高中物理知识体系结构图及详解

(完整版)高中物理知识点总结和知识网络图(大全)

力学知识结构图

匀变速直线运动 基本公式:V t =V 0+at S=V 0t+21 at 2 as V V t 22 02 += 2 0t V V V += 运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。运动的合成与分解遵守平行四边形定则 平抛物体的运动 特点:初速度水平,只受重力。 分析:水平匀速直线运动与竖直方向自由落体的合运动。 规律:水平方向 Vx = V 0,X=V 0t 竖直方向 Vy = gt ,y = 22 1gt 合 速 度 V t = ,2 2y x V V +与x 正向夹角tg θ= x y V v 匀速率圆周运动 特点:合外力总指向圆心(又称向心力)。 描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。 规律:F= m r V 2=m ω2r = m r T 2 2 4π 物 体 的 运 动 A 0 t/s X/cm T λx/cm y/cm A 0 V 天体运动问题分析 1、行星与卫星的运动近似看作匀速圆周运动 遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即?=mg,整理得GM=gR 2。 3、考虑天体自传时:(1)两极 (2)赤道 平均位移:02 t v v s vt t +== 模 型题 2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失. 非弹性碰撞遵守动量守恒,能量关系为: 12m 1v 21+12m 2v 22>12m 1v 1′2+1 2 m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速 度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12 (m 1+m 2)v 2 1 .弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+1 2 m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,1 2m 1v 21= 12m 1v 1′2+1 2m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1 m 1+m 2v 1 动 量碰撞 如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。现让A 球以v 0=2 m/s 的速 度向B 球运动, A 、 B 两球碰撞后粘在一起继续向右运动并与 C 球碰撞,C 球的最终速度v C =1 m/s 。问: om (1)A 、B 两球与C 球相碰前的共同速度多大? (2)两次碰撞过程中一共损失了多少动能? 【答案】(1)1 m/s (2)1.25 J .线球模型与杆球模型:前面是没有支撑的小球,后两幅图是 有支撑的小球 过最高点的临界条件 由mg=mv 2/r 得v 临=? 由小球恰能做圆周运动即可 得 v 临=0 .车过拱桥问题分析 对甲分析,因为汽车对桥面的压力F N'=mg-?,所以(1)当v=?时,汽车对桥面的压力F N'=0; (2)当0≤v?时,汽车将脱离桥面危险。 对乙分析则:F N-mg=m , 甲 1.做平抛(或类平抛)运动的物体 任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点 2. 自由落体

图形的旋转--知识讲解

图形的旋转--知识讲解 【学习目标】 1、掌握旋转的概念,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中 心连线所成的角彼此相等的性质; 2、能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计. 【要点梳理】 要点一、旋转的概念 将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.定点称为旋转中心,旋转的角度称为旋转角. 要点诠释:旋转的三要素:旋转中心、旋转方向和旋转角度; 图形的旋转不改变图形的形状、大小. 要点二、旋转的性质 一个图形和它经过旋转所得到的图形中: (1)对应点到旋转中心的距离相等; (2)两组对应点分别与旋转中心连线所成的角相等. 要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转. 要点三、旋转的作图 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形. 要点诠释: 作图的步骤: (1)连接图形中的每一个关键点与旋转中心; (2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角); (3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点; (4)连接所得到的各对应点. 【典型例题】 类型一、旋转的概念与性质 1.(优质试题春?内江期末)如图所示,△ABC直角三角形,延长AB到D,使BD=BC,在BC上取BE=AB,连接DE.△ABC顺时针旋转后能与△EBD重合,那么: (1)旋转中心是哪一点?旋转角是多少度? (2)AC与DE的关系怎样?请说明理由.

