设备一生的故障率状况——浴盆曲线

设备一生的故障率状况——浴盆曲线
设备一生的故障率状况——浴盆曲线

设备一生的故障率状况——浴盆曲线

2011-12-14

□ 李葆文

设备一生的故障率是变化的,存在着初始故障期,偶发故障期和耗损故障期三个阶段,其形状如浴盆曲线。

也就是说,新安装设备的故障率比较高,常常出现故障。对于机械类的故障,我们称这段期间为磨合期,在此期间,由于机械的配合、啮合、间隙或者渐开线存在误差,常常会出现运行故障。对于电子、电气类结构而言,这段时期又称为老化阶段。因为新加工成的电子电气系统电参数的不稳定,故障率也比较多。记得早年的计算机组装完成之后,要求客户先插上电源运行72小时,如果这段期间一切正常,就基本可以正常使用了,如果出现故障可以送回到厂家退货。这说明,电子电气类设备也存在着初始高故障率现象。为什么现在很少有电子、电气类设备供应商要求客户要事先插电运行设备呢?笔者到过一些计算机整机厂以及交换机生产厂考察发现,这个过程已经转移到生产企业内部了。在计算机或者交换机出厂之前,都对组装并检验合格的产品进行人工强制老化,如放在高温老化箱或者相似环境进行插电老化处理,完成这一阶段之后才装箱发货。这样,就不会在客户手里出现初始故障状况了。

设备在使用几天,几个月乃至半年之后,逐渐趋于稳定,故障率明显降低或者呈现出周期性故障现象,这就进入了偶发故障期。处于偶发故障期的设备,故障率较低。其故障以两种形式表现,一是规律性、周期性故障,表现在设备某部件或者零件的周期性损坏,如轴承的磨损,密封圈的变形或者腐蚀,法兰的腐蚀泄漏等;另外一种情况是随机故障,其规律性并不明显,发生的部位也不确定,这与设备的设计、制造、原材料或者热处理缺陷有关,也与使用条件、维护保养水平有关。

设备在服役5年至8年之后,开始出现明显老化、劣化倾向。这就意味着进入了耗损故障期。对于机械类设备,包括其总成、部件乃至零件,其磨损、变形、应力微裂纹显现,最后导致设备配合间隙过大,松动、振动、精度劣化、机体开裂等,也就是导致设备功能的丧失——机械故障的发生。对于电子电气类设备,包括其总成、部件乃至元器件,由于长期的外电冲击、冷热变形交替、灰尘的覆盖,散热不良,甚至小昆虫进入的局部短路,导致系统内电气元器件电参数特性发生变化,如电阻、电容、电感变化,甚至烧在芯片中的数字程序变化——电气

故障的发生。

设备得浴盆曲线有点像人的一生。初始故障期相当于人的童年、幼年时期,偶发故障期相当于人的青壮年时期,而耗损故障期则相当于人的老年时期。中年以上的人群通过积极养生和锻炼保持身体健康,是为了自己的“耗损故障期”晚点到来。对设备而言也是如此,良好的维护体系也可以使偶发故障期延长,让耗损故障期晚些到来。

设备在不同役龄阶段的特点不同,因而其维修策略也应该有不同的设计。

在初始故障期,我们应该注意设备的紧固、调整和状态记录,注意磨合期的油品替换。

在偶发故障期,除了做好常规的清扫、检查、润滑、保养之外,对周期性的损害进行定期维修,同时要导入设备健康管理概念,注意研究设备劣化的源头,加以控制和消除。

在耗损故障期,我们将要对损坏部分做可裁剪式的纠正性项修组合。如果经过技术分析,发现设备需要淘汰,就要主动淘汰落后设备,引进新设备以强化企业的竞争力。

近年来,国际上以航空系统为案例,对设备故障率进行了统计和研究,发现真正形状为传统浴盆曲线的设备仅仅占3-4%,有68%的设备只出现左半浴盆的状态,即存在高故障率的初始故障期和较低故障率的偶发故障期,却不会出现高故障率的耗损故障期。按理而讲,设备服役一定年限,故障率一定会上升,为什么不存在耗损故障期呢?答案是,随着设备和制造可靠性的提升,其有形磨损不十分明显,而无形磨损即经济磨损却日益上升。因此,还没进入耗损故障期就被淘汰。面向68%的这样类型设备,如果我们导入周期性的大修理,就会引起每次修理后的初始高故障率现象。所以,国际上更主张取消大修理概念,可以项修组合来取代大修。

六性分析报告 ()

编号: XXXX式开关 可靠性、维修性、保障性、测试性、安全性、环境适应性分析报告 拟制: 审核: 批准: XXXXXXXX有限公司 二零一一年三月

1 概述 为确保产品质量符合要求,达到顾客满意,根据《XXXX式开关产品质量保证大纲》的规定,对该产品的可靠性、维修性、保障性、测试性、安全性、环境适应性进行分析。 2 可靠性分析 2.1 元器件清单 本器件选用元器件如下:

2.2 可靠性预计 本器件所采用的元器件有7类13种共57个。其中任一元器件失效,都将造成整个器件失效,即器件正常工作的条件是各元器件都能正常工作。因此,本器件的可靠性模型是一个串联模型。 该器件是可修复产品,寿命服从指数分布,根据可靠性理论,其平均故障间隔时间与失效率成反比,即: MTBF= 1/∑pi λ (1) 所用元器件均是通用或固化产品,其质量水平、工作应力及环境条件都相对固定,其失效率因子等有关可靠性参数可参考《GJB/Z299C-2006电子设备可靠性预计手册》,从而采用应力分析法来预计本器件的可靠性指标。 本器件一般内置于系统机箱内,使用大环境是舰船甲板或舰船舱内,其环境代号Ns2,工作温度-40℃~+70℃,现计算其可靠性指标。 2.2.1 PIN 二极管的工作失效率1p λ 本器件使用PIN 二极管,其工作失效率模型为 K Q E b p πππλλ=1 (2) 式中: b λ —— 基本失效率,10-6/h ; E π —— 环境系数; Q π —— 质量系数; K π —— 种类系数。 由表5.3.11-1查得基本失效率b λ =0.212×10-6/h ; 由表5.3.11-2查得环境系数E π=14;

