM导电复合材料的研究.特

种橡胶制品.2010,31(2):11

[9] 吴培熙,张留城.聚合物共混改性,中国轻工业出版社,1996,2

聚乙烯的改性

聚乙烯的改性 聚乙烯虽然具有优良的电性能、机械性能和加工性能,但是它也有一些缺点,如软化点低,强度不高,耐大气老化性差,易应力开裂,不易染色及印刷等。为了进一步拓宽聚乙烯的应用领域,克腿这些缺点,可以采用聚乙烯改性来达到。 聚乙烯的改牲主要分为化学改性和物理改性。化学改性又分为接枝共聚改性、嵌段共聚改性、化学及辐射交联改性等;物理改性分为共混改性、填充改性(包括增强改性等)。 聚乙烯的化学交联主要是在聚乙烯树脂中加人有机化合物(常用过氧化二异丙苯)作为交联剂,然后在压力和175~200℃的温度下交联。 接枝聚合是最常用的改性聚合方法。所谓接校共聚反应是在聚乙烯的主链上将作为支链的不同种高分子结合上去的一种反应。当然也有采用过氧化物、放射辐照或其他有关方法进行反应。接枝方式的共聚合反应可以获得良好的混合状态,其分散界面是以化学方式结合在一起,具有良好的机械性能。同时又因为聚乙烯本身是无极性材料,和其他材料亲和性不好,如将具有极性的单体以接枝共聚合反应结合至聚乙烯分子主链上时则会增大这种亲和性,由此使可以改善其粘接性、印刷性、染色性等性能。例如,聚乙烯接枝丙烯酸单体所得产品则会改善其在铝箔上的粘合性;加入丁二烯单体接枝共聚合反应的制品,可以提高耐热性、耐应力开裂性。 聚乙烯的共混改性是聚乙烯与其他高聚物等物质进行共混,用挤出机、辊炼机等设备而制成新材料。共混过程中往往包含化学接枝或交联反应,以提高共混的改性效果。 聚乙烯的填充改性是在聚乙烯的成型加工过程中加入无机或有机填料,不仅能使制品价格大大降低,而且能显著改善材料的机械强度、耐摩擦性能、热性能及耐老化性能等,并改善聚乙烯的易膨胀性及易蠕变性等,所以填料既有增量作用,又有改性效果。常用的无机填料有碳酸钙(包括轻质碳酸钙和重质碳酸钙)、滑石粉、云母、高岭土、二氧化硅、硅藻土、硅灰石、炭黑等。 此外,聚乙烯可加人脂肪酸酰胺作表面润滑剂,以减少薄膜的粘附性;加入0.5%~2%的聚丙烯可提高其透明性;表面用电子冲击(使其表面氧化)处理,可改善其印刷性能。 1.交联聚乙烯 交联聚乙烯分为有机过氧化物交联聚乙烯、有机硅交联和辐照交联聚乙烯。 (1)有机过氧化物交联聚乙烯 结构式: 制法有机过氧化物交联聚乙烯是聚乙烯以有机过氧化物作为交联剂,在热的作用下分解而生成高度活泼的游离基。这些游离基使聚合物碳链上生成活性点,并产生碳-碳交联,形成交联聚乙烯。所用的有机过氧化物有过氧化二异丙苯、过氧化二叔丁基和2,5-二叔丁基-2,5-二甲基过氧化己烷等。根据被交联的聚乙烯品种和交联工艺设备的不同而选用不同的过氧化物。通常交联低密度聚乙烯时,采用在132℃时能起反应的过氧化二异丙苯;在交联高度填充的低密度聚乙烯和高密度聚乙烯时,可采用能在144℃下加工的2,5-二叔丁基-2,5-二甲基过氧化己烷作交联剂。将聚乙烯与合适的有机过氧化物、炭黑及其他无机填料等添加剂混合在一起,经混炼造粒后,用适宜的成型工艺将它加工成制品。然后再将制品经过一段时间的加热处理,使之发生交联,即可制得交联聚乙烯制品。此外,当采用压缩成型时,交联和成型可一步完成。 物化性质有机过氧化物交联聚乙烯结构上与热塑性塑料、热固性树脂和硫化橡胶都不同,它有体型结构却不是完全交联,交联区域很小,不像硫化橡胶那样有很大的交联网,因此在性能上它兼有三者的特点,即同时具有热可塑性、硬度、良好的耐溶剂性,高弹性和优良的耐低温性。无论是高密度聚乙烯还是低密度聚乙烯,通过交联后,其拉伸强度、耐热性、防老化性和耐候性、尺寸稳定性、耐应力开裂性,耐磨性和耐溶剂性均有提高,且耐蠕变性

聚乙烯的改性分析

聚乙烯的改性分析

聚乙烯的改性 聚乙烯虽然具有优良的电性能、机械性能和加工性能,但是它也有一些缺点,如软化点低,强度不高,耐大气老化性差,易应力开裂,不易染色及印刷等。为了进一步拓宽聚乙烯的应用领域,克腿这些缺点,可以采用聚乙烯改性来达到。 聚乙烯的改牲主要分为化学改性和物理改性。化学改性又分为接枝共聚改性、嵌段共聚改性、化学及辐射交联改性等;物理改性分为共混改性、填充改性(包括增强改性等)。 聚乙烯的化学交联主要是在聚乙烯树脂中加人有机化合物(常用过氧化二异丙苯)作为交联剂,然后在压力和175~200℃的温度下交联。 接枝聚合是最常用的改性聚合方法。所谓接校共聚反应是在聚乙烯的主链上将作为支链的不同种高分子结合上去的一种反应。当然也有采用过氧化物、放射辐照或其他有关方法进行反应。接枝方式的共聚合反应可以获得良好的混合状态,其分散界面是以化学方式结合在一起,具有良好的机械性能。同时又因为聚乙烯本身是无极性材料,和其他材料亲和性不好,如将具有极性的单体以接枝共聚合反应结合至聚乙烯分子

