4-半导体泵浦固体激光器

4-半导体泵浦固体激光器
4-半导体泵浦固体激光器

半导体泵浦固体激光器倍频与调Q实验

一、前言

半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及其调Q 和倍频的原理和技术。

二、实验目的

1、掌握半导体泵浦固体激光器的工作原理和调试方法;

2、掌握固体激光器被动调的工作Q原理,进行调Q脉冲的测量;

3、了解固体激光器倍频的基本原理。

三、实验原理与装置

1. 半导体激光泵浦固体激光器工作原理:

上世纪80年代起,半导体激光器(LD)生长技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。侧面泵浦方式主要应用于大功率激光器。本实验采用端面泵浦方式。端面泵浦耦合通常有直接耦合和间接耦合两种方式。

a) 直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。

b) 间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。常见的方法有:

1) 组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。

2) 自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。

3) 光纤耦合:指用带尾纤输出的LD进行泵浦耦合。优点是结构灵活。

本实验先用光纤柱透镜对半导体激光器进行快轴准直,压缩发散角,然后采用组合透镜对泵浦光束进行整形变换,各透镜表面均镀对泵浦光的增透膜,耦合效率高。本实验的压缩和耦合如图2所示。

LD

激光晶体

LD 激光晶体

组合透镜激光晶体自聚焦透镜LD LD 光纤激光晶体

1. 2. 3. 4.

图1半导体激光泵浦固体激光器的常用耦合方式

1.直接耦合

2.组合透镜耦合

3.自聚焦透镜耦合

4.光纤耦合

Nd:YAG LD 耦合系统电源

TEC 和散热片

图2

本实验

LD 光束快轴压缩耦合泵浦简图

2、激光晶体图3Nd:YAG 晶体中Nd 3+

吸收光谱图激光晶体是影响DPL 激光器性能的重要器件。为了获得高效率的激光输出,在一定运转方式下选择合适的激光晶体是非常重要的。目前已经有上百种晶体作为增益介质实现了连续波和脉冲激光运转,以钕离子(Nd 3+)作为激活粒子的钕激光器是使用最广泛的激光器。

其中,以Nd 3+离子部分取代Y 3Al 5O 12晶体中Y 3+离子的掺钕钇铝石榴石(Nd:YAG )

,由于具有量子效率高、受激辐射截面大、光学质量好、热导率高、容易生长等的优点,成为目前

应用最广泛的LD泵浦的理想激光晶体之一。Nd:YAG晶体的吸收光谱如图3所示。

从Nd:YAG的吸收光谱图我们可以看出,Nd:YAG在807.5nm处有一强吸收峰。我们如果选择波长与之匹配的LD作为泵浦源,就可获得高的输出功率和泵浦效率,这时我们称实现了光谱匹配。但是,LD的输出激光波长受温度的影响,温度变化时,输出激光波长会产生漂移,输出功率也会发生变化。因此,为了获得稳定的波长,需采用具备精确控温的LD 电源,并把LD的温度设置好,使LD工作时的波长与Nd:YAG的吸收峰匹配。

另外,在实际的激光器设计中,除了吸收波长和出射波长外,选择激光晶体时还需要考虑掺杂浓度、上能级寿命、热导率、发射截面、吸收截面、吸收带宽等多种因素。

3、端面泵浦固体激光器的模式匹配技术

图4是典型的平凹腔型结构图。激光晶体的一面镀泵浦光增透和输出激光全反膜,并作为输入镜,镀输出激光一定透过率的凹面镜作为输出镜。这种平凹腔容易形成稳定的输出模,同时具有高的光光转换效率,但在设计时必须考虑到模式匹配问题。

图4端面泵浦的激光谐振腔形式

对于平凹腔,根据腔的稳定性条件,易知当L

4、半导体激光泵浦固体激光器的被动调Q技术

目前常用的调Q方法有电光调Q、声光调Q和被动式可饱和吸收调Q。本实验采用的Cr4+:YAG是可饱和吸收调Q的一种,它结构简单,使用方便,无电磁干扰,可获得峰值功率大、脉宽小的巨脉冲。

Cr4+:YAG被动调Q的工作原理是:当Cr4+:Y AG被放置在激光谐振腔内时,它的透过率会随着腔内的光强而改变。在激光振荡的初始阶段,Cr4+:YAG的透过率较低(初始透过率),随着泵浦作用,增益介质的反转粒子数不断增加,当谐振腔增益等于谐振腔损耗时,反转粒子数达到最大值,此时可饱和吸收体的透过率仍为初始值。随着泵浦的进一步作用,腔内光子数不断增加,可饱和吸收体的透过率也逐渐变大,并最终达到饱和。此时,Cr4+:Y AG 的透过率突然增大,光子数密度迅速增加,激光振荡形成。腔内光子数密度达到最大值时,激光为最大输出,此后,由于反转粒子的减少,光子数密度也开始减低,则可饱和吸收体Cr4+:YAG的透过率也开始减低。当光子数密度降到初始值时,Cr4+:YAG的透过率也恢复到初始值,调Q脉冲结束。

5、半导体激光泵浦固体激光器的倍频技术

光波电磁场与非磁性透明电介质相互作用时,光波电场会出现极化现象。当强光激光产生后,由此产生的介质极化已不再是与场强呈线性关系,而是明显的表现出二次及更高次的非线性效应。倍频现象就是二次非线性效应的一种特例。本实验中的倍频就是通过倍频晶体实现对Nd:YAG输出的1064nm红外激光倍频成532nm绿光。