故障的统计分析与典型的故障率分布曲线

题目:故障的统计分析与典型的故障率分布曲线 学号:120606325 姓名:王逢雨 [摘要] 机械故障诊断是一门起源于 20 世纪 60 年代的新兴学科,其突出特点是理论研究与工程实际应用紧密结合。该学科经过半个世纪的发展逐渐成熟,在信号获取与传感技术、故障机理与征兆联系、信号处理与诊断方法、智能决策与诊断系统等方面形成较完善的理论体系,涌现了如全息谱诊断、小波有限元裂纹动态定量诊断等原创性理论成果,在机械、冶金、石化、能源和航空等行业取得了大量卓有成效的工程应用。统计分析工作是机械故障诊断中的核心环节,统计分析工作的质量和水平将会对机械设备的检修工作产生重要影响,关系到机械设备的安全与可靠运行。本文在对机械故障的特性等问题进行阐述的基础上,重点就机械故障统计分析工作中数据的收集和统计分析的方法进行重点探讨,希望对提高机械故障的管理水平能够有所帮助。 [关键词] 机械故障;统计分析;数据收集;方法 一、统计分析工作中机械故障的特性 机械设备在使用过程中,由于会受荷载应力等环境因素的影响,随着机械设备部件之间磨损的不断增加,结构参数与随之变化,进而会对机械功能的输出参数产生影响,甚至使其偏离正常值,直至产生机械故障。概括说来,主要有以下几方面的特性。 (一)耗损性 在机械设备运行过程中,不断发生着质量与能量的变化,导致设备的磨损、疲劳、腐蚀与老化等,这是不可避免的,随着机械设备使用时间延长,故障发生的概率也在不断增加,即使可以采取一定的维修措施,但是由于机械故障的耗损性,不可能恢复到原先的状态,在经过统计分析工作后,必要时需要对设备进行报废。(二)渐损性 机械故障的发生大多是长期运行的老化或疲劳引起的,所以具有渐损性,而且与设备的运行时间有一定的关系,所以做好机械设备的统计分析工作是很有必要的,当掌握了设备故障的渐损规律后,可以通过事前监控或测试等手段,有效预防机械故障的发生。 (三)随机性 虽然有的机械故障具有一定的规律性,但这并不是绝对的,因为机械故障的发生还会受到使用环境、制造技术、设备材料、操作方式等多种因素的影响,因此故障的发生会具有一定的分散性和随机性,这在一定程度上增肌了机械设备预防维修与统计分析工作的难度。 (四)多样性 随着科学技术的发展与应用,机械设备的工作原理日趋复杂,零部件的数量在不多增多,这就使得机械故障机理发生的形式日趋多样化。机械故障的发生不仅存在多种形式,而且分布模型及在各级的影响程度也不同,在统计分析工作中需要引起足够的重视。 二、机械故障管理中统计数据的收集 在对机械故障的统计分析工作中,数据的收集是最基础的环节,因此必须保障数据收集的及时性、准确性和规范性,这样才能为接下来的数据分析工作奠定良好

设备运行浴盆理论及三阶段管理

实践证明大多数设备的故障率是时间的函数,典型故障曲线称之为浴盆曲线(Bathtub curve失 效率曲线) ,曲线的形状呈两头高,中间低,具有明显的阶段性,可划分为三个阶段:早期 故障期,偶然故障期,严重故障期。浴盆曲线是指设备从投入到报废为止的整个寿命周期内,其可靠性的变化呈现一定的规律。如果取设备的失效率作为产品的可靠性特征值,它是以使 用时间为横坐标,以失效率为纵坐标的一条曲线。因该曲线两头高,中间低,有些像浴盆, 所以称为“浴盆曲线”。失效率随使用时间变化分为三个阶段:早期失效期、偶然失效期和耗 损失效期。 第一阶段 第一阶段是早期失效期(Infant Mortality):早期故障期对于机械产品又叫磨合期。在此 期间,开始的故障率很高,但随时间的推移,故障率迅速下降。此期间发生的故障主要是设计、制造上的缺陷所致,或使用不当所造成的。表明设备在开始使用时失效率很高但随着设 备工作时间的增加失效率迅速降低这一阶段失效的原因大多是由于设计、原材料和制造过程 中的缺陷造成的。 第二阶段 第二阶段是偶然失效期,也称随机失效期(Random Failures):这一阶段的特点是失效率 较低,且较稳定,往往可近似看作常数,设备可靠性指标所描述的就是这个时期,这一时期 是设备的良好使用阶段偶然失效主要原因是质量缺陷、材料弱点、环境和使用不当等因素引起。在此期间,故障发生是随机的,其故障率最低,而且稳定,这是设备的正常工作期或最 佳状态期。在此间发生的故障多因为设计、使用不当及维修不力产生的,可以通过提高设计 质量、改进管理和维护保养使故障率降到最低。 第三阶段 第三阶段是耗损失效期(Wearout):该阶段的失效率随时间的延长由于设备零部件的磨损、疲劳、老化、腐蚀等而急速增加磨损严重,有效寿命结束。因此认为如果在耗损故障期 开始时进行大修,可经济而有效地降低故障率。 战略失效的“浴盆曲线”,揭示了战略在不同时间段内效率高低的规律,分析了不同阶 段战略失效的本质区别,为制定正确的战略实施控制策略提供了理论依据和战略推进方法, 同时,还可以防止战略在早期时失效的阶段来回折腾,又避免了晚期失效阶段慌忙修改或固 执原状的错误;它使战略实施控制过程既有阶段性,又有相互联系,协调发展的连贯性。 设备寿命周期的三阶段管理 1.前期管理

设备故障统计分析报告

2013年7月份设备故障统计分析报告 一、故障概况 本月设备整体运行情况良好,根据DCC故障记录本月故障总数7件,其中机械故障3件,电气故障4件,设备完好率=(设备总台数*月工作天数-∑故障台数*故障天数)/(设备总台数*月工作天数)=99.73%,较上月98.81%有小幅提升。故障主要集中在7类试验设备、9类其他设备。 二、故障统计 表1 各类设备故障统计 三、故障分析 (一)故障趋势图

