化工原理终极总结

化工原理终极总结
化工原理终极总结

第一章流体与输送机械

1、基本研究方法:实验研究法、数学模型法

2、牛顿粘性定理:

应用条件:

3、阻力平方区:管内阻力与流速平方成正比的流动区域;

原因:流体质点与粗糙管壁上凸出的地方直接接触碰撞产生的惯性阻力在压倒地位。

4、流动边界层:紧贴壁面非常薄的一区域,该薄层内流体速度梯度非常大。

流动边界层分离的弊端:增加流动阻力。

优点:增加湍动程度。

5、流体黏性是造成管内流动机械能损失的原因。

6、压差计:

文丘里

孔板

转子

7、离心泵工作原理:

离心泵工作时,液体在离心力的作用下从叶轮中心被抛向外缘并获得能量,

使叶轮外缘的液体静压强提高。液体离开叶轮进入泵壳后,部分动能转变成为静压能。当液体从叶轮中心被抛向外缘时,在中心处形成低压区,在外界与泵吸入口的压差作用下,致使液体被吸进叶轮中心。

8、汽蚀现象:离心泵安装过高,泵进口处的压力降低至同温度下液体的饱和蒸汽压,使液体气化,产生气泡。气泡随液体进入高压区后立即凝结消失,形成真空导致巨大的水力冲击,对泵造成损害。

9、气缚现象:离心泵启动时,若泵内存在空气,由于空气密度大大低于输送流体的密度,经离心力的作用产生的真空度小,没有足够的压差使液体进入泵内,从而吸不上液体。

10、泵壳作用:收集液体和能量转化(将流体部分动能转化为静压能)

11、离心泵在设计流量下工作效率最高,是因为:此时水力损失小。

12、大型泵的效率通常高于小型泵是由于:容积效率大。

13、叶轮后弯的优缺点

优点:叶片后弯使液体势能提高大于动能提高,动能在蜗壳中转化为势能的损失小,泵的效率高。

缺点:产生同样的理论压头所需泵的体积大。

14、正位移泵(往复泵)的特点:a流量与管路状况、流体温度、黏度无关;b 压头仅取决于管路特性。(耐压强度)c 不能在关死点运转。d 很好的自吸能力

15、真空泵的性能:极限真空和抽吸时间

16、无限大平板液膜厚a ,其水力当量直径为4a

第二章机械分离与固体流化态

1、过滤推动力:重力压差离心力

2、气体净制:重力沉降、离心沉降、过滤(膜)。

3、架桥现象:随着过滤进行,细小的颗粒进入介质孔道内堵塞孔道的现象。

4、助滤剂作用:在滤饼中形成骨架,有助于改善滤饼的结构,增强其刚性,形成疏松的滤饼层,孔隙率增加,便于滤液通过。

5、实际过滤作用的:滤液固形物形成的滤饼层。

6、自由沉降:颗粒间不发生碰撞等相互影响的沉降过程。

7、粒子在整理沉降中收到的力:重力、浮力、流体黏性力

8、重力沉降:

9、离心沉降:三个力(离心力、浮力、曳力)

10、旋风分离器的分离性能:粒级效率(每一种颗粒被分离的百分比)

11、压降大小是评价旋风分离器性能好坏的重要指标。阻力系数与设备形式和几何尺寸有关。

12、聚式流化(气固系统):腾涌(高径比过大,压降剧烈波动)和沟流(颗粒堆积不均匀,压降比正常值小)。

13、散式流化(液固系统)

14、流化床压降不随气速增大而增大,因为:在流化床内,不管气速如何变化,颗粒与流体的相对速度不变,故流体通过床层的阻力不变。

15、固体流化态:大量固体颗粒悬浮于运动的流体中,从而使颗粒具有类似于流体的某些表观特征的一种状态。

压降表示

16、除去某粒径颗粒时,若沉降高度增加一倍,沉降时间加倍;气流速度减半;生产能力不变。

第三章传热

1、傅里叶定律:

适用于:

不适用于

2、金属与液体导热系数随温度增高减小;气体导热系数随温度增高增大。

3、传热边界条件三类

物体边界壁面的温度。

物体边界壁面的热通量值

物理壁面处的对流传热条件

4、保温层临界厚度:

5、稳态热传导:通过平壁的热传导;通过圆筒壁的热传导;通过球壁的热传导

6、非稳态热传导:集总参数法的简化分析;半无限大物体的非稳态热传导;有限厚度平板的非稳态热传导。

7、获得对流传热系数表达式的方法:分析法;实验法;类比法;数值法。

8、沸腾传热的四个典型传热区域:自然对流去、核态沸腾区、过渡沸腾区、膜态沸腾区。

条件:过度热和气化核心

9、红外线和可见光统称为热射线。

10、黑体:投射到物体表面的辐射能可以被全部吸收的物体。

11、镜体:投射到物体表面的辐射能可以被全部反射的物体。

12、透热体:投射到物体表面的辐射能可以全部穿透物体。

13、灰体:能以相同的吸收率吸收所以波长范围的辐射能的物体。

14、黑度:灰体的辐射能力与同温度下黑体辐射能力之比。(与外界环境无关)

15、气体热辐射的特点:气体的辐射和吸收对波长具有强烈的选择性。

气体的辐射和吸收在整个容积内进行。

16、换热器:混合式、蓄热式和间壁式。

17、列管式换热器:固定管板式、U型管式、浮头式。

18、板式换热器优点:传热系数高,操作灵活,检修清洗方便。缺点:允许操作压力和温度较低。

19、间壁式换热三步走:A 热流体以对流传热方式将热量传至固体界面。

B 热量通过热传导方式由间壁的热侧面传至冷侧面。

C 冷流体以对流传热方式将间壁传来的热量带走。

20、通常采用以间壁两侧流体的温度差作为推动力的总传热速率方程简称为传热速率方程。

21、传热单元数法:

22、强化传热

扩展传热面积;增大传热平均温差;提高传热系数。

23、增强对流传热系数

改变流体的流动状况;改变流体物性;改变传热表面状况。

24、有相变的对流传热系数大于无相变生物对流传热系数。原因:

A 相变热远大于显热

B 沸腾时液体在搅动,冷凝时液膜很薄。

25、短管传热膜系数大于长管的原因:短管有进口效应的影响。

26、平均温差法往往用于:设计性和核算型。传热单元数法用于:核算型。

27、获取传热系数的途径:实验测定,公式计算,查手册。

28、确定换热器需要:流体进出口温度及流量。

29、雷诺类别和科尔本类别的重要应用:从摩擦系数来估算传热系数。

30、折流挡板优缺点:增大湍动强度,提高传热系数;阻力增大。

31、冷水进口温度根据当地气温条件确定。出口温度根据经济衡算来确定。

32、弯管内:因离心力引起流体的二次环流,从而加剧了扰动,提高传热系数。

第四章蒸发

1、蒸发中的温度差损失

A 溶液蒸汽压降低引起的温度差损失

B 由蒸发器中液柱静压引起的温度差损失

C 由于管道阻力引起的温度差损失

2、提高总传热系数:扩大膜状流动。

3、蒸发:管外冷凝,管内沸腾。

4、提高蒸发效率:多效蒸发;额外蒸汽的引出。

5、提高生产强度:提高蒸汽的有效温度差;提高沸腾侧对流传热系数。

6、多效蒸发的效数有限制。是因为:多效蒸发中,各效都会引起温度差损失,当多效总温差损失大于或等于蒸汽温度与冷凝室压力下的沸点温度差时,平均温度差为零,起不到蒸发作用。

7、列文蒸发器:针对黏度大,易结垢、易结晶。

8、强制循环蒸发:延长操作周期,减少清洗次数。

传质

1、质量传递方式:分子传质和对流传质。

2、扩散系数与涡流扩散系数的区别:扩散系数是系统性质;涡流扩散系数随流动状况和位置而变化。

3、漂流因子表达了:主体流动对传质的贡献。

4、单向扩散(吸收),等摩尔反向扩散(精馏)。区别,单向扩散时的传质速率比等摩尔反向扩散多一个漂流因子(总是大于1)。

5、吸收原理:各组分在液体中溶解度的差异。

6、低浓吸收特点:气液相流量视为常量;吸收过程可视为等温吸收;传质系数可视为常数。

7、平均推动力法适用于:设计型;吸收因数法适用于操作型。

8、理论板:气液两相在该种塔板数上充分接触,离开时达到平衡。

9、脱吸:通入惰性气体;通入直接水蒸气;降低压力。

10、化学吸收对于液膜控制的优点明显。

11、传质单元高度取决于:气液流量、流体物性、填料性质。

12、新型传质设备要求:传质效率高、操作弹性大、生产能力大、塔板压降小。

13、浮阀塔的操作弹性最大(综合性能最好);筛板塔的压降最小。

14、填料塔是连续接触式设备,液体分散相;板式塔是逐级接触式设备,液体连续相。

15、低浓气体吸收中溶质气液平衡关系的表示方法:溶解度曲线;亨利定律公式

16、吸收塔设计中,传质单元高度反映了设备效能的高低。传质单元数反映了吸收过程的难易程度。

17、等板高度:气液两相达到平衡的填料的高度。

18、最大吸收效率与塔形式无关。

19、蒸馏分离依据:混合物中和组分的挥发度不同。

20、理想溶液:各组分在全浓度范围内都服从拉乌尔定律的溶液。

21、挥发度

22、蒸馏方式:

简单蒸馏

平衡蒸馏

23、跨越点加料所需塔板数最少:该处加料时料液浓度与塔内浓度最为接近,此时塔内的混合效应最小,平衡线与操作线之间的偏离程度最大,所画阶梯数最少。

24、最小回流比:所需要的理论塔板无穷大时对应的回流比。(设计型)

25、进料状况的选取(冷液利于精馏):随着q 减小,操作线与平衡线间的偏离程度越小,为完成分离任务所需的理论板数越多。所以进料预热度越高,对分离越不利。预热程度越高,再沸器的负荷减小,将导致精馏段与提馏段间气相负荷的差别过大,不利于塔的设计。

26、影响塔板效率的因素:物性参数、结构参数、操作参数

27、水蒸气蒸馏:水一方面作为加热剂;另一方面作为夹带剂将易挥发组分从塔顶带出。

28、水蒸气蒸馏原理:互不相容的液体混合物的蒸汽压等于个纯组分的饱和蒸汽压之和。

29、间歇精馏没有提馏段,只有精馏段。

恒馏出液组成:回流比不断增大

恒回流比:流出液组成不断下降。

30、恒沸精馏原理:在被分离的二元混合物中加入第三组分,该组分能与原溶液中的一个或两个组分形成最低恒沸物,从而形成“恒沸物—纯组分”精馏体系,恒沸物从塔顶蒸出,纯组分从塔底排出。