1.交联聚乙烯 交联聚乙烯分为有机过氧化物交联聚乙烯、有机硅交联和辐照交联聚乙烯。 (1)有机过氧化物交联聚乙烯 结构式: 制法有机过氧化物交联聚乙烯是聚乙烯以有机过氧化物作为交联剂,在热的作用下分解而生成高度活泼的游离基。这些游离基使聚合物碳链上生成活性点,并产生碳-碳交联,形成交联聚乙烯。所用的有机过氧化物有过氧化二异丙苯、过氧化二叔丁基和2,5-二叔丁基-2,5-二甲基过氧化己烷等。根据被交联的聚乙烯品种和交联工艺设备的不同而选用不同的过氧化物。通常交联低密度聚乙烯时,采用在132℃时能起反应的过氧化二异丙苯;在交联高度填充的低密度聚乙烯和高密度聚乙烯时,可采用能在144℃下加工的2,5-二叔丁基-2,5-二甲基过氧化己烷作交联剂。将聚乙烯与合适的有机过氧化物、炭黑及其他无机填料等添加剂混合在一起,经混炼造粒后,用适宜的成型工艺将它加工成制品。然后再将制品经过一段时间的加热处

碳纤维表面改性

碳纤维表面处理研究现状

碳纤维表面处理研究现状 摘要:综述了碳纤维的应用领域,当前国内外的碳纤维的生产状况,分析了各种碳纤维表面处理的研究现状以及各方法的优缺点。分析结果表明:国外对我国碳纤维生 产进行了技术封锁,我国工业化碳纤维生产与日本等国有较大差距。电化学氧化法对碳纤维表面处理效果较好,处理后碳纤维表面活性基团数量明显增多,生产条件易于控制,该方法很好应用于工业生产。 关键词:碳纤维;表面处理;电化学氧化法; 引言 随着国防科技要求的不断提高,航天航空、军事武器等高科技设备对材料的性能要求的提高,碳纤维复合材料以其耐高温,耐摩擦、导电、导热、耐腐蚀、高比强度等特点被广泛的应用于这些领域。国外碳纤维材料生产研发较早,现今以日本,美国等国家的生产技术领先于世界。 碳纤维按其加工的先驱体不同可以分为:粘胶基碳纤维、沥青基碳纤维、聚丙烯腈基(PAN)碳纤维。碳纤维作为一种增强相与金属、陶瓷、树脂等结合使复合材料的性能得到很大提高。碳纤维表面的活性基团较少,表面光滑,为更好的与基体材料结合,需要在材料复合前对纤维进行一定表面处理。碳纤维表面处理按当前的研究现 状可以分为氧化法和非氧化法。在此对纤维的生产状况做出一些介绍以及纤维表面处理的各种方法做比较。 1碳纤维应用领域及国内外生产状况 碳纤维复合材料具有卓越的物化性能,被广泛应用于航天航空、国防军事、体育用品、风能发电、石油开采以及医疗器械⑴。 碳纤维被用于制造飞机、航天器、卫星等,因碳纤维的轻质、高强度等特点,飞行器的噪音小,飞行所需的燃料消耗降低。据有关报道,飞行器每降低1kg的质量,运载飞行器的火箭可以减轻500kg。航天航空领域碳纤维的使用量从2008年的8200t, 到2010年的1万t,预计今年将达到1.3万t。在飞机的制造中,纤维复合材料应用比例都

聚氯乙稀共混改性综述

聚氯乙稀共混改性综述 2008-11-30 01:22:41| 分类:高分子化学| 标签:聚氯乙烯共混改性丁腈橡胶|字号大中小订阅 衡阳师范学院湖南衡阳(421008) 摘要:本文就近年来国内外聚氯乙烯(PVC)共混改性的研究状况进行综述和总结,并简要阐述了高聚物共混改性的原理,并且介绍了PVC的一些共混高聚物以及其性能特点。 关键词: 聚氯乙烯共混改性丁腈橡胶 前言 聚氯乙烯(PVC) 树脂是一种常用的高分子合成材料。自1936 年工业化以后,其年产量日益增加, 目前,全世界PVC产量仅次于聚乙烯(PE),位居世界第二。据预测,其需求量以及生产规模还将继续扩大[1,2]。聚氯乙烯(PVC)是一种性能优良、用途广泛而价格又较为低廉的通用塑料,有良好的耐化学性、绝缘性、透光性、耐腐蚀、耐磨损、价格低廉、材料来源广泛等优点而得以广泛应用[3]。加入增塑剂可制得柔软耐曲折聚氯乙烯制品。广泛用于制作各种管材、异型材、板材和薄膜。PVC的最大缺陷是热稳定性差,在100℃即开始分解并放出氯化氢,当温度超过150℃后分解更加迅速。PVC的Tg为87℃左右,熔融温度约为210℃,加工成型一般要求在熔融状态下进行,聚氯乙烯因受热分解,给加工造成困难。聚氯乙烯分解后放出氯化氢,使主链产生双键。双键属于不稳定结构,可进一步分解或交联,使聚氯乙烯力学性

能下降。同时还伴有颜色变化,严重影响产品质量。聚氯乙烯韧性差,受冲击后脆裂,缺口冲击强度只有2.2kJ/m2,影响使用性能。聚氯乙烯耐低温性差,硬质聚氯乙烯使用温度一般不得低于-15℃,软质聚氯乙烯也只有-30℃。超过使用极限温度,聚氯乙烯制品迅速变硬变脆,以致无法使用。因其耐热性、热稳定性、缺口冲击性、加工性较差且易断裂,[4,5]因此,近年来.有关学者开展了大量的改性方面的研究工作,PVC的改性方法主要有化学接枝、共聚法和物理共混法等。物理改性法即通过机械方法将溶液或乳液等进行混合改性。由于其方法简单,且效果较好的优点,因此人们对其进行了大量的研究。本文对目前 PVC共混改性的研究进展作综述。 1、PVC/NBR共混体系 NBR是丙烯腈(AN)与丁二烯的无规共聚物,通常作为耐油橡胶使用。NBR是一种极性聚合物,与PVC极性相似,其极性随NBR中AN 的增多而加强,与PVC的相容性也相应提高。采用动态硫化技术制备的NBR/PVC热塑性弹性体(TPE)具有硬度低、弹性高、永久变形小、高温下耐油、耐老化、耐臭氧、耐化学药品等优点。彭建岗[6]等采用动态硫化法制备了具有阻燃、抗静电性能的TPE,发现橡塑共混比、导电炭黑、阻燃剂、硫化剂用量都对弹性体的性能有较大影响,返炼对弹性体性能影响不大。他们发现最佳配方组成为:NBR60份,PVC40份,炭黑30份,氢氧化铝40份,硫磺1.3份。王炼石等[7]用交联包覆法制备出粉末NBR(PNBR),并研究了其性质及用量对PVC/PNBR体系