试验设备故障数一直处于高位运行状态,原因有三:一、部分试验设备使用频率较高,使用年限已久,到了故障高发期,主要表现为踏面制动单元试验台、制动器试验台等。二、前期试验台工作环境普遍不好,导致试验台性能不稳定;近期因试验间改造,频繁搬动试验台也是其故障高发的原因之一。三、国产试验设备普遍存在柜内原件布局及导线敷设不合理、定制件多且质量差,软硬件故障均较高。 针对原因一,设备室正逐步建立预防修性维修模式,加强对重点设备和高故障率设备的修程建立;原因二会随着试验间的改造完成,得到彻底解决;对于原因三,从6月下旬起,设备室对国产试验台进行了电气改造,目前已完成了电磁阀试验台改造工作,正在进行受电弓试验台和司控器试验台,后续将陆续开展高速断路器、电器综合试验台等6台设备改造工作。 (二)各类设备故障比例 图二2013年7月各类设备故障比例 进入13年以来,B、C类设备故障数明显增加,故障已由重点设备向边缘设备蔓延。设备室的工作重点将向“完善A类设备管理,强化B、C类设备修程建立”上发展。(三)七月份设备故障分析 1.烘干机 本月烘干机共报2次故障,均因加热管老化绝缘不良造成空开过流跳闸,目前已将该故障加热管隔离,后期换新。 2、空气弹簧试验台

设备故障的发生发展规律

设备故障的发生发展规律 设备故障的发生发展过程都有其客观规律,研究故障规律对制定维修对策,以至建立更加科学的维修体制都是十分有利的。设备在使用过程中,其性能或状态随着使用时间的推移而逐步下降,呈现如图1-1所示之曲线。很多故障发生前会有一些预兆,这就是所谓潜在故障,其可识别的物理参数表明一种功能性故障即将发生,功能性故障表明设备丧失了规定的性能标准。 图1-1中“P”点表示性能已经变化,并发展到可识别潜在故障的程度:这可能是表明金属疲劳的一个裂纹;可能是振动,说明即将会发生轴承故障;可能是一个过热点,表明炉体耐火材料的损坏;可能是一个轮胎的轮面过多的磨损等。“F” 表示潜在故障已变成功能故障,即它已质变到损坏的程度。P-F间隔,就是从潜在故障的显露到转变为功能性故障的时间间隔,各种故障的P-F间隔差别很大,可由几秒到好几年,突发故障的P-F间隔就很短。较长的间隔意味着有更多的时间来预防功能性故障的发生,因而要不断地花费很大的精力去寻找潜在故障的物理参数,为采取新的预防技术,避免功能性故障,争得较长的时间。 设备故障率随时间推移的变化规律称为设备的典型故障率曲线,如图1-2浴盆曲线所示。该曲线表明设备的故障率随时间的变化大致分三个阶段:早期故障期、偶发故障期和耗损故障期。故障的三种基本类型如图1-3所示。 (l)早期故障期 是指设备安装调试过程至移交生产试用阶段。造成早期故障的原因主要是由设计、制造上的缺陷,包装、运输中的损伤,安装不到位、使用工人操作不习惯或尚未全部熟练掌握其性能等原因所造成的。设备处于早期故障期,故障率开始很高,通过跑合运行和故障排除,故障率逐渐降低并趋于稳定。此段时间的长短,随产品、系统的设计与制造质量而异。 早期故障率是影响设备可靠性的一个重要因素,会使设备的平均无故障工作时间减少。从设备的总役龄来看,这段时间不长,但必须认真对待,否则影响新设备效能的正常发挥,对资金回收不利。对于已定型的成批生产的设备和熟练的操作人员来说,早期故障期较短。 对新设备来说,此阶段的故障形态主要由三个参数所决定,即期初故障率,持续时间和期末故障率。这

随机抖动确定性抖动高斯拟合浴盆曲线硕士论文

基于Tailfit算法的抖动分离与浴盆曲线的研究 电路与系统, 2011,硕士 【摘要】随着数据速率的提高,抖动对系统的影响变得越来越重要,抖动预算的设计空间也越来越紧张。抖动直接影响高速电路和系统的最终指标,它在电气系统中总是存在,弄清楚抖动的特征有助于识别 抖动根源以便在重新系统设计中减少抖动出现。为提高电路设计水平,不可避免的要研究抖动。针对这种问题,本文介绍了一种基于Tailfit 算法的抖动分离技术,主要工作如下:1.主要介绍了抖动的定义和分类,分析了常见的三种抖动:相位抖动、周期抖动和周期间抖动,以及它们之间的关系。然后,分析了抖动的各个分量的模型和特点。2.使用具有抖动分析功能的实时示波器和高速的脉冲信号发生器分离抖动,并采用时间相关技术观察、识别和测量系统时间误差。3.介绍了基于Tailfit算法的抖动分离技术的原理和详细的流程,验证了算法的有效性。在此基础上研究了浴盆曲线的计算方法和特点。更多还原 【Abstract】 As data rates increase effects of jitter becomes critical and jitter budgets get tighter. Jitter directly works on the index of systems. Jitter has always degraded electrical systems. To reduce jitter in system redesign, it is needed to find out the character of jitter and identify jitter sources. It’s necessary to study jitter in order to improve the level

故障率及计算方法

故障率的计算方法 系统发生故障的频率和时间的关系可以用浴盆曲线来表达,如图1-1所示。。 1浴盆曲线原理 图 1-1浴盆曲线 从该曲线可以看出,系统故障率在系统早期投用和晚期老化后的故障率较高,而在使用中间段时随机故障率相对恒定。 2故障率计算公式 C=在考虑的时间范围Δt 内,发生故障的部件数 N=整个使用的部件数 Δt=考虑的时间范围 3平均无故障时间MTBF MTBF=1/λ 4可靠性计算公式 A S =MTBF/(MTBF+MDT) MDT=平均故障时间(或 MTTR=平均修复时间) 举例: ● MTBF=100h ,MDT=0.5h-A=99.5%! ● MTBF=1year ,MDT=24h-A=99.7% λ ≈ c N . ? t 早期故障 磨损故障 随机故障 λ 常数 t 故障频率 λ

因此,考虑系统的可靠性需同时考虑MTBF和MDT。

5如何增加系统的可靠性 从可靠性公式中可以看出,增加系统的可靠性可以从提高MTBF和MDT降低两个方面进行。 5.1增加系统的稳定性 增加稳定性,可从如下环节考虑: ●设备生产商 ●使用高质量部件 ●使用具有更高标准的部件 ●预烧 ●抗过载保护 ●质量控制 ●冗余 ●工厂设计人员 ●网络结构 ●冗余安装 ●符合安装条件需要 ●在合适的环境条件下使用 ●工厂操作人员 ●维护 ●快速故障诊断 ●自动故障诊断和定位(自测试) ●具有诊断功能 ●诊断工具的稳定性 ●训练有素的维护人员 ●快速修复 ●系统不停机情况下修复(在线修复) ●修复工程容易 ●快速备件发送 ●训练有素的专业人员 5.2整个系统的MTBF 对于串行系统而言,系统故障发生率是各部件故障发生率之和,如图1-2所示。举例: MTBF1 MTBF2 MTBF3