常用的倍频晶体有KTP 、KDP 、LBO 、BBO 和LN 等。其中,KTP 晶体在1064nm 光附近有高的有效非线性系数,导热性良好,非常适合用于YAG 激光的倍频。KTP 晶体属于负双轴晶体,对它的相位匹配及有效非线性系数的计算,已有大量的理论研究,通过KTP 的色散方程,人们计算出其最佳相位匹配角为: =90°, =23.3°,对应的有效非线性系数d eff =7.36×10-12V/m 。

倍频技术通常有腔内倍频和腔外倍频两种。腔内倍频是指将倍频晶体放置在激光谐振腔之内,由于腔内具有较高的功率密度,因此较适合于连续运转的固体激光器。腔外倍频方式指将倍频晶体放置在激光谐振腔之外的倍频技术,较适合于脉冲运转的固体激光器。6、实验装置图

1)半导体泵浦固体激光器实验

耦合系统准直器

探测器散热片图5半导体泵浦固体激光器实验装置图

2)半导体泵浦固体激光器调Q 实验

Nd:YAG 耦合系统输出镜准直器

探测器Cr 4+:YAG LD 电源TEC 和

散热片图6调Q 实验装置图

3)半导体泵浦固体激光器倍频实验

Nd:YAG 输出镜准直器

KTP LD 耦合系统电源TEC 和散热片

图7倍频实验装置图

四、实验内容与要求

1、LD 安装及系统准直

a) 将LD 电源接通。通过上转换片观察LD 出射光近场和远场的光斑。测量LD 经快轴压缩后的阈值电流和输出特性曲线。

b) 将耦合系统、激光晶体、输出镜、Q开关、准直器等各元器件安装在调整架和滑块上;

c) 将准直器安装在导轨上,利用直尺将其调整成光束水平出射,中心高度50mm,水平并且水平入射在激光晶体中心位置;

d) 通过调整架旋钮微调Nd:YAG晶体的倾斜和俯仰,使晶体反射光位于准直器中心,并且准直光通过晶体后仍垂直进入LD;

e) 在准直器前安装T1输出镜,调整旋钮使输出镜的反射光点位于准直器中心。

2、半导体泵浦固体激光器实验

a) 在准直器前安装T1输出镜,调整旋钮使输出镜的反射光点位于准直器中心。打开LD电源,缓慢调节工作电流到1.3A。微调输出镜倾斜和俯仰使系统出光,然后微调激光晶体、耦合系统,使激光输出得到最大值;

b) 将LD电流调到最小,然后从小到大渐渐增大LD电流,从激光阈值电流开始,每格0.2A 测量一组LD输出功率。结合LD的功率-电流关系,在实验报告上绘出激光输出功率-泵浦功率曲线;

c) 更换为T2输出耦合镜,重复以上b、c的步骤,测试不同LD电流下的激光输出功率;

d) 根据实验数据和曲线,计算两种耦合输出下的激光斜效率和光光转换效率,并作简要分析。

3、半导体泵浦固体激光器调Q实验

a) 安装Cr4+:Y AG晶体,在准直器前准直后放入谐振腔内。LD电流调到1.7A,观察输出的平均功率,微调调整架,使激光输出平均功率最大;

b) 降低LD电流到零。然后从小到大缓慢增加,测量1.7A、2.0A、2.3A时输出脉冲的平均功率;

c) 安装探测器,取三个不同的LD工作电流(1.7A、2.0A、2.3A),分别测量输出脉冲的脉宽、重频;

d) 计算不同功率下的峰值功率,对不同功率下的输出脉冲进行对比,并作简要分析。

4、半导体泵浦固体激光器倍频实验

a) 将输出镜换为短波通输出镜,微调调整架使其反射光点在准直器中心。打开LD电源,取工作电流1.7A,微调输出镜、激光晶体、耦合系统的旋钮,使输出激光功率最大;

b) 安装KTP晶体,在准直器前准直后放入谐振腔内,倍频晶体尽量靠近激光晶体。调节调整架,使得输出绿光功率最亮;然后旋转KTP晶体,观察旋转过程中绿光输出有何变化;

五、实验结果与思考

1、什么是半导体泵浦固体激光器中的光谱匹配和模式匹配?

2、可饱和吸收调Q中的激光脉宽、重复频率随泵浦功率如何变化?为什么?

3、把倍频晶体放在激光谐振腔内对提高倍频效率有何好处?

半导体泵浦激光原理实验

半导体泵浦激光原理实验 理工学院光信息2班贺扬10329064 合作人:余传祥 【实验目的】 1、了解与掌握半导体泵浦激光原理及调节光路方法。 2、掌握腔内倍频技术,并了解倍频技术的意义。 3、掌握测量阈值、相位匹配等基本参数的方法。 【实验仪器】 808nm半导体激光器、半导体激光器可调电源、晶体、KTP倍频晶体、输出镜(前腔片)、光功率指示仪 【实验原理】 激光的产生主要依赖受激辐射过程。 处于激发态的原子,在外的光子的影响下,从高能态向低能态跃迁,并在两个状态的能量差以辐射光子的形式发出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。 激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 泵浦过程使粒子从基态抽运到激发态,上的粒子通过无辐射跃迁,迅速转移到亚稳态。是一个寿命较长的能级,这样处于的粒子不断累积,上的粒子又由于抽运过程而减少,从而实现与能级间的粒子数反转。 激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,只有沿轴向的光子,部分通过输出镜输出,

部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 激光倍频是将频率为的光,通过晶体中的非线性作用,产生频率为的光。 当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系: 式中均为与物质有关的系数,且逐次减小。 当E很大时,电场的平方项不能忽略。 ,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。 倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到: 式中L为晶体长度,、分别为入射的基频光、输出的倍频光光强。 在正常色散情况下,倍频光的折射率总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位匹配。 【实验装置】 图2 实验装置示意图