橡胶配方设计与性能的关系

第二节橡胶配方设计与性能的关系 一、橡胶配方设计与硫化橡胶物理性能的关系 (一)拉伸强度 拉伸强度表征硫化橡胶能够抵抗拉伸破坏的极限能力。虽然绝大多数橡胶制品在使用条件下,不会发生比原来长度大几倍的形变,但许多橡胶制品的实际使用寿命与拉伸强度有较好的相关性。 研究高聚物断裂强度的结果表明,大分子的主价健、分子间的作用力(次价健)以及大分子链的柔性、松弛过程等是决定高聚物拉伸强度的在因素。 下面从各个配合体系来讨论提高拉伸强度的方法。 1.橡胶结构与拉伸强度的关系 相对分子质量为(3.0~3.5)×105的生胶,对保证较高的拉伸强度有利。 主链上有极性取代基时,会使分子间的作用力增加,拉伸强度也随之提高。例如丁腈橡胶随丙烯腈含量增加,拉伸强度随之增大。 随结晶度提高,分子排列会更加紧密有序,使孔隙和微观缺陷减少,分子间作用力增强,大分子链段运动较为困难,从而使拉伸强度提高。橡胶分子链取向后,与分子链平行方向的拉伸强度增加。 2.硫化体系与拉伸强度的关系 欲获得较高的拉伸强度必须使交联密度适度,即交联剂的用量要适宜。 交联键类型与硫化橡胶拉伸强度的关系,按下列顺序递减:离子键>多硫键>双硫键>单硫键>碳-碳键。拉伸强度随交联键键能增加而减小,因为键能较小的弱键,在应力状态下能起到释放应力的作用,减轻应力集中的程度,使交联网链能均匀地承受较大的应力。 3.补强填充体系与拉伸强度的关系 补强剂的最佳用量与补强剂的性质、胶种以及配方中的其他组分有关:例如炭黑的粒径越小,表面活性越大,达到最大拉伸强度时的用量趋于减少;软质橡胶的炭黑用量在40~60份时,硫化胶的拉伸强度较好。 4.增塑体系与拉伸强度的关系 总地来说,软化剂用量超过5份时,就会使硫化胶的拉伸强度降低。对非极性的不饱和橡胶(如NR、IR、SBR、BR),芳烃油对其硫化胶的拉伸强度影响较小;石蜡油对它则有不良的影响;环烷油的影响介于两者之间。对不饱和度很低的非极性橡胶如EPDM、IIR,最好使用不饱和度低的石蜡油和环烷油。对极性不饱和橡胶(如NBR,CR),最好采用酯类和芳烃油软化剂。 为提高硫化胶的拉伸强度,选用古马隆树脂、苯乙烯-茚树脂、高分子低聚物以及高黏度的油更有利一些。 5.提高硫化胶拉伸强度的其他方法 (1)橡胶和某些树脂共混改性例如NR/PE共混、NBR/PVC共混、EPDM/PP共混等均可提高共混胶的拉伸强度。 (2)橡胶的化学改性通过改性剂在橡胶分子之间或橡胶与填料之间生成化学键和吸附键,以提高硫化胶的拉伸强度。 (3)填料表面改性使用表面活性、偶联剂对填料表面进行处理,以改善填料与橡胶大分子间的界面亲和力,不仅有助于填料的分散,而且可以改善硫化胶的力学性能。 (二)定伸应力和硬度 定伸应力和硬度都是表征硫化橡胶刚度的重要指标,两者均表征硫化胶产生一定形变所需要的力。定伸应力与较大的拉伸形变有关,而硬度与较小的压缩形变有关。

丁苯橡胶接枝改性的研究进展及应用

丁苯橡胶接枝改性的研究进展及应用 学院:************** 班级:********* 姓名:****** 学号:**********

丁苯橡胶接枝改性的研究进展及应用 摘要:介绍了丁苯橡胶接枝改性的机理, 综述了近几年来丁苯橡胶接枝改性方法的研究进展。同时,对丁苯橡胶接枝产物的应用及其前景作简要展望。 关键词:丁苯橡胶;接枝;改性;应用 丁苯橡胶(SBR)是苯乙烯和丁二烯2种单体共聚生成的弹性体共聚物, 是耗量最大的通用橡胶之一,应用广泛。与一般通用橡胶相比,SBR具有较好的耐磨性、耐热性和耐老化性能,易与其他非极性橡胶并用,但其生胶强度低,黏合性差,不易增韧极性塑料。因此为了拓宽SBR 的应用范围,需要对其进行改性。常用的改性方法有共混法、接枝法、环氧化法。其中,接枝法操作简便经济,接枝产品灵活多变,是改善SBR 的使用性能、扩大SBR 应用范围的主要方法之一。SBR 的接枝改性是一种二烯烃聚合物的接枝,以双键和烯丙基氢为接枝点。通过接枝聚合反应,可以将极性、非极性的基团或链段和高弹性的两链段键接在一起,从而赋予SBR许多特殊的性能。笔者介绍了丁苯橡胶接枝改性的机理,对SBR接枝改性方法及应用进行概述。 1. SBR接枝机理 以SBR /苯乙烯体系进行溶液接枝改性为例。引发剂受热分解成初级自由基, 一部分引发苯乙烯聚合成均聚物,另一部分与SBR 大分子加成或转移,进行下列3种反应而产生接枝点。 第1种: 初级自由基与乙烯基侧基双键加成 第2 种: 初级自由基与SBR主链中的双键加成 第3 种: 初级自由基夺取丙烯基氢而链转移 其中R代表初级自由基,上述3种反应的反应速率常数依次为K 1> K 2 > K 3 。可知,第1 种和第2种更加有利于接枝反应。 2. 接枝改性方法 接枝改性是通过引发剂提供活性种,产生接枝点,聚合后形成接枝产物。接枝产物的性能及应用决定于主、支链的组成结构和长度以及支链数。接枝改性方法具有操作简单、接枝单体灵活多变的优点,是非常有潜力的方法之一。接枝改性可以在乳液、溶液和胶块中进行,接枝场所的不同可以产生不同的接枝效果。2.1 在乳液中进行接枝改性 在乳液中进行接枝改性是将接枝单体、引发剂等直接加入到橡胶乳液中,然后引发接枝聚合,是SBR接枝改性中最简单经济的方法。通常情况下,接枝对象是SBR胶乳,最后得到具有核壳结构的丁苯橡胶胶乳。 Arayapranee等研究了以苯乙烯(ST)和甲基丙烯酸甲酯(MMA)为接枝单体、SBR 胶乳(SBRL)为接枝对象、过氧化羟基二异丙苯(CHPO)/四乙烯五胺(TEPA)氧