六性分析报告

编号: XXXX式开关 可靠性、维修性、保障性、测试性、安全性、环境适应性分析报告 拟制: 审核: 批准: XXXXXXXX有限公司 二零一一年三月

1 概述 为确保产品质量符合要求,达到顾客满意,根据《XXXX式开关产品质量保证大纲》的规定,对该产品的可靠性、维修性、保障性、测试性、安全性、环境适应性进行分析。 2可靠性分析 2.1 元器件清单 本器件选用元器件如下: 2.2 可靠性预计 本器件所采用的元器件有7类13种共57个。其中任一元器件失效,都将造成整个器件失效,即器件正常工作的条件是各元器件都能正常工作。因此,本器件的可靠性模型是一个串联模型。 该器件是可修复产品,寿命服从指数分布,根据可靠性理论,其平均故障间隔时间与失效率成反比,即: MTBF= 1/∑ pi λ

(1) 所用元器件均是通用或固化产品,其质量水平、工作应力及环境条件都相对固定,其失效率因子等有关可靠性参数可参考《G JB /Z299C -2006电子设备可靠性预计手册》,从而采用应力分析法来预计本器件的可靠性指标。 本器件一般内置于系统机箱内,使用大环境是舰船甲板或舰船舱内,其环境代号Ns2,工作温度-40℃~+70℃,现计算其可靠性指标。 2.2.1 PIN 二极管的工作失效率1p λ 本器件使用PIN 二极管,其工作失效率模型为 K Q E b p πππλλ=1 (2) 式中: b λ —— 基本失效率,10-6/h; E π —— 环境系数; Q π —— 质量系数; K π —— 种类系数。 由表5.3.11-1查得基本失效率b λ =0.212×10-6/h ; 由表5.3.11-2查得环境系数E π=14; 由表5.3.11-3查得质量系数Q π=0.05; 由表5.3.11-4查得种类系数K π=0.5; 本器件中使用了18只PIN 二极管,故其工作失效率为: h p /103356.1185.005.01410212.0661--?=?????=λ 2.2.2 片状电容器的工作失效率2p λ 本器件选用的片状电容器,其工作失效率模型为: ch K CV Q E b p πππππλλ=2 (3) b λ —— 基本失效率,10-6/h ; E π —— 环境系数;

设备故障率计算方法

设备运行参数管理办法 为规范设备管理程序,提高设备利用率和使用寿命,监控设备运行情况特制定以下设备运行参数管理办法。设备运行参数的定义方式不同表示的含义不同,我们采用以下方式定义,能同时反映出关键设备与一般设备故障对设备运行率的影响以及整体平均设备故障率和设备故障对生产的影响程度大小: 一 . 运行参数注解 1.日单生产线运行率α: %1008?=小时计) 生产线计划开机(按生产线实际运行时间i α 备注:运行率反应单线整体设备利用率及运行情况 当α>1时表示设备运行时间超过8小时; 当α<1时包含设备闲置,设备故障,无计划停机,模具更换调试等情况; 当α=1时表示符合正常计划生产,各设备运行正常,利用率高; 2.日单生产线故障率β: %1008?=小时计) 和(一般按各单台设备计划时间之和各单台设备故障时间之β 备注:此故障率利用平均值方式按故障发生时间仅反应单线平均设备故障情况;与日单 生产线运行率结合能一定程度反映出关键设备与一般设备对生产的影响程度。 3.设备日总运行率Α1: Α=n i ∑? (即当天所运行的各线运行率的平均值) 备注:能反映整体设备平均利用率情况。 4.设备日总故障率Β1: Β=∑i β (即当天各线故障率之和) 备注:利用求和方式能反映各设备故障对生产的影响程度大小 5.设备年或月运行率A=日运行率平均值;设备年或月故障率B=日故障率平均值; 月故障率采用单线平均值,各线求和的方式即反映出整体平均设备故障率又反映出设备 故障对生产的影响程度大小:其值高低能从一定程度反映一段时间内设备故障的控制情况。 月运行率高低仅能从一定程度上反映一段时间内开线的生产线的利用率(影响因素包括 一般和关键设备停机的影响,细小停机及生产准备等)不能反映全厂整体设备产能的发挥程度,产能发挥由产量总值反映; 6.非计划停机时间:分为设备故障停机时间、模具故障停机时间、细小停机时间、物料短缺 及其他突发情况时间总和。 7.保养计划完成率:时间完成保养项数/计划保养项数 (一定程度反映保养计划的完成情况) 8.维修频次:日平均维修频次 (结合故障率和非计划停机时间反映出设备故障的种类和次数,值越大一定程度反映小修次数越多) 按以上定义举例: 假如月平均故障率2.56% ;对应日维修时间约3.4小时;月故障时间约3.4*25=85 小时;非计划停机时间110-125小时; 维修频次3.5次相当于每次维修1小时; 运行率87%对于单线平均有效工作时间8h*87*=6.96小时

设备故障率分析资料

设备故障率和设备维修策略 摘要:论述了设备故障率曲线及特点,分析了几种设备维修模式和优缺点,提出对重点关键设备的维修应采用标准维修或状态维修的方式,而其它设备应根据设备故障信息统计的结果,采用相应的方式。 随着科学技术的不断进步和现代化生产的飞速发展,机器设备作为决定产品生产的产量、质量和成本的重要因素,其作用越来越明显。设备在使用过程中,必然会产生不同程度的磨损、疲劳、变形或损伤,随着时间的延长,它们的技术状态会逐渐变差,使用性能下降。设备维修作为设备管理的重要环节,是延长设备寿命,保证生产正常运行,防止事故发生的重要保证。 1 设备的故障率曲线 1.1 设备故障率浴盆曲线及特点 通过对设备故障进行研究,发现大部分机械设备故障率曲线如图1所示。这种故障曲线常被叫做浴盆曲线。按照这种故障曲线,设备故障率随时间的变化大致分早期故障期、偶发故障期和耗损故障期。 早期故障期对于机械产品又叫磨合期。在此期间,开始的故障率很高,但随时间的推移,故障率迅速下降。此期间发生的故障主要是设计、制造上的缺陷所致,或使用不当所造成的。进入偶发故障期,设备故障率大致处于稳定状态。在此期间,故障发生是随机的,其故障率最低,而且稳定,这是设备的正常工作期或最佳状态期。在此间发生的故障多因为设计、使用不当及维修不力产生的,可以通过提高设计质量、改进管理和维护保养使故障率降到最低。在设备使用后期,由于设备零部件的磨损、疲劳、老化、腐蚀等,故障率不断上升。因此认为如果在耗损故障期开始时进行大修,可经济而有效地降低故障率。 1.2 现代化设备的故障率曲线 随着科学技术的发展,大量新技术、新材料不断涌现,特别是电子技术、自动化技术的广