31、恒沸精馏与萃取精馏的异同

相同点:处理对象都是恒沸液或相对挥发度接近于1的混合液;基本原理都是加入第三组分,以提高相对挥发度,在通过精馏方式实现分离。

不同点:A恒沸剂与被分离混合物组成形成恒沸物,而萃取剂无此要求

B 恒沸剂从塔顶蒸出,萃取剂从塔底排出

C 一定条件下,恒沸剂的使用量有特定要求,而萃取剂使用量较灵活

D 萃取剂必须从塔顶上部不断加入,因此萃取精馏不适宜间歇精馏。

E 恒沸精馏温度较低,较适用于热敏性物质的精馏

31、定常态精馏中,操作线方程反应了,上升气体组成与下降液体组成的关系。

32、板式塔影响液面落差的主要因素是:塔板结构、塔径、液体流量。为减少落差可采用:双溢流和阶梯流;塔板向液体侧倾斜。

33、引起塔板效率不高的原因:雾沫夹带、漏液、气液分布不均、液泛。

34、塔顶温度低于塔底温度:一、塔顶操作压力小于塔底操作压力。二、塔顶含易挥发组分浓度高。

35、板式塔压降:干板压降、通过液层引起的压降、表面张力。

36、溢流堰作用:保持板上一定液层,使气液充分接触;使液流均匀通过塔板。

37、捷算法

萃取

1、分配系数:萃取相与萃余相达到平衡后,萃取相中A组分的浓度与萃余相中A组分的浓度之比。

2、选择性系数:A、B两组分的分配系数之比。

3、三角形相图中的联结线:三角形相图中相互平衡两点的连线。

4、萃取设备:混合—澄清槽、填料塔、筛板塔。

5、双模理论解释萃取:溶质由萃余相主体传之萃余相侧液膜,再传质通过液液相界面,通过萃取相侧液膜传质至萃取相主体。

6、萃取分散相的要求:不润湿设备,体系系数大。

化工原理下复习小结

蒸 馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1. 拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A =p A 0x A p B =p B 0x B =p B 0(1-x A ) 根据道尔顿分压定律:p A =Py A 而P =p A +p B 则两组分理想物系的气液相平衡关系: B A A B P p x p p -= -———泡点方程 0A A A p x y P = ———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。 2. 用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v 可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即 B A B B =A A p p x x υυ= 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有: A A B A B A B B B A y x p p x x y x υαυ= == 对于理想溶液: 0 A B p p α= 气液平衡方程:1(1)x y x αα= +- α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3. 气液平衡相图 (1)温度—组成(t -x -y )图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x -y 图 x -y 图表示液相组成x 与之平衡的气相组成y 之间的关系曲线图,平衡线位于对角线的上方。平衡线偏

化工原理终极总结

第一章流体与输送机械 1、基本研究方法:实验研究法、数学模型法 2、牛顿粘性定理: 应用条件: 3、阻力平方区:管内阻力与流速平方成正比的流动区域; 原因:流体质点与粗糙管壁上凸出的地方直接接触碰撞产生的惯性阻力在压倒地位。 4、流动边界层:紧贴壁面非常薄的一区域,该薄层内流体速度梯度非常大。 流动边界层分离的弊端:增加流动阻力。 优点:增加湍动程度。 5、流体黏性是造成管内流动机械能损失的原因。 6、压差计: 文丘里 孔板 转子 7、离心泵工作原理: 离心泵工作时,液体在离心力的作用下从叶轮中心被抛向外缘并获得能

量,使叶轮外缘的液体静压强提高。液体离开叶轮进入泵壳后,部分动能转变成为静压能。当液体从叶轮中心被抛向外缘时,在中心处形成低压区,在外界与泵吸入口的压差作用下,致使液体被吸进叶轮中心。 8、汽蚀现象:离心泵安装过高,泵进口处的压力降低至同温度下液体的饱和蒸汽压,使液体气化,产生气泡。气泡随液体进入高压区后立即凝结消失,形成真空导致巨大的水力冲击,对泵造成损害。 9、气缚现象:离心泵启动时,若泵内存在空气,由于空气密度大大低于输送流体的密度,经离心力的作用产生的真空度小,没有足够的压差使液体进入泵内,从而吸不上液体。 10、泵壳作用:收集液体和能量转化(将流体部分动能转化为静压能) 11、离心泵在设计流量下工作效率最高,是因为:此时水力损失小。 12、大型泵的效率通常高于小型泵是由于:容积效率大。 13、叶轮后弯的优缺点 优点:叶片后弯使液体势能提高大于动能提高,动能在蜗壳中转化为势能的损失小,泵的效率高。 缺点:产生同样的理论压头所需泵的体积大。 14、正位移泵(往复泵)的特点:a流量与管路状况、流体温度、黏度无关; b 压头仅取决于管路特性。(耐压强度) c 不能在关死点运转。 d 很好的自吸

化工原理教案(下册)

化工原理教案(下册) 第一章蒸馏(下册) 1. 教学目的 通过本章的学习,掌握蒸馏的基本概念和蒸馏过程的基本计算方法。 2. 教学重点 (1)两组分理想物系的汽液平衡关系 (2)蒸馏过程的原理 (3)两组分连续精馏过程的计算(物料衡算与进料热状况的影响、理论板层数的计算与回流比的影响、塔板效率) 3. 教学难点 进料热状况参数及对精馏的影响;多侧线的精馏塔理论板层数的求解;间歇精馏的计算。 4. 本章学习应注意的问题 (1)汽液平衡关系是精馏过程计算的基础,要理解平衡常数、相对挥发度等基本概念,熟练地运用汽液平衡关系进行有关计算。 (2)两组分连续精馏过程计算的主要内容是物料衡算、理论板层数的计算及塔高和塔径的计算,涉及到进料热状况、最小回流比和回流比、塔板效率等诸多概念,要理解上述概念,熟练地掌握各计算公式之间的联系。 (3)两组分连续精馏过程计算所涉及的公式较多,学习时不要机械地记忆,应注意掌握其推导过程。 (4)塔板效率计算通常需联立操作线方程、汽液平衡方程及塔板效率定义式,应注意给出有关组成可计算塔板效率;给出塔板效率亦可计算有关组成。计算时应注意所求塔板的位置和类型(是理论板还是实际板)。 5. 教学方法 以课堂讲授为主,辅之以课堂讨论和习题课进行巩固和强化训练。 6. 本章学习资料 (1)夏清等.化工原理,下册. 天津: 天津大学出版社, 2005 (2)姚玉英等. 化工原理,下册. 天津: 天津大学出版社, 1999 (3)大连理工大学. 化工原理,下册. 大连: 大连理工大学出版社, 1992 (4) 贾绍义,柴诚敬.化工传质与分离过程.北京:化学工业出版社,2001 (5) 蒋维钧,雷良恒,刘茂林.化工原理,下册.北京:清华大学出版社, 1993 1-1 蒸馏过程概述与汽液平衡关系