聚氯乙烯的阻燃改性研究及应用

目录 1PVC 的组成结构 (3) 2PVC 改性方法 (4) 3PVC 改性的性能指标 (5) 3.1着色性 (5) 3.2迁移性 (5) 3.3耐候性 (6) 3.4稳定性 (6) 3.5电性能 (7) 4 阻燃PVC 的概述 (8) 4.1阻燃PVC的发展 (8) 4.2阻燃PVC 结构与特点 (8) 4.3阻燃PVC性能 (9) 4.4阻燃PVC 加工成型 (10) 4.5阻燃PVC应用 (10) 5PVC 共混阻燃改性材料研究 (12) 5.1二元共混阻燃材料 (12) 5.1.1 PVC/CPE (12) 5.1.2 PVC/CPVC (12) 5.1.3PVC/NBR (13) 5.1.4PVC/EVA (14) 5.2三元共混阻燃材料 (15) 6 结语 (16)

聚氯乙烯的阻燃改性研究及应用 摘要:PVC材料具有成本低、易加工、韧性好等优点, 被广泛使用在建筑中。但由于PVC材料在户外使用过程会受到紫外线照射而发生老化, 所以PVC材料的加工过程会添加一些增塑剂等助剂, 导致材料的阻燃性能降低, 而无法满足建筑材料防火阻燃等级的要求。因此通过添加阻燃剂来改善材料PVC的阻燃性就显得十分重要。 本文首先介绍了PVC的主要结构其碳原子为SP3杂化,其次介绍了PVC的常用改性方法有:化学改性、填充改性、增强改性、共混改性以及纳米复合改性,引申出了PVC的 阻燃改性的研究,其中阻燃PVC的性能研究当中研究了不同温度下阻燃PVC的形态以及性能趋势。探究了二元共混阻燃材料与三元共混阻燃材料的区别,阐述了PVC阻燃改性 的重要性以及生活中应用在必要性。 关键词:阻燃改性PVC

聚乙烯共混改性

聚乙烯共混改性 一摘要:聚乙烯是最重要的通用塑料之一,产量居各种塑料首位。聚乙烯(PE) 是由乙烯聚合而得的高分子化合物。聚乙烯分子仅含有C、H两种元素,所以是非极性聚合物,具有优良的耐酸、碱以及耐极性化学物质腐蚀的性质。聚乙烯(PE)树脂是以乙烯单体聚合而成的聚合物。聚乙烯的分子是长链线形结构或支链结构,为典型的结晶聚合物。在固体状态下,结晶部分与无定形部分共存。结晶度视加工条件和原处理条件而异,一般情况下,密度越高结晶度就越大。LDPE 结晶度通常为 55%~65%,HDPE 结晶度为 80%~90%。PE 具有优良的机械加工性能,但其表面呈惰性和非极性,造成印刷性、染色性、亲水性、粘合性、抗静电性能及与其他极性聚合物和无机填料的相容性较差,而且其耐磨性、耐化学药品性、耐环境应力开裂性及耐热等性能不佳,限制了其应用范围。通过改性来提高其性能,扩大其应用领域。其来源丰富,价格便宜,电气性质和加工性质优良,广泛应用于日用品、包装、汽车、建筑以及家用电器等方面。也作为泡沫塑料广泛用于绝热保温、包装和民用等各领域。但是,这些材料都是一次性使用,且质轻、体积大、难降解,用后即弃于环境中,造成严重的环境污染。因此有效合理地回收利用废旧泡沫塑料就显得日益重要。 聚乙烯的改性目标聚乙烯的下述缺点影响它的使用,是改性的主要目标。 (1)软化点低。低压聚乙烯熔点约为Ig0'C。高压聚乙烯熔点仅高于 0℃,因此聚乙烯的使用温度常低于10 0℃。 (2)J强度不高。聚乙烯抗张强度一般小于30M Pa.大太低于尼龙6、尼龙66、聚甲醛等工程塑料。 (3)易发生应力开裂。 (4)耐大气老化性能差。 (5)非极性,不易染色、印刷等 (6)不阻燃、极易燃烧。 ⊙根据密度的不同 低密度聚乙烯(LDPE)-其密度范围是0.91∽0.94g∕cm^3高密度聚乙烯(HDPE)-其密度范围是0.94∽0.99g∕cm^3中密度聚乙烯(MDPE)其密度范围是0.92∽0.95g∕cm^3 ⊙根据乙烯单体聚合时的压力 低压聚乙烯—压力0.1∽1.5MPa 中压聚乙烯—1.5∽8 MPa 高压聚乙烯压力为150∽250MPa 二、PE共混改性的机理 (1)有机增韧理论: 在塑料技术发展过程中,使用橡胶粒子与塑料进行共混改性即使有机粒子一弹性体作为增韧性,可以达到增韧的目的.产生出SBS等一人批新材料,已经在工业上获得广泛的应用如弹性鞋底材料、虽然获得理想的韧性却损害了复合材料宝贵的刚性和强度,劣化了加T流动性和耐热变形性,提高了成本,因而有一定的局限性。 (2)无机刚性粒子增韧理论

丁苯橡胶共混改性(DOC)

---------------材料科学与工程专业成型加工工艺课程设计题目:丁苯橡胶的增强改性 姓名:季赛 学号: 150412108 班级: 2012级材料(1)班 指导老师:张建耀职称:高级工程师\教授 起止日期: 2015.11.23——2015.12.6