【思路点拨】(1)由条件易得BC和BD,BA和BE为对应边,而△ABC旋转后能与△EBD重合,于是可判断旋转中心为点B;根据旋转的性质得∠ABE等于旋转角,从而得到旋转角度;(2)根据旋转的性质即可判断AC=DE,AC⊥DE. 【答案与解析】 解:(1)∵BC=BD,BA=BE, ∴BC和BD,BA和BE为对应边, ∵△ABC旋转后能与△EBD重合, ∴旋转中心为点B; ∵∠ABC=90°, 而△ABC旋转后能与△EBD重合, ∴∠ABE等于旋转角, ∴旋转角是90度; (2)AC=DE,AC⊥DE.理由如下: ∵△ABC绕点B顺时针旋转90°后能与△EBD重合, ∴DE=AC,DE与AC成90°的角,即AC⊥DE. 【总结升华】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 举一反三 【变式】如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图. 【答案】下面给出几种解法: 解法一:连接OA、OB、OC即可.如图甲所示; 解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、OD2即得,如图乙所示. 解法三:在解法二中,用相同的曲线连结OD、OD1、OD2即得如图丙所示

(完整版)高中物理选修3-4知识点总结

高中物理选修3-4 一.简谐运动简谐运动的表达式和图象Ⅱ 1、机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动: 在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 3、描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。 (1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 (2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。 (3)周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 (4)频率f:振动物体单位时间内完成全振动的次数。 (5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 周期、频率、角频率的关系是:。 (6)相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。 4、研究简谐振动规律的几个思路: (1)用动力学方法研究,受力特征:回复力F =-Kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 (2)用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 (3)用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。(4)从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 5、简谐运动的表达式 振幅A,周期T,相位,初相 6、简谐运动图象描述振动的物理量 1.直接描述量: ①振幅A;②周期T;③任意时刻的位移t。 2.间接描述量: ③x-t图线上一点的切线的斜率等于V。

构建高中物理知识网络

构建高中物理知识网络,提高解题能力 银川唐徕回中冯国庆 高中物理,有其内在的科学体系,只有掌握了知识结构、建立了理论体系,才能深入地把握各个知识点并能运用它们去解决有关的实际问题。因此构建高中物理知识网络结构是提高解题能力的关键。 一、高中学生物理知识网络结构 纵向:力、电、光、原 横向:必修68个考点,选修3-4、3-5共有31各考点 网络:现象、概念、规律、思想、方法 新考纲的整体框架和考点内容、能力要求、题型示例都没有太大变化,根据近三年的高考命题分析,理综试卷的物理部分试题仍然以高中物理的主干知识为主,即涉及到力学和电学的主要概念和规律。如牛顿运动定律、万有引力定律、动能定理、机械能守恒定律、电场与磁场、电路、电磁感应定律、带电粒子在电磁场中运动等。对选修的3-4、3-5的内容继续以选择题和计算题形式出现。在选择题中,重点考查学生对物理知识和物理概念的理解,计算题重点考查学生分析和综合、运用数学知识解决物理问题的能力。实验题侧重考查仪器的使用和考纲中规定的某个实验的操作以及对实验原理的迁移和探究能力。近年来,高考物理试题难度较为稳定。 二、一轮复习构建高中物理知识网络的整体框架 一轮复习课上,把握各部分物理知识的重点、难点。应指导学生梳理知识,形成结构,总结规律形成方法。帮助学生弄清局部知识与教材整体内容的关系,每一知识点在