设备一生的故障率状况——浴盆曲线

设备一生的故障率状况——浴盆曲线 2011-12-14 □ 李葆文 设备一生的故障率是变化的,存在着初始故障期,偶发故障期和耗损故障期三个阶段,其形状如浴盆曲线。 也就是说,新安装设备的故障率比较高,常常出现故障。对于机械类的故障,我们称这段期间为磨合期,在此期间,由于机械的配合、啮合、间隙或者渐开线存在误差,常常会出现运行故障。对于电子、电气类结构而言,这段时期又称为老化阶段。因为新加工成的电子电气系统电参数的不稳定,故障率也比较多。记得早年的计算机组装完成之后,要求客户先插上电源运行72小时,如果这段期间一切正常,就基本可以正常使用了,如果出现故障可以送回到厂家退货。这说明,电子电气类设备也存在着初始高故障率现象。为什么现在很少有电子、电气类设备供应商要求客户要事先插电运行设备呢?笔者到过一些计算机整机厂以及交换机生产厂考察发现,这个过程已经转移到生产企业内部了。在计算机或者交换机出厂之前,都对组装并检验合格的产品进行人工强制老化,如放在高温老化箱或者相似环境进行插电老化处理,完成这一阶段之后才装箱发货。这样,就不会在客户手里出现初始故障状况了。 设备在使用几天,几个月乃至半年之后,逐渐趋于稳定,故障率明显降低或者呈现出周期性故障现象,这就进入了偶发故障期。处于偶发故障期的设备,故障率较低。其故障以两种形式表现,一是规律性、周期性故障,表现在设备某部件或者零件的周期性损坏,如轴承的磨损,密封圈的变形或者腐蚀,法兰的腐蚀泄漏等;另外一种情况是随机故障,其规律性并不明显,发生的部位也不确定,这与设备的设计、制造、原材料或者热处理缺陷有关,也与使用条件、维护保养水平有关。 设备在服役5年至8年之后,开始出现明显老化、劣化倾向。这就意味着进入了耗损故障期。对于机械类设备,包括其总成、部件乃至零件,其磨损、变形、应力微裂纹显现,最后导致设备配合间隙过大,松动、振动、精度劣化、机体开裂等,也就是导致设备功能的丧失——机械故障的发生。对于电子电气类设备,包括其总成、部件乃至元器件,由于长期的外电冲击、冷热变形交替、灰尘的覆盖,散热不良,甚至小昆虫进入的局部短路,导致系统内电气元器件电参数特性发生变化,如电阻、电容、电感变化,甚至烧在芯片中的数字程序变化——电气

设备管理浴盆曲线

【TPM】设备管理浴盆曲线 故障随时间变化规律呈不同的分布类型,依据其分布类型来估计设备可靠性参数,采取合 理的监测方法和维修方针。 1 典型故障曲线 由许多不同零部件组成的复杂系统、设备,其在整个使用寿命周期内的故障率 变化情况如图所示。 由于其图形很像一个浴盆,通常称为浴盆曲线。该曲线是设备在运行寿命时间内,故障发展的规律,表现了故障率变化的三个阶段。 第一阶段为初始故障期,也称为早期故障期。它是指新设备(或大修好的设备)的安装调试过程至移交生产试用阶段。

由于设计、制造中的缺陷,零部件加工质量以及操作工人尚未全部熟练掌握等原因,致使这一阶段故障较多,问题充分暴露。随着调试、排除故障的进行,设备运转逐渐正常,故障发生率逐步下降。 第二阶段是偶发故障期。这时设备各运动件已进入正常磨损阶段,操作工人已逐步掌握了设备的性能、原理和调整的特点,故障明显减少,设备进入正常运行阶段。 在这一阶段所发生的故障,一般是由于设备维护不当、使用不当、工作条件(负荷、温度、环境等)劣化等原因,或者由于材料缺陷、控制失灵、结构不合理等设计、制造上存在的问题所致。 第三阶段是劣化故障期,也称耗损故障期。设备随着使用时间延长,各部分机件因磨损、腐蚀、疲劳、材料老化等逐渐加剧而失效,致使设备故障增多,生产效能下降,为排除故障所需时间和排除故障的难度都逐渐增加,维修费用上升。 这时应采取不同形式的检修、或进行技术改造,才能恢复生产效能。如果继续使用,就可能造成事故。 以上三个阶段对应故障分布的三种基本类型,即初期为故障递减型,偶发期为故障恒定型,耗损期为故障递增型。 三个阶段里发生的故障,凡因磨损发生的故障,称为有规律性故障。因此三个阶段对应的磨损量,也可分为磨合磨损期、缓慢磨损期和快速磨损期。

六性分析报告总结归纳

终端 六性分析报告共1册第1册共14页 有限公司 二O一六年月

目录 1 概述 为确保产品质量符合要求,根据终端技术指标要求及项目《质量保证大纲》的规定,对该产品的可靠性、维修性、保障性、测试性、安全性、环境适应性进行分析。 2 产品用途、特色及系统组成 4.1 管理机构 a)公司六性管理在总工程师直接领导下,由生产技术部归口管理,生产技术部设一名设备六性管理专职人员。 b)为保证设备六性数据的收集、分析、应用形成畅通的渠道,加强对六性管理的组织和协调工作,公司设立设备六性工作小组。由设备六性管理专职兼任工作小组组长。

c)设备六性工作小组成员包括:生产技术部专业组长,设备管理部各专业组长,采购部两名,测试组、文档组专工各一名。 4.2 管理智能实施 a)总工程师负责审核、批准上报的设备六性基础数据,推动设备六性管理工 作的开展,并督促设备六性工作小组按计划开展工作。 b)生产技术部主任负责对设备六性管理具体工作进行指导和协调。签发设备 六性工作小组月度例会会议纪要。接受上级主管部门的业务指导,监督设 化。 在设备研制的全过程,抓好每一个环节,实现设备的高质量、高可靠性的研制目标。 具体设计措施包括:成熟设计、热设计、降额设计、裕度设计、集成化设计、简化电路设计、可使用性设计、耐环境设计、机械隔离设计等。 在整机设计时采取了有利的可靠性措施来保证可靠性指标。整机的模块化设计,充分保证了整机可维修性,提高了整机的可靠性。软件可靠性设计也充分借