目录 1.设计背景 (4) 1.1改性加工目的 (4) 1.2乳聚丁苯橡胶 (6) 1.3溶聚丁苯橡胶 (6) 1.4粉末丁苯橡胶 (8) 2.丁苯橡胶增强改性加工工艺原理 (8) 2.1炭黑增强丁苯橡胶应用 (8) 2.2炭黑的补强机理 (8) 3.丁苯橡胶改性原料、助剂及设备介绍 (9) 3.1原料及助剂 (9) 1)原料 (9) 2)炭黑 (10) 3)硬脂酸 (10) 4)氧化锌 (11) 6)防老剂 (11) 7)石蜡油 (11) 8)防焦剂 (12) 9)促进剂 (12) 10)硫化剂 (13) 3.2主要设备与仪器 (13) 3.2.1混炼机 (13) 3.2.2拉伸试验机 (14) 4.加工工艺及加工流程图 (14) 4.1 配方设计 (14) 4.2加工方法 (15) 1)炼前处理 (15) 2)炭黑-橡胶混炼 (15) 3)后加工工艺 (16)

4)强度测量 (16) 4.2产品性能测试项目、性能及测试标准 (16) 1)性能指标 (16) 2)性能参数标准 (18) 4.3加工流程图 (18) 5. 设计总结 (18)

1.设计背景 丁苯橡胶(SBR) ,又称聚苯乙烯丁二烯共聚物。其物理机构性能,加工性能及制品的使用性能接近于天然橡胶,有些性能如耐磨、耐热、耐老化及硫化速度较天然橡胶更为优良,可与天然橡胶及多种合成橡胶并用,广泛用于轮胎、胶带、胶管、电线电缆、医疗器具及各种橡胶制品的生产等领域,是最大的通用合成橡胶品种,也是最早实现工业化生产的橡胶品种之一。 中文名: 丁苯橡胶外文名: Polymerized Styrene Butadiene Rubber 密度: 1.04 g/mL 性状: 白色疏松柱状固体 1.1改性加工目的 炭黑增强丁苯橡胶是以橡胶为基体,以炭黑颗粒为增强相的复合材料。炭黑在橡胶体系中起补强和填充作用,以改善橡胶制品性能。纯丁苯橡胶拉伸强度只有3.5MPa,没有应用价值,加入炭黑补强后,其拉伸强度提高到25MPa左右。 按聚合工艺,丁苯橡胶分为乳聚丁苯橡胶(ESBR)和溶聚丁苯橡胶(SSBR)。与溶聚丁苯橡胶工艺相比,乳聚丁苯橡胶工艺在节约成本方面更占优势,全球丁苯橡胶装置约有75%的产能是以乳聚丁苯橡胶工艺为基础的。乳聚丁苯橡胶具有良好的综合性能,工艺成熟,应用广泛,产能、产量和消费量在丁苯橡胶中均占首位。充油丁苯橡胶具有加工性能好、生热低、低温屈挠性好等优点,用于胎面橡胶时具有优异的牵引性能和耐磨性,充油后橡胶可塑性增强,易于混炼,同时可降低成本,提高产量。目前,世界上充油丁苯橡胶约占丁苯橡胶总产量的 50-60%。 乳聚丁苯橡胶,由丁二烯、苯乙烯为主要单体,配以其他辅助化工原料,在一定工艺条件下,经乳液法聚合首先生成丁苯胶浆,脱除胶浆中未转化的单体后,再经凝聚、干燥等工序而生产出产品胶。 溶聚丁苯橡胶,由丁二烯、苯乙烯为主要单体,在烃类溶剂中,采用有机锂化合物作为引发剂,引发阴离子聚合制得的聚合物胶液,加入抗氧剂等助剂后,经凝聚、干燥等工序而生产出产品胶。

聚乙烯醇缩甲醛(胶水)的制备

聚乙烯醇缩甲醛(胶水)的制备 一、实验目的 了解聚乙烯醇缩甲醛化学反应的原理,并制备红旗牌胶水。 以聚乙烯醇和甲醛为原料制备聚乙烯醇缩甲醛胶水,了解聚合物的化学反应特点 二、实验原理 聚乙烯醇缩甲醛胶(商品名107胶)是一种目前广泛使用的合成胶水, 无色透明溶液,易溶于水。与传统的浆糊相比具有许多优点[1]:①、初粘性好,特别适合于牛皮纸和其它纸张的粘合;②、粘合力强;③、贮存稳定,长久放置不变质;④、生产成本低廉。国内有许多厂家生产此胶水。因此广泛应用于多种壁纸、纤维墙布、瓷砖粘贴、内墙涂料及多种腻子胶的粘合剂等。近年来,为了适应市场需求人们对聚乙烯醇缩甲醛胶粘剂进行了大量的改性研究,无论在合成工艺上还是在胶液的性能方面都有显著的提高。本实验以聚乙烯醇缩甲醛为例,我们对其合成过程所用的催化剂、缩合温度等对胶水质量有影响的因素进行了试验研究和探讨,摸索出更佳更合理的工艺条件。 聚乙烯醇缩甲醛是利用聚乙烯醇与甲醛在盐酸催化作用下而制得的,其反应如下 : 聚乙烯醇缩醛化机理: 聚乙烯醇是水溶性的高聚物,如果用甲醛将它进行部分缩醛化,随着缩醛度的增加,水溶液愈差,作为维尼纶纤维用的聚乙烯醇缩甲醛其缩醛度控制在35%左右,它不溶于水,是性能优良的合成纤维。