教材中的地位、作用和特点,掌握知识与知识之间、知识块与知识块之间内部的本质联系于区别。通过梳理,将过去分散和零乱的知识就能十分条理、系统化的有机联系在一起了,便于贮存在大脑中,有利于记忆,不易遗忘,目的在于使用时可以十分快捷的提取。重要的是要让学生写出本章小结,主要总结物理量、物理规律、物理方法、典型习题、存在问题。知识经过梳理后,使学生加深了对某些物理概念和物理规律的全面、深刻的理解,容易掌握它们的本质特征,便于学生发现和掌握获取知识的规律、方法和手段,为后续学习打下良好的知识基础和思维品质。构建高中物理知识网络的整体框架。 三、二轮复习要进一步构建高中物理知识网络,突出物理方法 二轮复习要从教与学的实际情况出发拟定专题复习内容,全面系统复习物理知识,注重物理基本概念和基本规律的落实,注重物理学科能力和思想方法的培养,注重对实验知识的复习,培养学生独立设计和完成实验的能力以及实验迁移能力,突出对学科主干知识和重点内容的复习,构建并完善知识结构网络和方法结构体系,以培养物理学科能力,提升知识综合能力、物理建模能力和理论联系实际能力。知识精讲构建物理知识结构体系和方法结构体系,精讲物理学科主干知识和重点内容,突破重点,化解难点,排除疑点,重视热点,辨析误点,达到高效率复习物理知识的目的。精选典型例题,梳理思路,分析过程,点拨方法与技巧。 二轮复习要树立打通意识,把以往分散、独立、分割的知识或技能整合起来,找到它们的连接点,形成一个能够综合、创新的知能网络。可以某一关键的物理量或物理概念为中心,找出与之相联系的有关物理量或规律来构成知识板块。一般有物体的平衡、运动和力的关系、功和能、电磁学中的场、电磁学中的路、物理图像的意义和解题、如何审题等专题。 如:功和能专题以功和能量的转化与守恒为核心,它可以将整个高中物理各个部分中涉及到做功能量的知识点整合起来组成一个知识板块:功、功率、动能定理、机械能守恒定律、功能关系、重力做功、摩擦力做功、电场力作功、电流做功、安培力做功和核力做功。 再如力和运动,以力和初速度的方向变化为核心进行组建:将各种运动归类组合为一个专题。在电学中电路为一个专题等。这些以主干知识为核心来组建的专题,最大的优点是浓缩了物理知识,抓住了物理变化过程中的本质特点,为解决新情境下的物理问题提供了一些帮助。使学到的知识融会贯通。 概念与规律既是物理教学的核心,又是学生物理学习的起点。从核心着手贴近教学

最新旋转知识点总结与练习.docx

旋转知识点总结与练习 知识点 1 旋转的定义 旋转知识点总结与练习O 旋转知识点总结与练习 _____,点 O 叫做旋转中心 ,________叫做旋转角 . 要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度. 1. 如图 , 将正方形图案绕中心 O旋转 180°后 , 得到的图案是() 2.如图 2,该图形围绕自己的旋转中心 ,按下列角度旋转后 ,不能与其自 身重合的是() A.72 B. 108C. 144D. 216 旋转的性质 (1)对应点到旋转中心的距离 ________; (2)对应点与旋转中心所连的线段的夹角等于________; (3)旋转前后的两个图形 ______. 要点诠释:图形绕某一点旋转, 既可以按顺时针旋转也可以按逆时针旋转. 3.如图 , 将△ ABC绕着点 C 按顺时针方向旋转 20° ,B 点落在 B′位置 ,A 点落在 A′ 位置 , 若 AC⊥A′B′, 则∠BAC的度数是() A.50°B.60°C.70°D.80° 4.如图 , 直线y 4 x 4 与x轴、y轴分别交于A、B两点,把△AOB绕点A顺 3 时针旋转 90°后得到△ AO B , 则点 B 的坐标是 A. (3,4 ) B.(4,5) C.(7,4) D.(7,3) 旋转的作图:在画旋转图形时 ,首先确定旋转中心 ,其次确定图形的关键点 ,再将这些关键 ,沿指定的方向旋转 指定的角度 ,然后连接对应的部分 ,形成相应的图形. 5.在下图 4× 4 的正方形网格中 , △ MNP绕某点旋转一定的角度 , 得到△ M1N1P1 , 则其 旋转中心可能是() A.点A B.点B C.点C D.点D 知识点 2 中心对称 把一个图形绕着某一点旋转_____,如果它能够与另一个图形____,那么就说这两个图形关于 这个点对称或______,这个点叫做 ______,旋转后能够重合的对应点叫做关于对称中心的 _______. 要点诠释:( 1)有两个图形 , 能够完全重合 , 即形状大小都相同; ( 2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 ( 全等图形不一定是中心对称的, 而中心对称的两个图形一定是全等的) 6.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有_______. 1 / 5