(完整版)化工原理下册习题及章节总结(陈敏恒版).doc

第八章课堂练习: 1、吸收操作的基本依据是什么?答:混合气体各组分溶解度不同 2、吸收溶剂的选择性指的是什么:对被分离组分溶解度高,对其它组分溶解度低 3、若某气体在水中的亨利系数 E 值很大,说明该气体为难溶气体。 4、易溶气体溶液上方的分压低,难溶气体溶液上方的分压高。 5、解吸时溶质由液相向气相传递;压力低,温度高,将有利于解吸的进行。 6、接近常压的低浓度气液平衡系统,当总压增加时,亨利常数 E 不变, H 不变,相平衡常数 m 减小 1、①实验室用水吸收空气中的O2 ,过程属于( B ) A 、气膜控制B、液膜控制C、两相扩散控制 ② 其气膜阻力(C)液膜阻力 A 、大于B、等于C、小于 2、溶解度很大的气体,属于气膜控制 3、当平衡线在所涉及的范围内是斜率为m 的直线时,则 1/Ky=1/ky+ m /kx 4、若某气体在水中的亨利常数 E 值很大,则说明该气体为难溶气体 5 、总传质系数与分传质系数之间的关系为l/KL=l/kL+1/HkG ,当(气膜阻力 1/HkG) 项可忽略时,表示该吸收过程为液膜控制。 1、低含量气体吸收的特点是L 、 G 、Ky 、 Kx 、T 可按常量处理 2、传质单元高度HOG 分离任表征设备效能高低特性,传质单元数NOG 表征了(分离任务的难易)特性。 3、吸收因子 A 的定义式为 L/ ( Gm ),它的几何意义表示操作线斜率与平衡线斜率之比 4、当 A<1 时,塔高 H= ∞,则气液两相将于塔底达到平衡 5、增加吸收剂用量,操作线的斜率增大,吸收推动力增大,则操作线向(远离)平衡线的方向偏移。 6、液气比低于(L/G ) min 时,吸收操作能否进行?能 此时将会出现吸收效果达不到要求现象。 7、在逆流操作的吸收塔中,若其他操作条件不变而系统温度增加,则塔的气相总传质单元 高度 HOG 将↑,总传质单元数NOG将↓,操作线斜率(L/G )将不变。 8、若吸收剂入塔浓度 x2 降低,其它操作条件不变,吸收结果将使吸收率↑,出口气体浓度↓。 x2 增大,其它条件不变,则 9、在逆流吸收塔中,吸收过程为气膜控制,若进塔液体组 成气相总传质单元高度将( A )。 A. 不变 B.不确定 C.减小 D. 增大 吸收小结: 1、亨利定律、费克定律表达式 及温度而异,单位与压强的 2、亨利系数与温度、压力的关系; E 值随物系的特性单 位一致; m 与物系特性、温度、压力有关(无因次) 3、 E 、 H 、 m 之间的换算关系 4、吸收塔在最小液气比以下能否正常工作。 5、操作线方程(并、逆流时)及在y~x 图上的画法 6、出塔气体有一最小值,出塔液体有一最大值,及各自的计算式 7、气膜控制、液膜控制的特点 8、最小液气比(L/G)min 、适宜液气比的计算 9、加压和降温溶解度高,有利于吸收 减压和升温溶解度低,有利于解吸

化工原理知识点总结

一、流体力学及其输送 1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。 2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。 3.牛顿粘性定律:F=±τA=±μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。 4.两种流动形态:层流和湍流。流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。当流体层流时,其平均速度是最大流速的1/2。 5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。 6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同) 7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。 转子流量计的特点——恒压差、变截面。 8.离心泵主要参数:流量、压头、效率(容积效率?v:考虑流量泄漏所造成的能量损失;水力效率?H:考虑流动阻力所造成的能量损失;机械效率?m:考虑轴承、密

封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。 9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m3 1atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg (1)被测流体的压力 > 大气压 表压 = 绝压-大气压 (2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压 10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置 离心泵的叶轮闭式效率最高,适用于输送洁净的液体。半闭式和开式效率较低,常用于输送浆料或悬浮液。 气缚现象:贮槽内的液体没有吸入泵内。汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压。原因(①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体 12. 往复泵的流量调节 ? (1)正位移泵 ? 流量只与泵的几何尺寸和转速有关,与管路特性无关,压头与流量无关,受管路的承压能力所限制,这种特性称为正位移性,这种泵称为正位移泵。 222'2e 2e 2u d l l u d l l u d l h h h f f f ??? ? ??++=???? ??+=??? ??+=+=∑∑∑∑∑∑ζλλζλ