本实验是合成水溶性的聚乙烯醇缩甲醛,即胶水。反应过程中需要控制较低的缩醛度以保持产物的水溶性,若反应过于猛烈,则会造成局部缩醛度过高,导致不溶于水的物质存在,影响胶水质量。因此在反应过程中,特别注意要严格控制崐催化剂用量、反应温度、反应时间及反应物比例等因素。 聚乙烯醇缩甲醛随缩醛化程度的不同,性质和用途各有所不同,它能溶于甲酸、乙酸、二氧六环、氯化烃(二氯乙烷、氯仿、二氯甲烷)、乙醇甲苯混合物(30∶70)、乙醇甲苯混合物(40∶60)以及60%的含水乙醇中。缩醛度为75%~85%的聚乙烯醇缩甲醛重要的用途是制造绝缘漆和粘合剂。 三、实验药品及仪器 药品:聚乙烯醇、甲醛(40%)、氢氧化钠,浓盐酸,硫酸 仪器:搅拌器、恒温水浴,球形冷凝管,温度计,滴液漏斗, 三口烧瓶实验装置如下图: 四、实验步骤及现象 步骤现象分析 在250mL三颈瓶中,加入90mL去离子水(或蒸馏水)、7g聚乙烯醇,在搅拌下升温至85-90℃溶解。 搅拌加热升温至 90℃左右时,聚乙烯醇 全部溶解,溶液无色透 明,瓶内无白色固体。 聚乙烯醇熔点>85℃,所以需升温至 85-90℃。 等聚乙烯醇完全溶解后,降温至35-40℃加入4.6mL甲醛(40%工业纯),搅拌15min,再加入1∶4盐酸,使溶液pH 值为1-3。保持反应温度85-90℃,继续搅拌20min,反应体系逐渐变稠,当体系中出现气泡或有絮状物产生时,立即迅速加入1.5 mL8%的NaOH溶液,同时加入34mL去离子水(或蒸馏水)。调节体系的pH 值为8-9。然后冷却降温出料,获得无色透明粘稠的液体,即市场出售的红旗牌胶水。 加入盐酸,溶液 无明显变化,PH降低至 2左右。 加入甲醛后加热升 温,溶液变稠。 升温至85-90℃一 段时间后,出现气泡, 加入NaOH和蒸馏水, PH值为9左右。冷却, 得无色透明粘稠的液 体。 必须控制PH为1-3,所以加入盐 酸不能太多也不能太少。当pH过低 时,催化剂过量,反应过于猛烈,造成 局部缩醛度过高,导致不溶于水的产物 产生。当pH过高时,反应过于迟缓, 甚至停止,结果往往会使聚乙烯醇缩醛 化成都过低,产物粘性过低。 加入甲醛后加热升温,聚乙烯醇与 甲醛反应,缩醛化,体系粘度变大,溶 液变粘稠。 产生气泡,说明分子间已经开始交 联,故此时要停止加热。 调节PH为8-9是因为,在酸性条 件下,聚合物与空气接触不稳定会继续 缩醛化,所以要调PH>7

聚合物表面改性方法

聚合物表面改性方法 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由1mol 的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓硫酸100份,将聚乙烯或聚丙烯室温条件下在处理液中浸泡1~1.5h,66~71℃条件下浸泡1~5min,80~85℃处理几秒钟,此外还有过硫酸铵的氧化处理液[3]。其配方为硫酸铵60~120g,硫酸银(促进剂)0.6g,蒸馏水1000ml,将聚乙烯室温条件下处理20min,70℃处理5min,当用来处理聚丙烯时,处理温度和时间都需增加一些,70℃lh,90℃10min,其中促进剂硫酸银效果不明显,可以去掉,但此处理液有效期短,通常只有lh。这两种处理方法,效果都不错。 1.3聚醚型聚氨酯 Wrobleski D. A.等[4]对聚醚型聚氨酯Tecoflex以化学浸渍和接枝聚合进行表面改性。且用Wilhelmy平衡技术测定接触角,结果表明,经聚乙烯基吡咯烷酮(PVP)和PEG化学浸渍修饰表面,以及用VPHEMA对2-丙烯酰胺基-2-甲基-1-丙磺酸及其钠盐(AMPS和NaAMPS)光引发表面接枝。其表面能增大,表面更加亲水。化学浸溃使前进和后退接触角降低20和30~40

NBR增韧改性PVC

NBR增韧改性PVC

聚氯乙烯(PVC)是最早工业化、产量位居第二的通用塑料,具有耐油、耐酸碱、电气性能优良、透光性好、加工成型容易等优点。但其热稳定性欠佳,导致加工性能恶化,硬而脆,冲击强度低,耐老化性、耐寒性差。PVC共混改性的方法很多,可用的添加剂主要有聚酯树脂、PMMA、AS树脂、加工改进型ACR、NBR、CR、CPE、EVA、EVA-CO共聚物、抗冲改进型ACR、ABS、MBS、PE、PP等。NBR增韧改性PVC就是通过加入一定品种、一定用量的NBR与PVC共混,以提高PVC的冲击强度。NBR改性PVC所得共混物因具有优异的韧性、弹性、耐油性及易加工成型性而倍受青睐,在PVC改性中占据着极其重要的地位。最早人们采用NBR与PVC直接机械共混,随着NBR/PVC共混方法的深入研究,又开发出乳液共混法。本文所提到的方法都是采用机械共混法。 一、NBR增韧改性PVC的开发背景PVC是极性塑料,人们很自然首先想到用极性的NBR做为它的增韧改性剂。NBR 作为丁二烯与丙烯腈的共聚物,不仅具有耐油、耐老化及耐磨等优点,且与PVC相容性好,因而得到广泛的应用。市场上已有块状、粉状、液体NBR销售,它们各自又有普通、羧基、羟基NBR之类别,还可与各种添加剂(如改性膨润土等)制成性能各异的NBR,为PVC的增韧改性提供了非常广泛的原料选择余地。NBR/PVC两者的相容性还可由NBR中丙烯腈的含量来调节,NBR的极性随丙烯腈含量的增加而增强。当丙烯腈含量为40%

时,两者相容性最佳;当丙烯腈含量为20%左右时,它与PVC 共混物的冲击强度最高。NBR与PVC能很好地共混,引入动态硫化技术,利用开炼机制成的NBR/PVC型热塑性硫化胶(TPV),经透射电镜观察,它呈现出明显的两相结构:交联的丁腈橡胶分散相分散于PVC连续相中。由于共混物的力学性能受硫化体系(以树脂硫化体系为宜)和加工条件影响,该共混物压缩永久变形、拉断永久变形、耐油等主要性能均优于简单机械共混物,该共混物是假塑性流体。NBR增韧改性PVC具有加工成型简单、产品性能稳定、增韧改性效果明显、原料选择范围广泛等优点,因而被大量使用。NBR改性PVC已日趋成熟,但NBR 属于不饱和橡胶,用它改性的PVC耐候性仍不理想,但通过硫化会有所改善。 二、NBR增韧改性PVC的机理采用NBR增韧改性PVC 时,由于其相容性好,NBR相易形成包覆有PVC的细胞状结构,并分散于PVC连续相中形成“海岛”结构。连续的PVC相保持材料的力学特征,分散于PVC相中的细胞状NBR相形成材料的应力集中点。当材料受到冲击时,应力集中于NBR橡胶相周围,从而诱发产生银纹和剪切带并吸收能量,银纹的发展遇到下一个橡胶粒子时而终止,从而防止银纹发展成破坏性的裂缝。细胞状橡胶相的形成,相当于扩大了NBR的作用,因而用NBR 增韧改性PVC效果明显 三、增韧改性效果的表征与测量增韧改性效果一般用冲