半导体激光器的研究

半导体激光器的研究 半导体激光器是近年来应用非常广泛的一种激光器。在本实验中我们将对半导体激光器的主要发光器件——激光二极管(LD)进行全面的实验研究。 【实验内容】 1.激光二极管(LD)的伏安特性测量。 2.LD的发光强度与电流的关系曲线测量。 3*.LD发光光谱分布测量。 4*.LD发光偏振特性分析。 【实验仪器】 激光二极管,电压表,电流表,激光功率计,分光计,格兰—泰勒棱镜等

阅读材料 半导体激光器件 按照半导体器件功能的基本结构可分为:注入复合发光,即电—光转换;光引起电动势效应,即光—电变换。这里主要讨论前者。 半导体激光光源是半导体激光器发射的激光。它是以半导体材料作为激光工作物质的一类激光器,亦称激光二极管,英文缩写为LD。与其相对应的非相干发光二极管,英文缩写为LED。它具有工作电压低、体积小、效率高、寿命长、结构简单、价格便宜以及可以高速工作等一系列优点。可采用简单的电流注入方式来泵浦,其工作电压和电流与集成电路兼容,因而有可能与之单片集成;并且还可用高达吉赫(109 Hz)的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,LD在激光通信、光纤通信、光存储、光陀螺、激光打印、光盘录放、测距、制导、引信以及光雷达等方面已经获得了广泛应用,大功率LD 可用于医疗、加工和作为固体激光器的泵浦源等。 半导体激光器自1962年问世以来,发展极为迅速。特别是进入20世纪80年代,借用微电子学制作技术(称为外延技术),现已大量生产半导体激光器。以半导体LD条和LD堆为代表的高功率半导体激光器品种繁多,应有尽有。 1 概述 1)半导体激光器的分类 从半导体激光器的发射的激光看,可分为半导体结型二极管注入式激光器和垂直腔表面发射半导体激光器两种类型;而从结型看,又可分为同质结和异质结两类;从制造工艺看,又可为一般半导体激光器、分布反馈式半导体激光器和量子阱半导体激光器激光器;另外,为了提高半导体激光器的输出功率,增大有源区,将其做成列阵式,又可分为单元列阵、一维线列阵、二维面阵等。 2)半导体激光器的工作原理 半导体激光器与其它激光器没有原则区别,只是因工作物质不同,而有其自身的特点。图示给出了GaAs激光器的外形及其管芯结构,在激光器的外壳上有一个输出激光的小窗口,激光器的电极供外接电源用,外壳内是激光器管芯,管芯形状有长方形、台面形、电极条形等多种。它的核心部分是PN结。半导体激光器PN结的两个端面是按晶体的天然晶面剖切开的,称为解理面,这两个表面极为光滑,可以直接用作平行反射镜面,构成激光谐振腔。激光可以从某一侧解理面输出,也可由两侧输出。 半导体材料是一种单晶体,各原子最外层的轨道互相重叠,导致半导体能级不再是分

光纤激光器原理

光纤激光器原理 光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率,低阈值, 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉

冲,每单个脉冲有一个持续时间,比如说10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用t 表示。这种激光器可以发出一连串脉冲,比如,1 秒钟发出10 个脉冲,或者有的就发出一个脉冲。这时,我们就说脉冲重复(频)率前者为10,后者为1,那么,1 秒钟发出10 个脉冲,它的脉冲重复周期为0.1 秒,而1 秒钟发出1 个脉冲,那么,它的脉冲重复周期为1 秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为E,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如, E = 50 mJ(毫焦),T = 0.1 秒,那么,平均功率P平均= 50 mJ/0.1 s = 500 mW。 如果用 E 除以t,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的例子中E = 50 mJ, t = 10 ns, P峰值= 50 ×10^(-3)/[10×10^(-9)] = 5×10^6 W = 5 MW(兆瓦),由于脉冲宽度t 很小,它的峰值功率很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k=?秒 平均功率P=E/T=0.001J/0.00005s=20W P峰值功率=E/t 激光的分类: 激光按波段分,可分为可见光、红外、紫外、X光、多波长可调谐,目前工业用红外及紫外激光。例如CO2激光器10.64um红外