化工原理(上)主要知识点

化工原理(上)各章主要知识点 三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算 第一节 流体静止的基本方程 一、密度 1. 气体密度:RT pM V m = = ρ 2. 液体均相混合物密度: n m a a a ρρρρn 22111+++=Λ (m ρ—混合液体的密度,a —各组分质量分数,n ρ—各组 分密度) 3. 气体混合物密度:n n m ρ?ρ?ρ?ρ+++=Λ2211(m ρ—混合气体的密度,?—各组分体积分数) 4. 压力或温度改变时,密度随之改变很小的流体成为不可压缩流体(液体);若有显著的改变则称为可压缩流体(气体)。 二、.压力表示方法 1、常见压力单位及其换算关系: mmHg O mH MPa kPa Pa atm 76033.101013.03.10110130012===== 2、压力的两种基准表示:绝压(以绝对真空为基准)、表压(真空度)(以当地大气压为基准,由压力表或真空表测出) 表压 = 绝压—当地大气压 真空度 = 当地大气压—绝压 三、流体静力学方程 1、静止流体内部任一点的压力,称为该点的经压力,其特点为: (1)从各方向作用于某点上的静压力相等; (2)静压力的方向垂直于任一通过该点的作用平面; (3)在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的高低而变化。 2、流体静力学方程(适用于重力场中静止的、连续的不可压缩流体) )(2112z z g p p -+=ρ )(2121z z g p g p -+=ρρ p z g p =ρ(容器内盛液体,上部与大气相通,g p ρ/—静压头,“头”—液位高度,p z —位压头 或位头) 上式表明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低则压力愈大。 四、流体静力学方程的应用 1、U 形管压差计 指示液要与被测流体不互溶,且其密度比被测流体的大。 测量液体:)()(12021z z g gR p p -+-=-ρρρ 测量气体: gR p p 021ρ=- 2、双液体U 形管压差计 gR p p )(1221ρρ-=- 第二节 流体流动的基本方程 一、基本概念 1、体积流量(流量s V ):流体单位时间内流过管路任意流量截面(管路横截面)的体积。单位为13 -?s m 2、质量流量(s m ):单位时间内流过任意流通截面积的质量。单位为1 -?s kg s s V m ρ=

《化工原理》公式总结

第一章 流体流动与输送机械 1. 流体静力学基本方程:gh p p ρ+=02 2. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p ) 3. 伯努力方程:ρ ρ222212112121p u g z p u g z ++=++ 4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ ρρ222212112121+ 5. 雷诺数:μρ du =Re 6. 范宁公式:ρρμλf p d lu u d l Wf ?==??=2 2322 7. 哈根-泊谡叶方程:2 32d lu p f μ=? 8. 局部阻力计算:流道突然扩大:2211?? ? ??-=A A ξ流产突然缩小:??? ??-=2115.0A A ξ 第二章 非均相物系分离 1. 恒压过滤方程:t KA V V V e 222=+ 令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22 第三章 传热 1. 傅立叶定律:n t dA dQ ??λ-=,dx dt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:b t t A Q 21-=λ,或m A b t Q λ?= 4. 单层圆筒壁的定态热传导方程: )ln 1(21 221r r t t l Q λπ-=或m A b t t Q λ21-= 5. 单层圆筒壁内的温度分布方程:C r l Q t +- =ln 2λπ(由公式4推导)

6. 三层圆筒壁定态热传导方程:3 4123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-= 7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α 8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数22 3μ ρβtl g Gr ?= 9. 流体在圆形管内做强制对流: 10000Re >,1600Pr 6.0<<,50/>d l k Nu Pr Re 023.08.0=,或k Cp du d ??? ? ????? ??=λμμρλα8.0023.0,其中当加热时,k=0.4,冷却时k=0.3 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+= 无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:2 1211111d d d d b K m ?+?+=αλα 12. 考虑热阻的总传热系数方程: 212121211111d d R R d d d d b K s s m ?++?+?+=αλα 13. 总传热速率方程:t KA Q ?= 14. 两流体在换热器中逆流不发生相变的计算方程:???? ??-=--2 2111112211ln p m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:???? ??+=--2 2111122111ln p m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2 221ln p m c q KA t T t T =-- 第四章 蒸发 1. 蒸发水量的计算:110)(Lx x W F Fx =-= 2. 水的蒸发量:)1(1 0x x F W -= 3. 完成时的溶液浓度:W F F x -= 0 4. 单位蒸气消耗量:r r D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热

化工原理重要公式(总结精选)

《化工原理》重要公式 第一章 流体流动 牛顿粘性定律 dy du μ τ= 静力学方程 g z p g z p 22 11 +=+ρρ 机械能守恒式 f e h u g z p h u g z p +++=+++2 222222111 ρρ 动量守恒 )(12X X m X u u q F -=∑ 雷诺数 μμρ dG du ==Re 阻力损失 22 u d l h f λ= ????d q d u h V f ∞∞ 层流 Re 64=λ 或 232d ul h f ρμ= 局部阻力 2 2 u h f ζ= 当量直径 ∏ =A d e 4 孔板流量计 ρP ?=20 0A C q V , g R i )(ρρ-=?P 第二章 流体输送机械 管路特性 242)(8V e q g d d l z g p H πζλ ρ+∑+?+?= 泵的有效功率 e V e H gq P ρ= 泵效率 a e P P =η 最大允许安装高度 100][-∑--= f V g H g p g p H ρρ]5.0)[(+-r NPSH 风机全压换算 ρ ρ''T T p p = 第四章 流体通过颗粒层的流动 物料衡算: 三个去向: 滤液V ,滤饼中固体)(饼ε-1V ,滤饼中液体ε饼V 过滤速率基本方程 )(22 e V V KA d dV +=τ , 其中 φμ 012r K S -?=P 恒速过滤 τ22 2 KA VV V e =+

恒压过滤 τ222KA VV V e =+ 生产能力 τ ∑= V Q 回转真空过滤 e e q q n K q -+=2? 板框压滤机洗涤时间(0=e q ,0=S ) τμμτV V W W W W 8P P ??= 第五章 颗粒的沉降和流态化 斯托克斯沉降公式 μ ρρ18)(2 g d u p p t -=, 2Re