鉴多项军工产品的软件可靠性技术成果,按照软件工程化设计准则进行软件设计,保证了整机的可靠性指标。 5.2 元器件选型 表1元器件选型表 可靠性模型是一个串联模型。 该器件是可修复产品,寿命服从指数分布,根据可靠性理论,其平均故障间隔时间与失效率成反比,即 MTBF=1/ pi λ∑ (1) 所用元器件均是通用或固化产品,其质量水平、工作应力及环境条件都相对 固定,其失效率因子等有关可靠性参数可参考《GJB/Z299C-2006电子设备可靠

浴盆曲线相关知识

浴盆曲线主要分为三段,第一段为早夭期(early failure),第二段为稳定期(constant failure),第三段为耗损期(wear out)。当然了对于中文和英文的定义可能会有微小的差异了,大家知道具体含义就好了。另外由于产品的寿命周期内所描述出来的失效曲线和浴盆很象,所以我们大家就成其为浴盆曲线了,无它,哈哈。 现在大家通常的理解就是电子产品在出厂前要经过burn in,这是为了提出有缺陷的产品从而让出货的产品在工厂就度过早夭期,在送达客户手上的时候就是出于稳定期了,而当产品使用到一段时间后由于产品器件的寿命问题会进入到耗损期,这时候的产品失效率会急剧上升,知道产品失效。 事实上我们大家用的比较多的就是前面的早夭期的部分了,这就是为什么很多工厂都会去做burn in 的原因,他们希望能够用这样的方法提高出货产品的质量,从而降低成本。 OK,大家的出发点是好的,但是我不知道大家对于工厂段的burn in测试有多少了解,或者说你是否知道众多的厂商中他们的burn in具体是如何执行的,如果没有那么我先和大家分享一下我所知道的好了。我所知道的是由于现在的产品出货量太大,更多的时候不会全部老化,那么这时候我们的产品质量如何保证呢,我们会做抽检老化,这样如果一批抽检没有问题的话我们会认为这批产品OK,甚至有些公司如果达到一定量的产品连续没有问题的时候会降低抽测的数量,最后到一个很低的标准。不过还存在着一些公司取消老化这样一到工序,他们的理由是没有老化的质量也没有多大差异,如果我们减少这样一个工序可以为公司节约很多,而对质量有没有什么影响(当然了是经过实际数据检验的了),那么我们为什么不取消呢,我所知道的是有些LCD模组厂商就取消了。 好了,问题来了,上面提到的减少抽测数也好,取消老化也好,事实上他们的出发点都偏离的我们以前的让产品在出厂前进入到稳定失效期这样的一个目的,好了,既然出发点都变了,我们是否应该从新检讨我们的老化测试呢,是的,我们实在是到了这样一个时间来做检讨了。 如何检讨,首先对于系统厂商我认为没有必要在说老化是为了让产品出货前进入稳定失效期,这样的认知是错了,我们是想了解批量产品的质量,如果有组装或者物料的问题我们希望能够用这样的测试发现。另外由于产品元器件已经有了质量保证了,那么我们默认在入料前就已经进入稳定失效期了,那么对于系统厂商就无需就做老化了啊,好了,您认为是否在理呢,呵呵。 好了我们再说稳定失效期好了,事实上我们产品内容的元器件的寿命有高有低,所以在后面的一段时间的失效率不可能是完全相同的,肯定是越来越高的,您认同不,呵呵,这样一个那个浴盆的质量就不是太好了,应该有点变形,后者底有点不平啦,哈哈。 再说最后的耗损期好了,我想问一个问题了,大家手上的电子产品是不是有很多还没坏的时候就想去换了呢,举个例子好了,大家的手机是不是到有毛病的时候才去换呢,好像很多人都不是的吧,看看功能落后了,外形不好看了,又有新的好看的型号出来了,我们就有了换手机的冲动,而其中的原因又有多少是因为手机真的出毛病要坏了,这就说明现在的产品的寿命已经很长了,一般的用户早就不在意了啊,所以这部分已经不是我们所要关注的重点了。就像你家的台式机一样吧,它一直可以正常工作,就是太慢,我们换了一台把它扔在角度,处理的时候都很郁闷,当初买了那么贵,现在送给别人都怕丢脸啊,哈哈,寿命是足够大家用了啦。

基于浴盆曲线规律的整流装置运行维护策略

第3期2019年3月 中国氯碱 China Chlor-Alkali1 No.3 Mar.,2019 基于浴盆曲线规律的整流装置运行维护策略 巩新祥,王永升 (中国石化股份有限公司齐鲁分公司氯碱厂,山东淄博255411) 摘要:整流装置的失效率与运行时间的关系符合浴盆曲线规律,本文主要论述了如何通过运行维护的有效性,保持和延长整流装置的偶然失效期,更好地发挥整流装置的潜能,在正常生命周期里,可靠稳定地工作。 关键词:整流装置;浴盆曲线;早期失效期;偶然失效期;耗损失效期 中图分类号:TM461文献标识码:A文章编号:1009-1785(2019)03-0001-03 Operation and maintenance strategy of rectifier based on bathtub curve law GONG Xin-xian^,WA NG Yong-s h e n g (Sinopec Qilu Branch Chlor Alkali Plant,Zibo255411 ,China) Abstract:The relationship between the failure rate of rectifier and operation time conforms to the rule of bathtub curve.This paper mainly discusses how to maintain and prolong the accidental failure period of rectifier through the effectiveness of operation and maintenance,so as to better develop the potential of rectifier and work reliably and steadily in the normal life cycle. Key words:rectifier;bathtub curve;early failure period;accidental failure period;loss failure period 设计奠定可靠性,精细制造保证可靠性,用心维护保持和延续可靠性。整流装置安装投运后,即到了用心维护保持和延续可靠性阶段。像大多数设备一生故障率的变化趋势一样,整流装置的失效率与运行时间的关系符合浴盆曲线规律,存在着早期失效期,偶然失效期和耗损失效期3个阶段.其形状如浴盆曲线。依据浴盆曲线的变化趋势、规律,分析其产生的原因.找到保持和延长整流装置的偶然失效期的方法,使整流装置可靠稳定工作U 1浴盆曲线 大多数产品的故障率随时间的变化曲线形似浴盆.故将故障率曲线称为浴盆曲线。产品故障机理虽然不同,但产品的故障率随时间的变化大致可分为3个阶段,故障率曲线图见图1。 (1)早期失效期。在产品投入使用的初期,产品的故障率较高,且存在迅速下降的特征°早期故障