泵浦激光器的驱动技术

模块化掺饵光纤宽带光源驱动电路设计 李栋李流超黎志刚 中国电子科技集团公司第三十四研究所,广西桂林541004 摘要:为了提高模块化宽带光源的稳定性,采用自动温度控制ATC电路和自动功率控制APC 电路驱动泵浦激光器。实验结果表明,光源驱动电路可靠,输出光谱和光功率稳定,达到了预定的技术指标要求。该电路集成度高、体积小,能够满足宽带光源模块化需求。 关键词:掺饵光纤;宽带光源模块;泵浦激光器;驱动;功率控制; 1、引言 掺饵光纤宽带光源是一种相干性低的光源,具有输出功率高、光谱宽、温度稳定性高、使用寿命长等特点。由于这些特点,掺饵光纤宽带光源广泛应用在光通信、光纤传感、光器件测试及光谱分析等领域。随着超高速、大容量光纤通信系统和光传感系统的发展,对宽带光源在功率、带宽、稳定性及体积方面提出了更高的要求。泵浦激光器的驱动电路作为宽带光源的一个组成部分,电路的稳定性将直接影响掺饵光纤宽带光源的光谱输出质量。近年来,高稳定的模块化掺饵光纤宽带光源是一个研究热点。 本文将针对高稳定的模块化掺饵光纤宽带光源中的泵浦激光器的驱动电路展开设计,通过采用高集成度的自动温度控制ATC电路和自动功率控制APC电路,对泵浦激光器进行驱动,实现了光源光谱宽度和功率的高稳定输出。该设计电路具有体积小,稳定性高等特点,对研制模块化宽带光源具有一定指导和参考意义。 2、模块化掺饵光纤宽带光源驱动电路设计 2.1驱动电路总体设计 掺饵光纤宽带光源中,除了激光器的泵浦需要电光转化外,其余均为无源光路,所以泵浦激光器的可靠驱动是整个光路设计稳定的一个不可或缺的保证。模块化掺饵光纤宽带光源驱动电路设计包括:电源电路、泵浦激光器及其保护电路、APC电路、ATC电路。 整个驱动电路采用外置输入+5V(2A)电源供电,内部对输入电压进行滤波和稳压处理,保证电源的稳定性。由于内部驱动电路单元均采用+5V电压系统,所以内部不再需要电压变化处理。 2.2泵浦激光器及其保护电路 掺饵光纤宽带光源中的泵浦激光器采用980nm泵浦激光器,型号为LC96A74P-20R。该激光器模块输出光纤集成了光纤光栅,波长稳定性高。激光器最大输出功率可以到360mW,尾端带有保偏光纤。在激光器模块内部集成有热敏电阻、监控光电管、致冷模块,便于对模块进行自动功率控制和自动温度控制。 在使用中应注意一定不要超出激光器的极限值,同时操作还应注意静电保护,焊接时要断电焊接,保证良好接地。在激光器的驱动端并联滤波电容和反向偏置二极管,可以对激光器形成很好地保护。在电源输入端,增加电容避免电源不稳,对激光器造成冲击。 2.2泵浦激光器APC及泵浦激光器驱动电路设计 要使泵浦激光器输出光具有较强的稳定性,首先要有功率自动控制电路和良好的电流驱动电路。APC控制原理:将驱动电流经过电阻形成电压,将电压信号连接到驱动源的反向端形成反馈,对输出光功率进行很好地控制。另一方面,由于温度、湿度及器件内部老化造成的驱动波动,也可以通过APC电路改变反馈电压,从而稳定驱动激光器的电流,最终稳定光源功率输出。详细设计电路如图1:

实验三、半导体泵浦固体激光器综合实验

半导体泵浦固体激光器综合实验 半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及其调Q 和倍频的原理和技术。 【实验目的】 1.掌握半导体泵浦固体激光器的工作原理和调试方法; 2.掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量; 3.了解固体激光器倍频的基本原理。 【实验原理与装置】 1.半导体激光泵浦固体激光器工作原理: 上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。侧面泵浦方式主要应用于大功率激光器。本实验采用端面泵浦方式。端面泵浦耦合通常有直接耦合和间接耦合两种方式。 ①直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。 ②间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。常见的方法有: 组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。 自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。 光纤耦合:指用带尾纤输出的LD进行泵浦耦合。优点是结构灵活。 本实验先用光纤柱透镜对半导体激光器进行快轴准直,压缩发散角,然后采用组合透镜对泵浦光束进行整形变换,各透镜表面均镀对泵浦光的增透膜,耦合效率高。本实验的压缩和耦合如图 2所示。

光纤激光器哪家的好,激光器品牌哪个好

光纤激光器哪家好,激光器品牌哪个好 随着激光技术的不断发展,激光应用已经渗透到科研、产业的各个方面,在汽车制造、航空航天、钢铁、金属加工、冶金、太阳能以及医疗设备等领域都起到重要作用。激光设备的核心就是激光器,我国各大激光设备企业不断地加大技术开发投入,虽然已经取得了一定的成就,各种激光设备实现国产化,达到国际领先水平,但是在主力激光器,超大功率激光器依然依赖进口,以致激光设备价格大幅度上涨,制约了我国激光加工产业的发展,另一方面,国外不少的激光加工企业看准中国激光加工的广大市场前景,纷纷入驻我国的沿海城市,冲击我国激光加工产业,国际竞争国内化。 光纤激光器哪家的最好下面总结目前市场上应用于工业制造领域的激光器主要企业,光纤激光器品牌:国内的是锐科、创鑫,国外的有美国相干,IPG,SPI,通快,JK laser (GSI的品牌子公司)等等,从质量上看,进口的光纤激光器比国产的要好些,而价格方面也贵些,主要看你们公司的预算在什么范围,对光纤激光器的出光率和耐用度有什么要求,需要根据自身设备来选择,适用就好!以供想采购激光焊接、激光切割、激光打标等企业提供相应的参考.排名不分先后。 美国 光纤激光器哪家的好——相干(Coherent)公司 相干公司成立于1966年,是世界第一大激光器及相关光电子产品生产