旋转知识点总结与练习

旋转知识点总结与练习 知识点1 旋转的定义 把一个平面图形绕着平面内某一点O 转动一个角度的图形变换叫做_____,点O 叫做旋转中心, ________叫做旋转角. 要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度. 1. 如图,将正方形图案绕中心O 旋转180°后,得到的图案是 ( ) 2. 如图2,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自 身重合的是( ) A. 72 B.108 C.144 D.216 旋转的性质 (1)对应点到旋转中心的距离________; (2)对应点与旋转中心所连的线段的夹角等于________; (3)旋转前后的两个图形______. 要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转. 3. 如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B′位置,A 点落在A′ 位置,若AC⊥A′B′,则∠BAC 的度数是( ) A .50° B .60° C .70° D .80° 4.如图,直线4 43 y x =- +与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺 时针旋转90°后得到△AO B '',则点B '的坐标是 A. (3,4) B. (4,5) C. (7,4) D. (7,3) 旋转的作图: 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键,沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形. N 1 A B O x y O ' B ' (第4题)

5.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其 旋转中心可能是 ( ) A.点A B.点B C.点C D.点D 知识点2 中心对称 把一个图形绕着某一点旋转_____,如果它能够与另一个图形____,那么就说这两个图形关于这个点对称或______,这个点叫做______,旋转后能够重合的对应点叫做关于对称中心的_______. 要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同; (2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) 6.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有_______. 中心对称的性质: 中心对称的两个图形,对称点所连线段经过_____,并且被对称中心所_____.中心对称的两个图形是____. 7.如图,已知△ABC 和点O.在图中画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 关于O 点成中心对称. 知识点3 中心对称图形 把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形____,那么这个图形叫做 _________,这个点叫它的_______. A B C D N P P 1 M 1 N 1 第11题图

高中物理光学知识点总结 (1)

第十一单元光的性质一、知识结构 二、学习要求 1、知道有关光的本性的认识发展过程:知道牛顿代表的微粒、惠更斯的波动说一直到光的波粒二象性这一人类认识光的本性的历程,懂得人类对客观世界的认识是不断发展不断深化的。 2、知道光的干涉:知道光的干涉现象及其产生的条件;知道双缝干涉的装置、干涉原理及干涉条纹的宽度特征,会用肥皂膜观察薄膜干涉现象。知道光的衍射:知道光的衍射现象及观察明显衍射现象的条件,知道单缝衍射的条纹与双缝干涉条纹之间的特征区别。 3、知道电磁场,电磁波:知道变化的电场会产生磁场,变化的磁场会产生电场,变化的磁场与变化的磁场交替产生形成电磁场;知道电磁波是变化的电场和磁场——即电磁场在空间的传播;知道电磁波对人类文明进步的作用,知道电磁波有时会对人类生存环境造成不利影响;从电磁波的广泛应用认识科学理论转化为技术应用是一个创新过程,增强理论联系实际的自觉性。知道光的电磁说:知道光的电磁说及其建立过程,知道光是一种电磁波。 4、知道电磁波波谱及其应用:知道电磁波波谱,知道无线电波、红外线、紫外线、X射线及 射线的特征及其主要应用。 5、知道光电效应和光子说:知道光电效应现象及其基本规律,知道光子说,知道光子的能量与光学知识点其频率成正比;知道光电效应在技术中的一些应用 6、知道光的波粒二象性:知道一切微观粒子都具有波粒二象性,知道大量光子容易表现出粒子性,而少量光子容易表现为粒子性。 光的直线传播.光的反射 二、光的直线传播

1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C =3×108m/s ; 各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v