三元乙丙橡胶的改性与应用现状 2006121816172541

三元乙丙橡胶的改性与应用现状 王 明 李忠明 (四川大学高分子材料科学与工程学院,成都,610065) 摘 要 介绍了三元乙丙橡胶相容性的改善、拉伸强度的提高及其硫化的研究、三元乙丙橡胶在汽车工业、电子电气、建筑及其它领域的应用、三元乙丙橡胶的回收利用现状。 关键词:三元乙丙橡胶改性硫化汽车建筑电子电气阻燃 一、概述 三元乙丙橡胶(EPDM)是乙烯、丙烯及少量非共轭双烯采用溶液法或悬浮法共聚而制得的。催化剂主要采用Zieglar2Natta催化剂,不过催化效率更高的茂金属催化剂将很有可能取代Zieglar2Natta催化剂[1]。EPDM 的分子链结构特点是分子链基本不含不饱和键,取代基空间位阻小,分子链柔性好,是一种饱和非结晶性橡胶。这样的分子结构决定了EPDM具有良好的综合性能:高动态力学性能、耐候性、抗腐蚀性及耐臭氧性等。但EPDM也存在不足,那就是不耐油、与其它材料粘合性差、硫化速度慢等。 二、EPDM的改性 11EPDM的自粘性和互粘性的提高 近年来用EPDM增韧塑料的研究是一个热门课题,且取得了大量的成果,产生了广泛的经济效益。但EPDM通常与其它聚合物相容性差,如何解决这个课题是EPDM共混研究的问题关键。解决这个问题一般有以下三种途径: (1)共混改性 通过EPDM和一种易与其它材料粘合的物质共混来提高EPDM材料的自粘性和互粘性。如在EPDM中加入一定量的氯丁橡胶(CR)进行共混,这样得到的混合胶料的自粘性和互粘性有明显提高[2]。 (2)增容 采用第三组分增容,如对NBR2EPDM 共混体系的研究表明,第三组分EVA能很好地改善此并用胶的相容性、加工性和力学性能[3]。又如在PA2EPDM体系中常用加入反应型高聚物增容剂(M EPDM、CPE等)的方法来达到增容目的[4—6]。 (3)接枝 通过在EPDM的分子链上接枝一种易与其它材料粘合的支链来改善EPDM的自粘性和互粘性。如用马来酸酐(MAH)接枝EPDM可以提高EPDM与PA之间的相容性[7]。不过MAH在高温下容易挥发,对人体刺激性大,并对设备具有腐蚀性。若用甲基丙烯缩水甘油酯(GMA)接枝EPDM,就可很好地解决以上问题。研究发现PA在

聚合物表面改性方法综述

聚合物表面改性方法综述 连建伟 (中国林业科学研究院林产化学工业研究所) 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由 1mol的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有 31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓

聚乙烯的改性

专业综合实践(综述) 系别:轻工工程系 专业:高分子材料应用技术 班级: 12工艺331 学生姓名:刘彭城 学生学号: 1213323113 指导教师:徐应林

聚乙烯改性研究进展 [摘要] 聚乙烯以优良的力学性能、加工性能、耐化学性等成为最主要的聚烯烃塑料品种,大量用于生产薄膜、包装和管材等.但聚乙烯的非极性和低刚性限制了其在某些领域的应用.综述了聚乙烯的化学改性的新进展.化学改性包括接枝改性、共聚改性、交联改性、氯化及氯磺化改性和等离子体改性. [关键词] 聚乙烯;化学改性;进展 前言 化学改性的方法主要有接枝改性、共聚改性、交联改性、氯化及氯磺化改性和等离子体改性处理等方法.其原理是通过化学反应在PE分子链上引入其它链节和功能基团,由此提高材料的力学性能、耐侯性能、抗老化性能和粘结性能等。 1.接枝改性 接枝改性是指将具有各种功能的极性单体接枝到PE主链上的一种改性方法.接枝改性后的PE不但保持了其原有特性,同时又增加了其新的功能.常用的接枝单体有丙烯酸(AA)、马来酸酐(MA)、马来酸盐、烯基双酚A醚和活性硅油等. 接枝改性的方法主要有溶液法、固相法、熔融法、辐射接枝法、光接枝法等. 程为庄等以过氧化苯甲酰为引发剂,二甲苯为溶剂,进行了丙烯酸与低密度聚乙烯(LDPE)的溶液接枝聚合.聚乙烯接枝了丙烯酸后与铝的粘结强度显著增大,当接枝率为7.2%时,剥离强度由未接枝时的193N/m提高到984N/m.唐进伟等[1]利用固相法在线性低密度聚乙烯(LLDPE)上接枝MA,得到了接枝率为1%~214%,凝胶含量小于4%的LLDPE2g2MA. 于逢源等[2]采用多组分单体熔融接枝法,以甲基丙烯酸缩水甘油酯和苯乙烯作为接枝单体,对LDPE进行熔融接枝改性,获得了接枝率为3%的改性低密度聚乙烯. 鲁建民等研究了粉末态高密度聚乙烯的辐射效应、与多种单体的固态辐射接枝行为及其表征,并将其应用于聚乙烯粉末涂料,其附着力和柔韧性得到显著改善.