商,产品服务于科研、医疗、工业加工等多个行业;秉承40年的激光制造经验和创新精神,致力于提供一流的商业化激光器,促进科学研究不断进步、生产制造行业生产力和加工精度的不断提高;其全球化的销售、客户服务和技术支持网络更为客户提供全球范围内的合作和服务。相干公司能够提供更全面的激光器和激光参数测量产品,包括:氩/氪离子激光器、CO2激光器(10.6μm、9.4μm、调Q、可调谐、单频、THz源)、半导体激光器(375nm、405nm、635nm、780-980nm)、钛宝石连续可调谐激光器、准分子激光器、脉冲染料激光器、钛宝石超快激光器及放大器、半导体泵浦固体激光器(1064nm、532nm、355nm、266nm)、功率计、能量计、光束质量分析仪和波长计等。相干公司现在是最全面的超快激光器系统供应商,提供从振荡级、放大器、OPA、泵浦源到特殊制造的TW激光器等一系列超快激光器产品,脉冲宽度最窄到20fs;峰值功率最高可达100TW;单脉冲能量最高可达到5J。 光纤激光器哪家的好——IPG激光 全球最大的光纤激光制造商,其生产的高效 光纤激光器、光纤放大器以及拉曼激光的技术均走在世界的前端。IPGPHOTONICSCORPORATION始创于1990年,是全球最大的光纤激光制造商,总部 设在美国东部麻省,拥有国际领先水平的光纤激光研发中心,主要生产基地分布在德国、美国、俄罗斯、意大利;销售及服务机构分布在中国、

实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验

实验四连续半导体泵浦固体激光器静态输出特性 和声光调Q实验 实验目的 1.了解固体激光器的输出特性和阈值特性,掌握激光器输出特性斜率效率的计 算; 2.掌握激光器设计中最佳透过率的概念,巩固最佳透过率选取原则; 3.掌握声光调Q的基本原理和布拉格衍射的特征及布拉格衍射角的概念,了解 激光器在连续和调Q脉冲工作状态下的激光功率输出特性, 4.了解不同调Q频率下,激光功率变化的原因,巩固最佳调Q频率选取的原则。 实验原理 1. 固体Nd:YAG激光器工作原理 固体激光器通常由三个基本部分组成,即固体激光工作物质、泵浦源和光学谐振腔。 激光工作物质是激光器的心脏,产生激光的是激活离子,激光器的输出特性在很大程度上由激活离子的能级结构决定。目前,常用的固体激光工作物质有红宝石晶体、钕玻璃和掺钕钇铝石榴石(即Nd3+:YAG)晶体。由于Nd3+:YAG晶体具有荧光谱线窄、量子效率高等特点,它的增益高、阈值低、激光输出效率高,故在中小功率的脉冲器件中,以及在高重复率的脉冲激光器中得到广泛应用。本实验中即采用Nd3+:YAG作为激光工作物质,该工作物质的激活离子为Nd3+,属四能级系统,发射激光波长为1.06μm,工作于连续方式。Nd3+:YAG产生受激辐射的能级如图4-1所示。激活粒子(Nd3+:离子)在这些能级之间的跃迁特性为:在光泵浦作用下,处于基态能级E1上的粒子被激发到高能级E4上,由于E4能级寿命很短,处在该能级上的粒子很快以无辐射跃迁方式迅速转移到较低的激发态能级E3上,E3为亚稳态,在E3能级上的粒子有较长的寿命(10-3~10-4s),因而易于实现粒子数积累。当粒子数由E3向E2跃迁时,产生激光辐射,粒子到达能级E2后,再以无辐射跃迁迅速地返回到基态E1。基于这种状态以及由于热平衡情况,使得粒子不易在E2能级上积聚,因此,在外界激励下,E3和E2之间较易形成粒子数反转,从而实现受激辐射。

固体激光器原理及应用

编号 赣南师范学院学士学位论文固体激光器原理及应用 教学学院物理与电子信息学院 届别 2010届 专业电子科学与技术 学号 060803013 姓名丁志鹏 指导老师邹万芳 完成日期 2010.5.10

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1引用 (2) 2激光与激光器 (2) 2.1激光 (2) 2.2激光器 (3) 3固体激光器 (4) 3.1工作原理和基本结构 (4) 3.2典型的固体激光器 (8) 3.3典型固体激光器的比较 (11) 3.4固体激光器的优缺点 (12) 4固体激光器的应用 (13) 4.1军事国防 (13) 4.2工业制造 (15) 4.3医疗美容 (17) 5结束语 (17) 参考文献 (19)

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 Abstract:Solid-state laser is currently one of the most extensive laser,it has some very obvious advantages.The working principle of solid-state lasers and applications were described in the paper and it can enhance the understanding.In this paper, starting with the basic principles and structure of the introduced solid-state laser,and then some typical solid-state lasers and a presentation on its military defense,industrial technology,medical and cosmetic applications in three areas and future development direction were introduced. Key words:Solid-state Laser Basic Principle Basic Structure Application

半导体激光器

半导体激光器 半导体激光器又称激光二极管[1](LD)。进入八十年代,人们吸收了半导体物理发展的最新成果,采用了量子阱(QW)和应变量子阱(SL-QW)等新颖性结构,引进了折射率调制Bragg发射器以及增强调制Bragg发射器最新技术,同时还发展了MBE、MOCVD及CBE等晶体生长技术新工艺,使得新的外延生长工艺能够精确地控制晶体生长,达到原子层厚度的精度,生长出优质量子阱以及应变量子阱材料。于是,制作出的LD,其阈值电流显著下降,转换效率大幅度提高,输出功率成倍增长,使用寿命也明显加长。 A 小功率LD 用于信息技术领域的小功率LD发展极快。例如用于光纤通信及光交换系统的分布反馈(DFB)和动态单模LD、窄线宽可调谐DFB-LD、用于光盘等信息处理技术领域的可见光波长(如波长为670nm、650nm、630nm的红光到蓝绿光)LD、量子阱面发射激光器以及超短脉冲LD等都得到实质性发展。这些器件的发展特征是:单频窄线宽、高速率、可调谐以及短波长化和光电单片集成化等。 B 高功率LD 1983年,波长800nm的单个LD输出功率已超过100mW,到了1989年,0.1 mm条宽的LD则达到3.7W的连续输出,而1cm线阵LD已达到76W输出,转换效率达39%。1992年,美国人又把指标提高到一个新水平:1cm线阵LD连续波输出功率达121W,转换效率为45%。现在,输出功率为120W、1500W、3kW等诸多高功率LD均已面世。高效率、高功率LD及其列阵的迅速发展也为全固化激光器,亦即半导体激光泵浦(LDP)的固体激光器的迅猛发展提供了强有力的条件。 近年来,为适应EDFA和EDFL等需要,波长980nm的大功率LD也有很大发展。最近配合光纤Bragg光栅作选频滤波,大幅度改善其输出稳定性,泵浦效率也得到有效提高。 【特点及应用范围】半导体二极管激光器是实用中最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。 【半导体激光器的发展及应用】半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。 在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写