高中物理选修3-5知识点梳理

高中物理选修3-5知识点梳理 一、动量动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。②动量是物体机械运动的一种量度。 动量的表达式P = mv 。单位是s m kg .动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间,系统部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间遵循动量守恒定律。 ②计算动量时要涉及速度,这时一个物体系各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。 ③动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。 ④动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。 3、碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。 ⑴完全弹性碰撞:在弹性力的作用下,系统只发生机械能的转移,无机械能的损失,称完全弹性碰撞。 ⑵非弹性碰撞:非弹性碰撞:在非弹性力的作用下,部分机械能转化为物体的能,机械能有了损失,称非弹性碰撞。 ⑶完全非弹性碰撞:在完全非弹性力的作用下,机械能损失最大(转化为能等),称完全非弹性碰撞。碰撞物体粘合在一起,具有相同的速度。 二、验证动量守恒定律(实验、探究)Ⅰ 【实验目的】研究在弹性碰撞的过程中,相互作用的物体系统动量守恒. 【实验原理】利用图2-1的装置验证碰撞中的动量守恒,让一个质量较大的球从斜槽上滚下来,跟放在斜槽末端上的另一个质量较小的球发生碰撞,两球均做平抛运动.由于下落高度相同,从而导致飞行时间相等,我们用它们平抛射程的大小代替其速度.小球的质量可以测出,速度也可间接地知道,如满足动量守恒式m 1v 1=m 1v 1'+m 2v 2',则可验证动量守恒定律. 【实验器材】两个小球(大小相等,质量不等);斜槽;重锤线;白纸;复写纸;天平;刻度尺;圆规. 【实验步骤】 1.用天平分别称出两个小球的质量m 1和m 2; 2.按图2-1安装好斜槽,注意使其末端切线水平,并在地面适当的位置放上白 纸和复写纸,并在白纸上记下重锤线所指的位置O 点. 3.首先在不放被碰小球的前提下,让入射小球从斜槽上同一位置从静止滚下, 图2-1 图2-2 P

高中物理光学知识点总结

第十一单元光的性质 一、知识结构 1、知道有关光的本性的认识发展过程:知道牛顿代表的微粒、惠更斯的波动说一直到光的波粒二象性这一人类认识光的本性的历程,懂得人类对客观世界的认识是不断发展不断深化的。 2、知道光的干涉:知道光的干涉现象及其产生的条件;知道双缝干涉的装置、干涉原理及干涉条纹的宽度特征,会用肥皂膜观察薄膜干涉现象。知道光的衍射:知道光的衍射现象及观察明显衍射现象的条件,知道单缝衍射的条纹与双缝干涉条纹之间的特征区别。 3、知道电磁场,电磁波:知道变化的电场会产生磁场,变化的磁场会产生电场,变化的磁场与变化的磁场交替产生形成电磁场;知道电磁波是变化的电场和磁场——即电磁场在空间的传播;知道电磁波对人类文明进步的作用,知道电磁波有时会对人类生存环境造成不利影响;从电磁波的广泛应用认识科学理论转化为技术应用是一个创新过程,增强理论联系实际的自觉性。知道光的电磁说:知道光的电磁说及其建立过程,知道光是一种电磁波。 4、知道电磁波波谱及其应用:知道电磁波波谱,知道无线电波、红外线、紫外线、X射线及 射线的特征及其主要应用。 5、知道光电效应和光子说:知道光电效应现象及其基本规律,知道光子说,知道光子的能量与光学知识点其频率成正比;知道光电效应在技术中的一些应用 6、知道光的波粒二象性:知道一切微观粒子都具有波粒二象性,知道大量光子容易表现出粒子性,而少量光子容易表现为粒子性。

光的直线传播.光的反射 二、光的直线传播 1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C =3×108m/s ; 各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v

初三数学旋转知识点总结

第23章旋转知识点总结 一、旋转 1、定义 把一个图形绕某一点O转动一个角度的叫做旋转,其中O叫做,叫做旋转角。 2、性质 (1)对应点到的距离相等。 (2)对应点与旋转中心所连线段的夹角等于。 二、中心对称 1、定义 把一个图形绕着某一个点旋转,如果旋转后的图形能够和原来的图形互相,那么这个图形叫做中心对称图形,这个点就是它的。 2、性质 (1)关于中心对称的两个图形是形。 (2)关于中心对称的两个图形,对称点连线都经过对称,并且被对称中心。(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 3、判定 如果两个图形的对应点连线都经过某一点,并且被这一点,那么这两个图形关于这一点对称。 三、坐标系中对称点的特征 1、关于原点对称的点的特征 两个点关于原点对称时,它们的坐标的符号,即点P(x,y)关于原点的对称点为P’( , ) . 2、关于x轴对称的点的特征 两个点关于x轴对称时,它们的坐标中,x ,y的符号,即点P(x,y)关于x轴的对称点为P’( , ) . 3、关于y轴对称的点的特征 两个点关于y轴对称时,它们的坐标中,相等,的符号相反,即点P(x,y)关于y轴的对称点为P’( , ) .