氯化聚乙烯橡胶共混--施工工艺范本(全套防水)

氯化聚乙烯橡胶共混防水卷材施工方案 本工程是***地下配电间筏板下周围1m范围内,设计为一级防水。氯化聚乙烯--橡胶共混防水卷材,属合成高分子防水卷材,是以氯化聚乙烯树脂与合成橡胶为主体,加入适量的硫化剂、促进剂、稳定剂、软化剂和填充剂等,经加工制成的高弹性防水卷材。这种防水卷材兼有塑料和橡胶的特点,不但具有高强度和优异的耐老化性能,而且还具有橡胶类材料的高弹性、高延伸性以及良好的耐低温性能。 (一)施工准备 1.材料 氯化聚乙烯--橡胶共混防水卷材。 规格厚度:1.5mm 宽度:1.0mm 2.准备 基层处理剂、基层粘结剂、卷材接缝粘结剂、增强密封膏、着色剂以及自硫化胶带等配套材料。 (二)施工工艺 1.工艺流程。 基层清理→涂布基层处理剂→特殊部位进行增补处理→涂布基层胶粘剂→铺贴防水卷材→接头处理→卷材末端收头。 2.操作工艺要点

(1)清理基层,涂刷基层处理剂同三元乙丙防水卷材施工要求。 (2)涂刷基层胶粘剂 留出长边100mm短边150mm搭接部位,其余部位全部涂刷,找平层表面满涂。 (3)卷材粘贴 卷材表面及找平层涂刷的基层胶粘剂干燥后,即可铺贴卷材。按基准线,铺展一张卷材后,立即用干净的滚刷沿横向顺序滚压一遍,以便排除空气。 (4)卷材按长方向配置,从流水坡度的下坡开始。卷材接缝宽度:长边100mm短边150mm。粘结方法:将搭接缝部位翻开,用卷材接缝胶粘剂将翻开的卷材反面点粘做暂时固定,在翻开的两卷材表面均匀涂布胶粘剂,待基本干燥后,即可揭开暂时固定的点粘进行搭接部位的粘贴,然后用手持压辊沿横向顺序滚压粘实。 (5)卷材末端的收头处理: 搭接缝的边缘和末端收头处理,应用聚氨酯嵌缝膏或单组分氯磺化聚乙烯嵌缝膏封闭严密,并可用掺有水泥用量20%107胶的水泥砂浆进行压缝处理。 (6)保护层施工 保护层点粘350号石油沥青油毡一层,油毡上做50厚C20细石

丁苯橡胶

丁苯橡胶 摘要:丁苯橡胶(SBR) ,又称聚苯乙烯丁二烯共聚物。其物理机构性能,加工性能及制品的使用性能接近于天然橡胶,有些性能如耐磨、耐热、耐老化及硫化速度较天然橡胶更为优良,可与天然橡胶及多种合成橡胶并用,广泛用于轮胎、胶带、胶管、电线电缆、医疗器具及各种橡胶制品的生产等领域,是最大的通用合成橡胶品种,也是最早实现工业化生产的橡胶品种之一。 关键词:丁苯橡胶自由基聚合聚合方法丁苯橡胶的改性丁苯橡胶的应用 丁苯橡胶(SBR)是应用于轮胎胎面胶的重要胶种之一,在较大幅度的提高胎面抗湿滑性的同时能够明显改善其耐磨耗性能。由于轮胎胎面胶中常并用天然橡胶(NR),为了使胎面具有良好的综合性能,所以需要使丁苯橡胶与天然橡胶有良好的混容性[1,2]。虽然乳聚丁苯橡胶(ESBR)能够达到提高胎面胶抗湿滑性和耐磨性的要求,但是乳聚丁苯橡胶与天然橡胶的混容性较差,从而影响到其它重要的性能,尤其会使生热量大增[3,4],而对于轮胎而言则将会增大其滚动阻力,增加油耗。基于此,人们用溶液聚合的方法制得了在分子链结构上与乳聚丁苯橡胶有着明显区别的溶聚丁苯橡胶(SSBR)[5]。近来的研究成果表明,SSBR 与天然橡胶的并用体系,能够较好地解决轮胎的抓着力、滚动阻力、耐磨性之间实现最佳平衡的问题,因此,溶聚丁苯橡胶成为开发“绿色轮胎”最主要的研究对象之一[6]。 丁苯橡胶是苯乙烯与丁二烯单体通过无规共聚得到的,丁苯橡胶

链节中包含苯乙烯、1-2-聚丁二烯、顺 1-4-聚丁二烯、反 1-4-聚丁二烯四种结构单元。其中,苯乙烯赋予了胶料一定的强度和耐磨性,但会显著提高胶料的刚性和生热量;1-4聚丁二烯赋予胶料较好的柔顺性和抗湿滑性并能够降低生热量,但强度性能较低,且耐磨性较差;而 1-2-聚丁二烯则兼具苯乙烯和 1-4-聚丁二烯两种结构的优点。按照不同的聚合方法可以将丁苯橡胶(SBR)分成乳液聚合丁苯橡胶(即乳聚丁苯橡胶/ESBR)和溶液聚合丁苯橡胶(即溶聚丁苯橡胶/SSBR)。ESBR 拥有十分成熟的生产技术、较为稳定的产品质量、非常齐全的品种牌号,而且 ESBR是通过自由基聚合而成,合成方法简便,生产效率较高,应用较为广泛。而 SSBR 是活性阴离子聚合的产物,同乳聚丁苯橡胶相比,其生产工艺对产物分子的结构有一定的定向性,顺式 1,4 结构含量高、分子量分布窄、滚动阻力小,特别适合与天然橡胶和顺丁橡胶一起作为理想的轮胎胎面胶材料使用。丁苯橡胶的加工性能,物理机械性能(填充以后)及其制品的使用性能等均接近于天然橡胶,耐热性、耐老化性和耐磨性等性能会赶上甚至超过天然橡胶。丁苯橡胶还可以同 NR 及多种合成橡胶共混使用,广泛地应用于胶管、胶带、胶鞋、电线电缆以及其它橡胶制品等领域,特别是在轮胎工业中的应用日益引起人们的重视。 烷基锂引发丁二烯和苯乙烯阴离子共聚合反应机理 阴离子聚合属连锁反应,分为链引发,链增长和链终止。阴离子聚合在不同的溶剂体系以及不同极性调节剂作用卜,其反应机理不同,聚合物的微观结构和宏观物性也不同。

相关文档
最新文档