化工原理各章节知识点总结

第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程 却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。定态流动流场中各点流体的速度u 、压强p不随时间而变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增 加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的压强能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。有关的称为可压缩流体,无关的称为不可压缩流体。 伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上

的流体没有加速度, 故沿该截面势能分布应服从静力学原理。 层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。 稳定性与定态性稳定性是指系统对外界扰动的反应。定态性是指有关运动参数随时间的变化情况。 边界层流动流体受固体壁面阻滞而造成速度梯度的区域。 边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象。 雷诺数的物理意义雷诺数是惯性力与粘性力之比。 量纲分析实验研究方法的主要步骤: ①经初步实验列出影响过程的主要因素; ②无量纲化减少变量数并规划实验; ③通过实验数据回归确定参数及变量适用围,确定函数形式。 摩擦系数 层流区,λ与Re成反比,λ与相对粗糙度无关; 一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大; 充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大。 完全湍流粗糙管当壁面凸出物低于层流层厚度,体现不出粗糙度过对阻力 损失的影响时,称为水力光滑管。Re很大,λ与Re无关的区域,称为完全湍流粗糙管。同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管。 局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度。 毕托管特点毕托管测量的是流速,通过换算才能获得流量。 驻点压强在驻点处,动能转化成压强(称为动压强),所以驻点压强是静压强与动压强之和。 孔板流量计的特点恒截面,变压差。结构简单,使用方便,阻力损失较大。转子流量计的特点恒流速,恒压差,变截面。 非牛顿流体的特性 塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动。

广东工业大学化工原理下册总结

一、填空与选择题试题范围(30分) 1、蒸馏定义及概念,实现精馏的理论依据(国庆+李军PPT ) 定义:利用液体混合物中各组分挥发性的差异来分离液体混合物的传质过程。 概念:是质量传递过程(传质过程),即由浓度差引起的物质转移过程 精馏的理论依据(13~14):即多次蒸馏。液体混合物经过多次部分汽化和多次部分冷凝后,几乎被完全分离。 2、进料热状况的种类,q 值大小与进料状况的关系;q 线的物理意义,不同进料状况下 q 线的变化(国庆+李军PPT ) 进料的汽化潜热 需的热量 进料汽化为饱和蒸汽所饱和液体焓饱和蒸汽焓原料焓饱和蒸汽焓=--=--=-= L V F V I I I I F L L q ' 对于饱和液体、气液混合物以及饱和蒸汽而言,q 值就等于进料的液相分率。 进料焓值(温度)增加,q 值减小, 则 q 线与精馏操作线的交点(相应加料热状态下两操作线的交点)沿着精馏操作线朝 x 、y 减小的方向移动。从塔设备的角度,这意味着加料板位置下移。 3、精馏塔计算时,塔内上升蒸汽量与R 的关系 回流比D L R = L ——精馏段下降液体的摩尔流量,kmol/h ;D ——馏出液摩尔流量,kmol/h 4、相对挥发度与饱和蒸气压的关系(国庆PPT ) 00B A p p =α 0 0,B A p p —分别为组分A 、B 的液体蒸汽压,Pa ,即纯液体的饱和蒸汽压; 5、在y -x 相图上,相对挥发度α大小与平衡线、对角线、组分的分离难易程度等之间的关系(李军PPT ) y y x x x y )1(, )1(1--= ?-+?= αααα 1=α时,x y = ; 对于大多数溶液,两相平衡时,y 总是大于 x ,故平衡线位于对角线上方。平衡线偏离对角线越远,表示该溶液越易分离。恒沸点时,x-y 线与对角线相交,该点处汽液相组成相等。 α越大,组分在汽、液两相中的摩尔分数相差越大,分离也越容易 6、精馏塔实际板数计算(李军PPT ) 全塔板效率 ET (总板效率)为完成一定分离任务所需的理论塔板数 N 和实际塔板数 NT 之比

化工原理知识点总结复习重点完美版

第一章、流体流动 一、 流体静力学 二、 流体动力学 三、 流体流动现象 四、 流动阻力、复杂管路、流量计 一、流体静力学: ● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力, 俗称压强。 表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压 大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用: 压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式 g z p g z p 22 11 +=+ρρ 水平面上各点压力都相等。 此方程式只适用于静止的连通着的同一种连续的流体。 应用: U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计 二、流体动力学 ● 流量 质量流量 m S kg/s

m S =V S ρ 体积流量 V S m 3/s 质量流速 G kg/m 2s (平均)流速 u m/s G=u ρ ● 连续性方程及重要引论: ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρ ρ222212112121 J/kg 以单位重量流体为基准:f e h g p u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηe N N = (运算效率进行简单数学变换) 应用解题要点: 1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面; 2、 截面的选取:两截面均应与流动方向垂直; 3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小; 4、 两截面上的压力:单位一致、表示方法一致; 5、 单位必须一致:有关物理量的单位必须一致相匹配。 三、流体流动现象: ● 流体流动类型及雷诺准数: (1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000

化工原理知识点总结整理

化工原理知识点总结整理 一、流体力学及其输送 1、单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。 2、四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。 3、牛顿粘性定律:F=τA=μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。 4、两种流动形态:层流和湍流。流动形态的判据雷诺数 Re=duρ/μ;层流过渡湍流。当流体层流时,其平均速度是最大流速的1/2。 5、连续性方程:A1u1=A2u2;伯努力方程: gz+p/ρ+1/2u2=C。 6、流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同) 7、流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较