设备管理统计分析方法

第二节设备工程监理过程中常用的数理统计分析方法数理统计技术是建立、保持、改进设备工程监理全过程质量管理体系开展数据分析活动不可缺少的组成部分,成效十分显著。 国内设备工程管理的大量实例表明,排列图法、因果图法、分层法、检查表法、相关图法、直方图法和控制图法等七种数理分析质量管理工具的应用对设备工程管理人员十分重要,他们通过对设备实体产品质量和服务质量两类指标的统计分析,可以及时了解设备工程实施过程质量状况,对设备工程工作效率、投资效益都十分有利。 由于篇幅的原因,我们重点介绍其中排列图法、因果图法、相关图法、直方图法和控制图法,其他方法请参考其他资料。 一、排列图法 排列图法又叫巴雷特图法。是一种抓主要茅盾的“关键少数”以取得多数成效的有效方法。在设备工程管理中,常用它来寻找影响某种问题,例如设备制造质量、安装偏差、运行故障与事故、维修质量及其它问题的主要因素,以便抓住主要矛盾,有重点地采取针对性措施。 排列图法的核心是通过数据计算分析,绘制排列图来寻找影响产品质量的主要问题和确定改进的地方。 1.排列图的基本做法是: (1)按时间参数指标等或某种要求分层收集数据:确定分层,每一层为一个项目;确定每个项目重复出现的“量”;编制分项统计表,最好按照统计分析指标的绝对值大小的降序排列分层项目,便于绘制排列图时不出差错。 (2)进行数据整理,计算出累积数及累积百分数。 (3)作图。作图步骤包括:绘制横、纵坐标;画出累积曲线(巴雷特线),如图4-5所示。 具体画法如下: ——画出左右两个纵坐标轴,一个横坐标轴,左边的纵坐标表示频数,右边的纵坐标表示频率,横坐标为分层项目坐标; ——在横坐标上按分层项目数量画出等分点,按照各项目重量的降序顺序在各等分段下方标注出对应的分层项目名称,一般分层项目数量不超过5个,超过的个数项目归为“其他项”; ——在各自分层项目等分区域对应其数量值画出矩形图,并填上相应的数据;

失效率和失效率曲线

第十七章可靠性技术 产品的质量指标是产品技术性能指标和产品可靠性指标的综合。仅仅用产品技术性能指标不能反映产品质量的全貌。只有具备优良的技术性能指标又具备经久耐用,充分可靠、易维护、易使用等特点的产品,才称得上是一个高质量的产品。可靠性指标和技术性能指标最大的区别点在于:技术性能不涉及时间因素,它可以用仪器来测量;可靠性与时间紧密联系,它不能直接用仪器测量,要衡量产品的可靠性,必须进行大量的试验分析和统计分析,调查研究以及数学计算。※本章要求 (1)掌握产品可靠性的定义; (2)掌握产品可靠性函数及其计算; (3)掌握产品失效率的计算方法 (4)熟悉失效率曲线与类型; (5)掌握常用的失效分布函数; (6)熟悉可靠性分配的概念与等分配方法; (7)了解故障树分析方法。 ※本章重点 (1)产品可靠性与可靠度函数 (2)产品的失效率函数 (3)常用的失效分布 (4)可靠性预测与分配 ※本章难点 (1)产品的可靠度函数及其计算 (2)产品的失效率计算 (3)失效分布函数计算 §1产品可靠性的概念 一、产品可靠性定义 所谓可靠性是指产品(包括零件和元器件、整机设备、系统)在规定的条件下和规定的时间内,完成规定的能力。为了正确理解可靠性的定义,应注意:首先,必须明确产品可靠性研究的对象。其次,必须明确产品可靠性所规定的条件。再次,必须明确所规定的时间。最后,必须明确产品所需完成规定的功能。

对于可修复产品来说,可靠性的含义应指产品在其整个寿命周期内完成规定功能的能力。其中故障是指产品或产品的一部分不能或将不能完成规定功能的事件或状态叫出故障,对某些产品如电子元器件等亦称失效。分为:致命性故障,产品不能完成规定任务或可能导致重大损失;系统性故障,由某一固有因素引起,以特定形式出现的;偶然故障,由于偶然因素引起得故障。 可靠性需要满足:1)不发生故障。2)发生故障后能方便地、及时地修复,以保持良好功能状态能力,即要有良好的维修性。所谓维修性是指在规定条件下使用的产品在规定的时间内,按规定的程序和方法进行维修时,保持和恢复到能完成规定功能的能力。 二、可靠度函数 可靠度是指产品在规定的条件和规定的时间内,完成规定功能的概率。它是时间的函数,以R(t)表示。若用T 表示在规定条件下的寿命(产品首次发生失效的时间),则“产品在时间t 内完成规定功能”等价于“产品寿命T 大于t ”。 所以可靠度函数R(t)可以看作事件“T>t ”概率,即 )()(t T P t R >==?∞ t dt t f )( 其中f(t)为概率密度函数, 我们还可以定义分布函数 ?=≤=t dt t f t T P t F 0)()()( 则F(t)称为产品的失效分布函数。显然有 1)()(=+t F t R 可靠度R(t)可以用统计方法来估计。设有N 个产品在规定的条件下开始使用。令开始工作的时刻t 取为0,到指定时刻t 时已发生失效数n(t),亦即在此时刻尚能继续工作的产品数为N-n(t),则可靠度的估计值(又称经验可靠度)为 N t n N t R )()(?-= §2失效率和失效率曲线 一、产品的失效率 失效率是工作到某时刻尚未失效的产品,在该时刻后单位时间内发生失效的概率。一般记为λ, 它也是时间t 的函数, 故也记为λ(t), 称为失效率函数, 有时也称为故障率函数或风险函数。 为了理解失效率函数的概念,现对它作一个更直观的剖析。设在t=0时有N