实验一-半导体激光器系列实验

实验一-半导体激光器系列实验

实验一半导体激光器系列 实验

一、实验设备介绍 2.配套仪器的使用 WGD-6光学多道分析器的使用参考WGD-6光学多道分析器的使用说明书。 3.激光器概述 光电子器件和技术是当今和未来高技术的基础,引起世界各国的极大关注。其中半导体激光器的生产和应用发展特别迅猛,它已经成功地用于光通讯和光学唱片系统;还可以作为红外高分辨率光谱仪光源,用于大气测污和同位素分离等;同时半导体激光器可以成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。半导体激光器,调频器,放大器集成在一起的集成光路将进一步促进光通 - 1 -

讯,光计算机的发展。 激光器一般包括三个部分: (1)激光工作介质 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转是非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。 (2)激励源 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。 (3)谐振腔 有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块大部分反射、 - 2 -

实验1NdYAG固体激光器实验

hv 2 1 (a) 2 1 (b) 2 E 1 (c) 图1、光与物质作用的吸收过程 Nd :YAG 固体激光器实验 一、 实验内容与器件 1、了解半导体激光器的工作原理和光电特性 2、掌握半导体泵浦固体激光器的工作原理和调试方法 二、 实验原理概述 1. 激光产生原理 光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。 如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv 21的光子接近,则它吸收这个光子,处于激发态E 2。在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔 E 1-E 2时才能被吸收。 激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。 处于激发态的原子, 在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的能量差以辐射光子的形式发射出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完 全相同。激光的产生主要依赖受激辐射过程。激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 hv 21 2 E 1 (a) E 2 E 1 (b) hv 21 hv 21 图2、光与物质作用的受激辐射过程

泵浦过程使粒子从基态E 1抽运到激发态E 3,E 3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E 2。E 2是一个寿命较长的能级,这样处于E 2上的粒子不断积累,E 1上的粒子 又由于抽运过程而减少,从而实现E 2与E 1能级间的粒子数反转。激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 2 YAG 固体激光器 固体激光器基本都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成。固体激光器工作物质是固体激光器的核心。影响固体激光器工作特性的关键是固体激光工作物质的物理和光谱性质,这主要是指吸收带、荧光谱线、热导率等。实验中,我们采用掺钕钇铝石 榴石(Nd:YAG)作为工作物质,它的激活离子是钕离子(Nd 3+),其吸收谱线如图4所示,在可 见光和红外区域有几个较强的吸收带,我们关注的是808nm 附近的吸收谱线。在本实验中,半导体激光器是用来做固体激光器的泵浦光源。我们采用了输出波长为808nm, InGaAlAs/GaAs 量子阱结构设计、光斑预整形、输出功率大于2W 的多模半导体激光器,工作电流可调,采用半导体制冷片对其进行温度控制。 图4 3:Nd YAG +晶体的吸收光谱(300K ) YAG 中3Nd +与激光产生有关系的能级结构如图5所示。它属于四能级系统。其激光上 能级3E 为33/2F ,激光下能级2E 为43/2I I ,43/2II I ,其荧光谱线波长分别为1.35m μ和1.06m μ,49/2 I 相应于1E 。由于1.06m μ比1.35m μ波长的荧光强约4 倍,在本实验中,我们通过腔镜镀膜,E 1 E 3 E 2 图3、三能级系统示意图

半导体泵浦激光原理

半导体泵浦激光原理 一、实验仪器 1.808nm半导体激光器≤500mW 2.半导体激光器可调电源电流≤0~500mA 3.Nd:YVO4晶体3×3×1mm 4.KTP倍频晶体 2×2×5mm 5.输出镜(前腔片)φ6 R=50mm 6.光功率指示仪 2μW~200mW 6档 二、实验目的及意义 半导体泵浦0.53μm绿光激光器由于其具有波长短,光子能量高,在水中传输距离远和人眼敏感等优点。效率高、寿命长、体积小、可靠性好。近几年在光谱技术、激光医学、信息存储、彩色打印、水下通讯、激光技术等科学研究及国民经济的许多领域中展示出极为重要的应用,成为各国研究的重点。 半导体泵浦0.53μm绿光激光器适用于大学近代物理教学中非线性光学实验。本实验以808nm半导体泵浦Nd:YVO4激光器为研究对象,让学生自己动手,调整激光器光路,在腔中插入KTP晶体产生523nm倍激光,观察倍频现象,测量阀值、相位匹配等基本参数。从而对激光技术有一定了解。 三、实验原理 光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。 如果一个原子,开始处于基态,在没有外来光子,它保持不变,如果一个能量为hν21的光子接近,则它吸收这个光子,处于激发态E2。在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E1-E2时才能吸收。 图13-1 光与物质作用的吸收过程 激发态寿命很短,在不受外界影响时,它们会自发返回到基态,并发出光子。自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。 处于激发态的原子,在外的光子的影响下,会从高能态向地能态跃迁,并两个状态的能量差以辐射光子的形式发射出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振太和相位完成相同。激光的产生主要依赖受激辐射过程。