大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。转子流量计的特点恒压差、变截面。 8、离心泵主要参数:流量、压头、效率(容积效率hv:考虑流量泄漏所造成的能量损失;水力效率hH:考虑流动阻力所造成的能量损失;机械效率hm:考虑轴承、密封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。 9、常温下水的密度1000kg/m3,标准状态下空气密度 1、29 kg/m31atm =Pa=101、3kPa=0、1013MPa= 10、33mH2O=760mmHg(1)被测流体的压力 > 大气压表压 = 绝压-大气压(2)被测流体的压力 < 大气压真空度 = 大气压-绝压= -表压 10、管路总阻力损失的计算1 1、离心泵的构件: 叶轮、泵壳(蜗壳形)和轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。半闭式和开式效率较低,常用于输送浆料或悬浮液。气缚现象:贮槽内的液体没有吸入泵内。汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压。原因(①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体

化工原理复习总结知识点

第1章 流体流动 常温下水的密度1000kg/m3,标准状态下空气密度 kg/m3 1atm =101325Pa====760mmHg (1)被测流体的压力 > 大气压 表压 = 绝压-大气压 (2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压 静压强的计算 柏努利方程应用 层流区(Laminar Flow ):Re < 2000;湍流区(Turbulent Flow ):Re > 4000; 2000

化工原理知识点总结复习重点完美版

第一章、流体流动 一、 流体静力学 二、 流体动力学 三、 流体流动现象 四、 流动阻力、复杂管路、流量计 一、流体静力学: ● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力, 俗称压强。 表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压 大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用: 压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式 g z p g z p 22 11 += +ρ ρ 水平面上各点压力都相等。 此方程式只适用于静止的连通着的同一种连续的流体。 应用: U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计 二、流体动力学 ● 流量 质量流量 m S kg/s m S =V S ρ 体积流量 V S m 3/s 质量流速 G kg/m 2s (平均)流速 u m/s G=u ρ ● 连续性方程及重要引论: 22 112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) m S =GA=π/4d 2G V S =uA=π/4d 2u

以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ ρ ρ222212112121 J/kg 以单位重量流体为基准:f e h g p u g z H g p u g z ∑+++=+++ ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: η e N N = (运算效率进行简单数学变换) 应用解题要点: 1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面; 2、 截面的选取:两截面均应与流动方向垂直; 3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小; 4、 两截面上的压力:单位一致、表示方法一致; 5、 单位必须一致:有关物理量的单位必须一致相匹配。 三、流体流动现象: ● 流体流动类型及雷诺准数: (1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000 本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。 流体在管内作层流流动时,其质点沿管轴作有规则的平行运动,各质点互不碰撞,互不混合 流体在管内作湍流流动时,其质点作不规则的杂乱运动并相互碰撞,产生大大小小的旋涡。由于质点碰撞而产生的附加阻力较自黏性所产生的阻力大得多,所以碰撞将使流体前进阻力急剧加大。 管截面速度大小分布: 无论是层流或揣流,在管道任意截面上,流体质点的速度均沿管径而变化,管壁处速度为零,离开管壁以后速度渐增,到管中心处速度最大。 层流:1、呈抛物线分布;2、管中心最大速度为平均速度的2倍。 湍流:1、层流内层;2、过渡区或缓冲区;3、湍流主体 湍流时管壁处的速度也等于零,靠近管壁的流体仍作层流流动,这-作层流流动的流体薄层称为层流内层或层流底层。自层流内层往管中心推移,速度逐渐增大,出现了既非层流流动亦非完全端流流动的区域,这区域称为缓冲层或过渡层,再往中心才是揣流主体。层流 内层的厚度随Re 值的增加而减小。 层流时的速度分布 max 2 1 u u = 湍流时的速度分布 max 8.0u u ≈ 四、流动阻力、复杂管路、流量计: ● 计算管道阻力的通式:(伯努利方程损失能)

化工原理知识点总结复习重点(完美版).doc

第一章、流体流动 一、流体静力学 二、流体动力学 三、流体流动现象 四、流动阻力、复杂管路、流量计 一、流体静力学: 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。 表压强(力)=绝对压强(力)- 大气压强(力)真空度=大气压强- 绝对压 大气压力、绝对压力、表压力(或真空度)之间的关系 流体静力学方程式及应用: 压力形式p2 p1 g( z1 z2 ) 备注: 1) 在静止的、连续的同一液体内,处于同一 能量形式p1 z1 g p2 z2 g 水平面上各点压力都相等。 此方程式只适用于静止的连通着的同一种连续的流体。应用: U型压差计p1p2( 0) gR 倾斜液柱压差计 微差压差计 二、流体动力学 流量 m kg/s m=Vρ 质量流量 S SS 体积流量S 3 m S=GA= π /4d2G V m /s V S=uA= π /4d2u 质量流速G kg/m 2s (平均)流速u m/s G=uρ 连续性方程及重要引论: u2( d1) 2 u1d2 一实际流体的柏努利方程及应用(例题作业题)