旋转练习题 一、细心选一选(每题3分,共30分) 1.下面的图形中,既是轴对称图形又是中心对称图形的是 ( ) . B . C . D . 2.如果一个多边形绕它的中心旋转60是 ( ) A .正三角形 B .正四边形 C .正五边形 D .正六边形 3.在线段,等腰梯形,平行四边形,矩形,正五角星,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有( ) A.3个 B.4个 C.5个 D.6个 4.如图1,四边形ABCD 是正方形,ΔADE 绕着点A 旋转900后到达ΔABF 的位置,连接EF ,则ΔAEF 的形状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 5.如图2,把ΔABC 绕点C 顺时针旋转90°得到ΔDEC ,若∠A=25°, 则∠CED=________. A 、45° B 、55° C 、65° D 、75° 6.在坐标系中,点(5,3)关于原点的对称点坐标是( ) A 、(-5,4) B 、(-5,-3) C 、(-3,-5) D 、(5,3) 7.下列命题中的真命题是 ( ) A .全等的两个图形是中心对称图形. B 关于中心对称的两个图形全等. C .中心对称图形都是轴对称图形. D .轴对称图形都是中心对称图形. 8. 观察下列图案,其中旋转角最大的是 ( ) 9.如图将叶片图案旋转180°后,得到的图案是 ( ) F E D C B A C D B E A 图1 图2

高中物理知识完整结构图

高中物理知识完整结构图 第一章力 产生原因:由于地球吸引 大小:G= mg 方向:竖直向下 ■'重心:重力的等效作用点,重心不定在物体上 产生条件:①物体间直接接触②接触面发生弹性形变 力弓方向:与物体所受外力方向、物体形变方向相反 L胡克定律:F= kx 产生条件:①接触面粗糙②接触处有挤压③相对滑动 方向:与接触面相切,跟物体的相对运动方向相反 大小:F= F N 产生条件:①接触面粗糙②接触处有挤压 ③相对静止,但有相对运动趋势 方向:沿接触面,与物体相对运动趋势方向相反, 与物体所受其他力的合力方向相反 大小:O V F W F max 力 的合成 与分解 -合力与分力:等效代替关系 3运算法则:平行四边形定则,正交分解法?合力范围:| F i-F』< F<| F1+F2I 受力分析「隔离法 整体法 力的概念.力是物体间的相互作用 力的三要素:大小、万向、作用点 力的图示:用一条带箭头的线段形象地表示力的三要素

第二章直线运动 「参考系、质点 时间、时刻 位移 速度 ■加速度 直线运动一 s v=T s=vt v t= v 0+ at v-1 图象 -v o+ v t v= = v t 2 2 「v t = gt ._ 1 . 2 自由落体* =2g v t=2 gh v t2- v0=2 as 特例彳v t = v o- gt h=v o t- gt2 2 2 L v t - v o =- 2gh 第三章牛顿运动定律

内容:一切物体总保持勻速亘疑动狀态或静止状态,亘到有外力迴康 『基本公式;a= -^-龙F=吨 特点:矢童性;日的方向与ZF 的方向时割相同 焉时性:a^ZF 同时产生同对消失、同时变化 独立性:作用在物体上的各个力各自产主一个加速度,物体的加速 废是这些分加速度的矢重和 I 应用:①两冀常见的动力学题目 扛:已知受力情况,确定运动情况 比已知运动情况,确定受力情况件顿运动定律杲联结力和运动 的桥梁1 ②超重.失重问题 塞物体在竖賣肓向有向上的加速度,处于超重状态 物体在耍直方向有向下的加速度,处于失重状态 b:物体处于超重' 失重状态时,界枝持物的压力或对悬逼的拉力 大于重力或小于重力,限物体的重力尢六殳有变化 「内容二 F=-F ‘ 特点;F 与F 大小相等方向t 目反、同性质、作用时頂朋同 ■■关键;作用力、反作用力与一对平衡力鬧区别 匚适用范围;宏观、低速、惯ft 券考系牛矍一定律 牛顿 第二 宀獐 - —— 牛矍三定律 _ 在改变这种状态为止 ?陰性、惯性参垮系 L 质量是物体惯臥小的唯一量度

相关文档
最新文档