半导体泵浦固体激光器(DPSSL)项目立项申请书模板

半导体泵浦固体激光器(DPSSL)项目立项申请书 一、项目区位环境分析 坚持工业化信息化融合发展,深入推进工业强省战略,实施“中 国制造2025”甘肃行动纲要,提升传统优势产业质量和效益,培育壮 大新兴产业,加快工业结构调整和转型升级。 (一)改造提升传统优势产业 强化传统优势产业的基础和支撑作用,盘活存量、优化结构、改 革重组,增强产业分工协作和配套能力,推动传统优势产业从半成品 向产成品转化,从粗放低效向优质高效提升,从产业链中低端向中高 端迈进,从短链向全链循环发展,选准价值链高端加大转型升级力度,改变以“原”字号和“初”字号为主的产品结构,改变企业产品结构 单一、产业行业上下游不配套的局面,推动产业集群式发展和转型升级,重塑传统产业竞争新优势。运用先进实用技术改造提升传统产业,推动煤电化冶循环发展、新能源与现代高载能耦合发展,加快石油化工、有色冶金、装备制造、煤炭电力、农产品加工等传统优势产业优 化升级。围绕重点产业核心基础零部件(元器件)、基础材料、基础 工艺、关键技术的协同攻关创新,支持骨干企业瞄准国内外同行业标 杆推进技术改造,全面提高产品技术、工艺装备、质量效益、能效环

保、安全生产等水平,加大技术和产品创新,提高附加值和科技含量,加快产品结构升级换代,建设兰州、庆阳为重点的国家战略性石化产 业基地,金昌、白银、兰州等为重点的国家有色金属新材料基地,嘉 峪关为重点的优质钢材生产及加工基地,陇东、酒嘉为重点的煤炭清 洁利用转化基地,兰州、天水、酒泉等为重点的先进装备制造业基地,特色农产品生产区域为重点的农产品加工基地等6大产业基地,打造 石油化工及合成材料、有色金属新材料、煤炭高效清洁利用、绿色生 态农产品加工等8大产业链。 (二)发展壮大战略性新兴产业 按照市场主导、创新驱动、重点突破、引领发展的要求,以新能源、新材料、先进装备和智能制造、生物医药、信息技术、节能环保、新型煤化工、现代服务业、公共安全等领域为重点,深入实施战略性 新兴产业发展总体攻坚战,开展优势产业链培育行动,提高创新能力,培育骨干企业,聚焦创新经济新业态,培育发展新动能,引领产业高 端化规模化集群化发展,培育一批新的支柱产业和新的增长点。实施“中国制造2025”甘肃行动纲要,加快网络协同制造、智能制造、3D 打印和增材制造等新兴行业发展,促进信息技术向市场、设计、生产 等环节渗透,推动生产方式向柔性、智能、精细转变。围绕高端制造、

1-实验四 半导体泵浦固体激光器综合实验

实验四半导体泵浦固体激光器综合实验半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及倍频的原理和技术。 一、实验目的 1.掌握半导体泵浦固体激光器的工作原理和调试方法; 2.了解固体激光器倍频的基本原理; 3.掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量。(选做) 二、实验原理 1.半导体激光泵浦固体激光器工作原理: 上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。与闪光灯泵浦的固体激光器相比,DPSL 的效率大大提高,体积大大减小。在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。侧面泵浦方式主要应用于大功率激光器。本实验采用端面泵浦方式。端面泵浦耦合通常有直接耦合和间接耦合两种方式。 直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。 直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。 间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。常见的方法有:组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。 自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。 光纤耦合:指用带尾纤输出的LD进行泵浦耦合。优点是结构灵活。 本实验先用光纤柱透镜对半导体激光器进行快轴准直,压缩发散角,然后采用组合透镜对泵浦光束进行整形变换,各透镜表面均镀对泵浦光的增透膜,耦合效率高。本实验的压缩和耦合如图 2所示。

4-半导体泵浦固体激光器

半导体泵浦固体激光器倍频与调Q实验 一、前言 半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及其调Q 和倍频的原理和技术。 二、实验目的 1、掌握半导体泵浦固体激光器的工作原理和调试方法; 2、掌握固体激光器被动调的工作Q原理,进行调Q脉冲的测量; 3、了解固体激光器倍频的基本原理。 三、实验原理与装置 1. 半导体激光泵浦固体激光器工作原理: 上世纪80年代起,半导体激光器(LD)生长技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。侧面泵浦方式主要应用于大功率激光器。本实验采用端面泵浦方式。端面泵浦耦合通常有直接耦合和间接耦合两种方式。 a) 直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。 b) 间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。常见的方法有: 1) 组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。 2) 自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。 3) 光纤耦合:指用带尾纤输出的LD进行泵浦耦合。优点是结构灵活。 本实验先用光纤柱透镜对半导体激光器进行快轴准直,压缩发散角,然后采用组合透镜对泵浦光束进行整形变换,各透镜表面均镀对泵浦光的增透膜,耦合效率高。本实验的压缩和耦合如图2所示。