以单位质量流体为基准: 1 2 p1 1 2 p2 J/kg z1 g 2 u1 W e z2 g 2 u2 W f 以单位重量流体为基准: 1 2 p1 1 2 p2 J/N=m z1 2g u1 g H e z2 2g u2 g h f 输送机械的有效功率:N e m s W e 输送机械的轴功率:N N e (运算效率进行简单数学变换) 应用解题要点: 1、作图与确定衡算范围: 指明流体流动方向,定出上、下游界面; 2、截面的选取:两截面均应与流动方向垂直; 3、基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小; 4、两截面上的压力:单位一致、表示方法一致; 5、单位必须一致:有关物理量的单位必须一致相匹配。 三、流体流动现象: 流体流动类型及雷诺准数: ( 1)层流区Re<2000 (2)过渡区2000< Re<4000 ( 3)湍流区Re>4000 本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。 流体在管内作层流流动时,其质点沿管轴作有规则的平行运动,各质点互不碰撞,互不混合流体在管内作湍流流动时,其质点作不规则的杂乱运动并相互碰撞,产生大大小小的旋涡。 由于质点碰撞而产生的附加阻力较自黏性所产生的阻力大得多,所以碰撞将使流体前进阻力急剧 加大。 管截面速度大小分布: 无论是层流或揣流,在管道任意截面上,流体质点的速度均沿管径而变化,管壁处速度为零,离开管壁以后速度渐增,到管中心处速度最大。 层流: 1、呈抛物线分布;2、管中心最大速度为平均速度的2倍。 湍流: 1、层流内层; 2、过渡区或缓冲区;3、湍流主体 湍流时管壁处的速度也等于零,靠近管壁的流体仍作层流流动,这-作层流流动的流体薄层称为 层流内层或层流底层。自层流内层往管中心推移,速度逐渐增大,出现了既非层流流动亦非 完全端流流动的区域,这区域称为缓冲层或过渡层,再往中心才是揣流主体。层流内层的厚度随 Re 值的增加而减小。 层流时的速度分布 u 1 u max 2 湍流时的速度分布u 0.8u max 四、流动阻力、复杂管路、流量计: 计算管道阻力的通式:(伯努利方程损失能)

化工原理上知识总结及重要公式

《化工原理》基本概念、主要公式 第一、二、三章(流体流动) 基本概念: 连续性假定质点拉格朗日法欧拉法稳态与非稳态流动轨线与流线系统与控制体粘性的物理本质 质量守恒方程静力学方程总势能理想流体与实际流体的区别可压缩流体与不可压缩流体的区别 牛顿流体与非牛顿流体的区别伯努利方程的物理意义动量守恒方程平均流速动能校正因子 均匀分布均匀流段层流与湍流的本质区别边界层边界层分离现象因次 雷诺数的物理意义泊谡叶方程因次分析实验研究方法的主要步骤摩擦系数完全湍流粗糙管 局部阻力当量长度、阻力系数毕托管驻点压强孔板流量计转子流量计的特点 非牛顿流体的特性(塑性、假塑性与涨塑性、触变性与震凝性、粘弹性) 重要公式:

)(0ρρ-=?Rg P 质量衡算: N-S 方程 流体输送机械 基本概念: 管路特性方程 输送机械的压头或扬程 离心泵主要构件 离心泵理论压头的影响因素 叶片后弯原因 t m q q out m in m d d ,,=-g u u ρμρ+?+-?=2 D D p t

气缚现象 离心泵特性曲线 离心泵工作点 离心泵的调节手段 汽蚀现象 汽蚀余量 离心泵的选型(类型、型号) 正位移特性 往复泵的调节手段 离心泵与往复泵的比较(流量、压头) 通风机的全压、动风压 真空泵的主要性能参数 重要公式: 泵的有效功率 泵效率 允许安装高度 风机全压换算 离心泵的串联 并联 第六章 基本概念: 搅拌目的 搅拌器按工作原理分类 混合效果 调匀度 分隔尺度 宏观混合 微观混合 搅拌器的两个功能 H L η ?=N N e = =N N e ηN gH Q ρ201,10,1001012f f g p p p p u h H H H z z g g g ν ρρ----=-= --=-?-∑∑允允2222 11 2122 T e u u H h p p ρρρ==-+ - 2 H 2A-2BQ =串串 2 Q H A-B 2?? = ? ?? 并并

化工原理化工计算所有公式总结

化工原理化工计算所有公式总结 第一章 流体流动与输送机械 1. 流体静力学基本方程:gh p p ρ+=02 2. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p ) 3. 伯努力方程:ρ ρ222212112121p u g z p u g z ++=++ 4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ ρρ222212112121+ 5. 雷诺数:μρ du =Re 6. 范宁公式:ρρμλf p d lu u d l Wf ?==??=22322 7. 哈根-泊谡叶方程:232d lu p f μ=? 8. 局部阻力计算:流道突然扩大:2211??? ? ?-=A A ξ流产突然缩小:??? ??-=2115.0A A ξ 第二章 非均相物系分离 1. 恒压过滤方程:t KA V V V e 222=+ 令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22 第三章 传热 1. 傅立叶定律:n t dA dQ ??λ-=,dx dt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:b t t A Q 21-=λ,或m A b t Q λ?= 4. 单层圆筒壁的定态热传导方程: )ln 1(21 221r r t t l Q λπ-=或m A b t t Q λ21-= 5. 单层圆筒壁内的温度分布方程:C r l Q t +- =ln 2λπ(由公式4推导)

6. 三层圆筒壁定态热传导方程:3 4123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-= 7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α 8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数22 3μ ρβtl g Gr ?= 9. 流体在圆形管内做强制对流: 10000Re >,1600Pr 6.0<<,50/>d l k Nu Pr Re 023.08.0=,或k Cp du d ??? ? ????? ??=λμμρλα8.0023.0,其中当加热时,k=0.4,冷却时k=0.3 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+= 无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:2 1211111d d d d b K m ?+?+=αλα 12. 考虑热阻的总传热系数方程: 212121211111d d R R d d d d b K s s m ?++?+?+=αλα 13. 总传热速率方程:t KA Q ?= 14. 两流体在换热器中逆流不发生相变的计算方程:???? ??-=--2 2111112211ln p m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:???? ??+=--2 2111122111ln p m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2 221ln p m c q KA t T t T =-- 第四章 蒸发 1. 蒸发水量的计算:110)(Lx x W F Fx =-= 2. 水的蒸发量:)1(1 0x x F W -= 3. 完成时的溶液浓度:W F F x -= 0 4. 单位蒸气消耗量:r r D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热

相关文档
最新文档