磨损特性曲线2

磨损特性曲线2 机械零件的磨损过程通常经历不同的磨损阶段,直至失效。如图给出典型的磨损特性曲线(浴盆曲线): 图磨损特性曲线 图中的纵坐标表示单位时间的磨损量,称磨损率。通常在磨合期内,磨损率比较大,并是递降的。然后进入一个较长时间的稳定期,磨损率较小并保持不变。直至某一点,斜率陡升,这预兆着磨损急剧增大,失效即将发生。对于一些磨损过程,例如滚动轴承或齿轮中发生的表面疲劳磨损,开始时磨损率可能为零,当工作时间达到一定数值后,点蚀开始出现并迅速扩展,磨损率迅速上升,很快发展为大面积剥落和完全失效。 磨损阶段的描述: 1.磨合阶段(I阶段) 又称跑合阶段。新的摩擦副表面具有一定的表面粗糙度。在载荷作用下,由于实际接触面积较小,故接触应力很大。因此,在运行初期,表面的塑性变形与磨损的速度较快。随着磨合的进行,摩擦表面粗糙峰逐渐磨平,实际接触面积逐渐增大,表面应力减小,磨损减缓。 一个崭新的,即加工后未经摩擦的固体表面总具有一定的表面粗糙度和比较尖锐的微凸体尖峰,实际上两个表面之间通过微凸体进入真实接触的面积是很小的。在这些接触着的微凸体之间会产生很大单位面积接触压力,乃至超过材料的屈服强度,并造成微凸体材料的迁移,以及接触面之间的变形在局部微区产生很

高的温度,致使接触面发生熔焊,随即又由于表面之间的相对运动而被撕裂。同时微凸体在相对运动过程中也很容易发生碰撞、折断、划伤。因此在磨合阶段,摩擦副表面的磨损量迅速增加,并达到较高的磨损率。 另一方面由于加工和装配等工况原因,使接触表面之间的间隙不均匀,从而难以形成稳定的油膜,这时的润滑状态处于一种从边界润滑到混合润滑的过度;随着磨合阶段的结束,微凸体不断被磨平,促使它们之间的接触面积不断增大,而单位面积的接触压力随之减小,同时通过一定的磨损之后,摩擦副的间隙趋于均匀,油膜得以建立,即进一步向完全流体动力润滑过度;于是磨损率也随之减小,并向稳定磨损阶段过度。 磨合阶段的轻微磨损为正常运行、稳定运转创造条件。通过选择合理的磨合规程、采用适当的摩擦副材料及合理的加工工艺、正确地装配与调整,使用含有活性添加剂的润滑油等措施能够缩短磨合期。上述磨合阶段最好受到监控,以免造成过度的磨损或磨合不够的情况产生。 2.稳定磨损阶段(II阶段) 经过磨合,摩擦表面发生加工硬化,微观几何形状改变,建立了弹塑性接触条件。这一阶段磨损趋于稳定、缓慢,工作时间可以延续很长。它的特点是磨损量与时间成正比增加,间隙缓慢增大。 稳定磨损阶段此时磨损量趋于平缓地增加,而磨损率则由高过度到低,并维持在一个比较稳定的水平上,表明零件摩擦副表面之间已形成较为稳定的油膜,在润滑油充裕的工况下处于一种流体动力润滑状态。流体动力油膜的存在不仅在很大程度上避免了微凸体尖峰受力为大部分表面处于一种比较均匀的受力状态。这对于减小磨损是极为有利的。特别是当油膜厚度大大超过两个接触表面的粗糙度时,摩擦副处于完全流体动力润滑状态;这时微凸体之间几乎不接触,摩擦表面依靠油膜传递压力,故磨损量保持在一个非常低的水平上。稳定磨损阶段是机器设备的正常工作阶段,稳定磨损阶段的长短与机器的工况有关,也与磨合阶段的磨合质量有关。这是因为机器在启动或停止的过程中,也就是摩擦副流体动力油膜建立或消除的过程,其润滑状态也就从边界—混合—完全流体的

设备管理浴盆曲线

【TPM设备管理浴盆曲线 故障随时间变化规律呈不同的分布类型,依据其分布类型来估计设备可靠性参数,采取合理 的监测方法和维修方针。 1 典型故障曲线 由许多不同零部件组成的复杂系统、设备,其在整个使用寿命周期内的故障率变化情况如图所示。 Infant Steady Weiir-Out Failure Rale 由于其图形很像一个浴盆,通常称为浴盆曲线。该曲线是设备在运行寿命时间内, 故障发展的规律,表现了故障率变化的三个阶段。 第一阶段为初始故障期,也称为早期故障期。它是指新设备(或大修好的设备)的安装调试过程至移交生产试用阶段。 由于设计、制造中的缺陷,零部件加工质量以及操作工人尚未全部熟练掌握等原 因,致使这一阶段故障较多,问题充分暴露。随着调试、排除故障的进行,设备运转逐渐

正常,故障发生率逐步下降。 第二阶段是偶发故障期。这时设备各运动件已进入正常磨损阶段,操作工人已逐步掌握了设备的性能、原理和调整的特点,故障明显减少,设备进入正常运行阶段。 在这一阶段所发生的故障,一般是由于设备维护不当、使用不当、工作条件(负荷、温度、环境等)劣化等原因,或者由于材料缺陷、控制失灵、结构不合理等设计、制造上存在的问题所致。 第三阶段是劣化故障期,也称耗损故障期。设备随着使用时间延长,各部分机件因磨损、腐蚀、疲劳、材料老化等逐渐加剧而失效,致使设备故障增多,生产效能下降,为排除故障所需时间和排除故障的难度都逐渐增加,维修费用上升。 这时应采取不同形式的检修、或进行技术改造,才能恢复生产效能。如果继续使用,就可能造成事故。 以上三个阶段对应故障分布的三种基本类型,即初期为故障递减型,偶发期为故障恒定型,耗损期为故障递增型。 三个阶段里发生的故障,凡因磨损发生的故障,称为有规律性故障。因此三个阶段对应的磨损量,也可分为磨合磨损期、缓慢磨损期和快速磨损期。 2复杂设备的故障模型

相关文档
最新文档