光纤激光器综述

摘要:光纤激光器技术是光学领域最为重要的技术之一,作为第三代激光技术的代表,其稳定性好、效率高、阈值低、线宽窄、可调谐、紧凑小巧和性价比高等优点,使得它在光纤传感、光纤通信、工业加工等领域都有着重要的应用。而掺镱双包层光纤激光器是国际上近年来发展的一种新型固体激光器。本文就介绍了这种高功率掺镱双包层光纤激光器,主要介绍了高功率掺镱双包层光纤激光器的概念、发展历史及发展现状、基本原理、优点、实现的关键技术、应用及其广阔的前景。同时总结出了未来光纤激光器的发展方向,并且可以预计光纤激光器最终将可能会替代掉全球大部分高功率CO2激光器和绝大部分Y AG激光器。 关键词:光纤激光器;掺镱双包层光纤激光器;光纤融合技术;激光加工。引言 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,虽然光纤激光器得到了社会各方面的广泛重视,但是光纤激光器并不是新型光器件。1961年,美国光学公司的Snitzer和Koester等在一根芯径300um的掺Nd3+玻璃波导中进行试验观察到了激光现象,并与1963年和1964年发表了多组分玻璃光纤中的光放大结果,提出了光纤激光器和光纤放大器的思想。1975~1985年中有关这个领域的文章较少,不过在这期间许多发展光纤激光器的必须工艺技术已趋于成熟[1]。上个世纪80年代后期,美国Polaroid公司提出了包层抽运技术,之后双包层光纤激光器,特别是掺镱双包层光纤激光器发展非常迅速。1994年,PASK 等首先在掺Yb3+石英光纤中实现了包层抽运,得到了0.5W的最大激光输出。1998年,Lucent技术公司的KOSINKI和INNISS报道了一种内包层截面形状为星形的掺Yb3+双包层光纤激光器,得到了20W的激光输出。1999年,DOMINIC等用4个45W的半导体激光二极管阵列组成总功率为180W的抽运源,在1120nm 得到110W的激光输出。2002年,IPG公司公布了2000W的掺Yb3+双包层光纤激光器。目前,该公司已经推出了输出功率为17kW的掺Yb3+双包层光纤激光器,虽然因为采用的是多组激光合束的方式,致使激光器的光束质量下降很大,但仍然在对功率要求高、光束质量要求不是很高的场合有非常好的应用前景。但如何提高功率,同时又保证光束质量,是当前研究要解决的难题之一。 在国内,关于掺Yb3+双包层光纤激光器的研究起步较晚。从上个世纪年80

半导体泵浦激光器说明书

半导体泵浦激光器说明书 目的及意义 半导体泵浦0.53μm绿光激光器由于其具有波长短,光子能量高,在水中传输距离远和人眼敏感等优点。效率高、寿命长、体积小、可靠性好。近几年在光谱技术、激光医学、信息存储、彩色打印、水下通讯、激光技术等科学研究及国民经济的许多领域中展示出极为重要的应用, 成为各国研究的重点。 半导体泵浦0.53μm绿光激光器适用于大学近代物理教学中非线性光学实验。本实验以808nm半导体泵浦Nd:YVO4激光器为研究对象,让学生自己动手,调整激光器光路,产生1064nm激光。在腔中插入KTP晶体产生532nm倍频光,观察倍频现象,测量倍频效率、相位匹配角等基本参数。从而对激光原理及倍频等激光技术有一定了解。

一. 激光原理: 光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。 如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv21的光子接近,则它吸收这个光子,处于激发态E2。在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E 1-E 2时才能被吸收。 激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。 处于激发态的原子,在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的能量差以辐射光子的形式发射出去。只有外来 hv E 2 1 (a) 2 1 (b) 2 E 1 (c) 光与物质作用的吸收过程 E 2 1 (c) E 2 E 1 (a) 2 1 (b) 光与物质作用的自发辐射过程

光纤激光器,灯泵浦和半导体激光器(三者比较)

光纤打标机和半导体及灯泵浦激光打标机三者 主 要 性 能 比 较 武汉百一机电工程有限公司

光纤激光打标机与灯泵浦激光器性能对比光纤激光打标机设备型号及性能 “武汉百一”的BY-YLP光纤激光打标机在激光打标应用方面具有许多独特的优势。 与传统的固体激光器使用晶体棒作为激光介质不同,光纤激光器的激光介质是很长的掺镱双包层光纤,并被高功率多模激光二极管所泵浦。 BY-YLP系列光纤激光打标机使用特点 1、光束质量极好,适用于精密、精细打标 BY-YLP系列光纤激光打标机光束质量比传统的灯泵浦固体激光打标机好得多,为基模(TEM00)输出,发散角是灯泵浦激光器的1/4。尤其适用于要求高的精密、精细打标。 2、体积小巧、搬运方便、实现便携化 BY-YLP采用光纤传输,由于光纤具有极好的柔绕性,激光器设计得相当小巧灵活、结构紧凑、体积小。其重量和占地面积分别是灯泵浦泵浦激光打标机的1/10和1/4,节省空间,便于搬运。且采用光纤传输决定了其能适应加工地点经常变换的要求,实现产品的便携化。 3、激光输出功率稳定、设备可靠性高 能量波动低于2%,确保激光打标质量的稳定;平均无故障使用时间可达10万小时以上,灯泵浦激光打标机的氪灯的使用寿命在800小时左右。4、效率高、能耗低、节省使用成本 电光转换效率为30%(灯泵浦激光打标机为3%),设备功率仅500-1000W,日均耗电10度,是灯泵浦激光打标机的1/10左右,长期使用可为用户节省大量的能耗支出。 5、自主知识产权的操作软件,操作简便、功能强大 可以标刻矢量式图形、文字、条形码、二维码等,可升级实现在线打标,自动打标日期、班次、批号、序列号,支持PLT、PCX、DXF、BMP等文件格式,直接使用SHX、TTF字库。 激光打标机系统组成

相关文档
最新文档