_船舶推进轴系校中_国家标准修订的探讨

_船舶推进轴系校中_国家标准修订的探讨
_船舶推进轴系校中_国家标准修订的探讨

收稿日期:2004-07-21

作者简介:徐立华,男,硕士,副教授,主要从事船舶内燃机专业的教学和科研工作。

5船舶推进轴系校中6国家标准修订的探讨

徐立华1,黄 政1,周瑞平2

(1.武汉船舶职业技术学院动力系,湖北武汉430050;2.武汉理工大学能源与动力学院,湖北武汉430063)摘 要:介绍了CB*/Z 338-845船舶推进轴系校中6国家标准修订的主要技术内容,新标准与国内外现行法规、标准的关系,对新标准的实施提出了具体措施。关键词:船舶;推进轴系;校中;标准;修订.

中图分类号:U 66412 文献标识码:A 文章编号:1671-8100(2004)03-0038-04

根据中国船舶工业集团公司船工计[2002]478号5关于下达2002年技术基础计划的通知6,由武汉船舶职业技术学院、武汉理工大学与中国船舶工业综合技术经济研究院合作编制国家船舶行业新标准5船舶推进轴系校中方法6,课题组就标准编写中的理论问题和轴系实际安装工艺等问题,与同行专家和技术人员进行了广泛的讨论与交流,确定了修订的主要技术内容,探讨了新标准与国内外现行法规、标准之间的关系,并对新标准的实施提出了具体措施。

1 标准修订的主要技术内容

编写组在CB*/Z 338-84基础上,从形式和内容上作了较大的调整和修改,以适应新的技术发展需要。新标准与CB*/Z338旧标准相比,主要修改有:(1)对本标准适用范围进行了修改;(2)增加了规范性引用文件;(3)增加了术语和定义;(4)修改了校中计算和校中计算前数据准备的内容;(5)增加计算坐标及计算模型的建立;(6)对限制条件进行了补充;(7)增加了校中计算方法,

即传统三弯矩方程法、改进的三弯矩方程法和传

递矩阵法;(8)修改了校中计算内容;(9)增加了带液压联轴节轴系安装计算内容;(10)增加运转状态校中计算;(11)修改了负荷检验法;(12)修改了

附录A 的内容;(13)增加了运转状态校中计算资料性报告。1.1 单位

原来使用的非国际单位都改为国际单位。1.2 校中计算状态及方法

新标准对校中状态进行了界定,并在原来的冷态、热态等静态校中的基础上,增加了动态校中和运转状态校中的内容。特别是运转状态校中计算,强调在计入了齿轮力和螺旋桨水动力后进行轴系校中计算,更符合轴系在实际运转时的受力情况,其计算结果也更接近实际运转状态。

新标准增加了校中计算方法,即三弯矩法、传递矩阵法和有限元法,并对各种计算方法进行了说明。为了能够满足运转状态校中计算的要求,新标准对一般的三弯矩方程进行了改进。

第i 支承(如图1所示)的传统三弯矩方程为[1](n 表示截面个数):

l i -1E i -1I i -1M i -1+2(l i -1E i -1I i -1+l i E i I i )M i +l i

E i I i M i +

1

-6l i -1z i -1+6(1

l

i -1+1l i )z i -6l i z i +1=-14(q i -1l 3i -1E i -1I i -1+q i l 3

i

E i I i

) (i =1,2,3,,n)改进后的三弯矩方程:

l i -1

E i -1I i -1

M i -1B +2

l i -

1

E i -1I i -

1

M iA +2

l i E i I i M 1B +l i

E i I i M i +

1A

-6

l i -1z i -1+6(1

l i -1+1l i )z i -6l i z i +1=-14(q i -1l 3i -1E i -1I i -1+q i l 3

i

E i I i

) (i =1,2,3,,

n)图1 三弯矩单元图

改进后的三弯矩方程比原三弯矩方程有着显著的优点。其一:使用范围更广;其二:计算结果

更符合轴系实际情况;其三:可以较好地完成稳定运转较中计算[2]。

1.3 施工与检验

新标准增加了轴系校中施工和检验的内容。提出了校中施工和检验的基本要求,并对施工中容易出现的问题进行了说明。

(1)液压联轴器轴系安装工艺参数计算问题

目前液压联轴器(或其它相类似联轴器)已经被广泛的应用于一些船舶,当对此类船舶的轴系进行安装工艺参数计算时,不同一般的法兰脱开计算。以新标准附录的校中计算报告为例,液压联轴器脱开处两轴段端面有100m m 的间隙,集中力作用位置与轴系联接时相比向后移550m m 等,如图2所示。对此当采用按法兰的开口与偏移安装时,我们需要进行专门的安装状态工艺参

数计算。

图2 液压联轴器集中力作用位置示意图

(2)千斤顶顶举曲线与被测轴承实际负荷计算

应船厂工程师的要求,新标准根据实际生产需要,在附录的校中计算报告书中包含了:轴承顶举曲线图和轴承顶举系数、理论斜率输出表2项内容。以便于轴系安装完毕后,工程师们可以根据实际情况选定千斤顶安放位置进行测量,检验轴承负荷。

新标准明确规定被测轴承实际负荷的计算方法如下:

由图3所示,被测轴承实际负荷=(A +B )/2中的A 和B 不是延长线上的交点,而是被测轴承刚好被顶空时的千斤顶负荷,这可以从千斤顶顶举系数的定义计算论证得到。

F J =y J @R JJ (1)0=F B +y J @R BJ

(2)由(1)式和(2)式可以得到:

F B =-F J (R BJ /R JJ )(3)

式中:

F J )千斤顶受力;F B )被测轴承受力;

y J )被测轴承顶空时,千斤顶上升量;R JJ )千斤顶自身负荷影响系数;

R BJ )千斤顶对被测轴承的负荷影响系数;R BJ /R JJ )千斤顶顶举系数。(3)被测轴承的确定问题

被测轴承并不能简单地通过千斤顶与轴承之

2004年第3期 Journal o f W uhan I nstitute o f Shipbuilding T echno logy 2004年9月

间的距离大小来确定,有时会出现与千斤顶距离近的轴承在顶升尚未脱空时,与千斤顶距离较远的轴承却已经被顶起脱空,这时,被测轴承应该是那个与千斤顶距离较远而先被顶起脱空的轴承。对于这种情况,设计者也无法事先知道,所以设计

者使用的校中计算软件必须具有自动判断功能。

图3 千斤顶负荷图

(4)斜镗孔问题

是否要对尾轴承进行斜镗孔,新标准综合了劳埃德船级社、美国船级社、挪威船级社和中国船级社的相关规定,确定靠近螺旋桨的轴承支点处轴截面转角超过3.5@10-4

Rad 时,可采用斜镗

孔工艺。1.4 附录修订

新标准对附录进行了修订,完善了规范性附录A,增加了资料性附录B,使整个标准更加完善,更具操作性。

2 与国外同类标准水平的对比分析

本标准参阅了大量国外船级社标准和校中计算报告,与国外最新校中计算要求一致。提出的改进三弯矩方程,与国内外现行软件计算中采用

的传递矩阵法相比,不仅适用于静态校中计算,也适用于动态校中计算,且计算精度高,编程计算更加方便。采用的Retsina 船舶轴系校中及强度校核计算软件,能够满足国内外船级社对校中计算的要求,达到国际先进水平,为船舶轴系的合理校中计算和安装提供了强有力的技术支持[3]。

3 与现行法规、标准的关系

本标准是以CB*/Z338-845船舶推进轴系校中6、GJB4000-20005舰船通用规范6[4]

、中华人民共和国船级社5钢质海船入级与建造规范(2001)6[5]、5钢质内河船舶入级与建造规范(2002)6[6]为基础,结合国内外校中技术的最新发展进行编写的,与中国船级社、中华人民共和国国家军用标准的有关规定一致,完全满足中国船级社和军检部门的对轴系校中计算的要求。

4 实施新标准的具体措施

实施本标准,要求轴系校中计算部门配备有能够计算附录中校中计算报告所含内容的计算软件(如进行齿轮力计算、稳定运转校中计算,建议能够实现千斤顶顶举曲线图输出等),同时强调该校中计算软件在计算千斤顶顶举系数时具有自动搜索判断被测轴承的功能,以避免千斤顶在实际顶举过程中产生的轴承意外损坏。螺旋桨水动力计算由于要求的已知参数多且不宜得到,计算复杂,不要求校中计算软件对此进行计算,建议在已知螺旋桨水动力的条件下,软件能进行计算水动力后的校中计算。

参考文献

[1]周继良,邹鸿钧.船舶轴系校中原理及其应用[M ].人民交通出版社,1985.

[2]周瑞平,张?平,杨建国.三弯矩方程的改进及在船舶轴系动态校中中的应用[J].船舶工程,2003(1):40~46.[3]张?平,周瑞平,杨建国,颜世文.三弯矩方程的改进及船舶轴系校中软件研究[J].造船技术,2003(2):32~35.[4]中华人民共和国国家军用标准.舰船通用规范(G JB4000-2000)[S].[5]中国船级社.钢质海船入级与建造规范[M ].人民交通出版社,2001.[6]中国船级社.钢质内河船舶入级与建造规范[M ].人民交通出版社,2002.

2004年第3期Journal o f W uhan I nstitute o f Shipbuilding T echno logy2004年9月

The Recension of0Propulsion Shaft

Alignment O f Ship0National Standard

XU L-i hua1,HUANG Zheng1,ZHOU Ru-i ping2

(1.Wuhan Institute of Shipbuilding Technology,Wuhan430050,China;

2.Wuhan University of Technology,Wuhan430063,China)

Abstract:The paper introduces the process of the recension of CB*/Z338-84/Propulsion Shaft Alig nment Of Ship0national standard and the mainly technical content of it;the relation betw een the new standard and the present national criterion and standard,and puts forward measures for actualizing the new standard. Key words:ship;propulsion shaft;alignment;standard;modify.

我院与中船重工集团携手培养人才

2004年8月11日,中船重工集团公司与我院签订了合作协议。双方在原有密切合作的基础上,将进一步加强合作,共同研究、探索新的管理体制下的人才培养模式与产学研合作机制,提高人才培养质量,为船舶工业的发展提供人才与技术支持。

(本刊辑)

船舶轴系校中心得体会

船舶轴系校中心得体会 工厂实习时,机装车间经验丰富的老师傅向我们重点介绍了船舶轴系如何校中的工艺过程,这是船舶建造中非常关键的一步,很大程度上决定着所造船舶的性能好坏。这个环节有严格的工艺规范,同时不同船厂的师傅们在从事这个环节的工作时,都会摸索出适于实际的工作方法和解决相关问题的捷径。 船舶轴系校中规定了船舶轴系校中通用工艺的安装前准备、人员、工艺要求、工艺过程和检验。 安装前准备时十分重要,要熟悉了解并掌握主机、轴系及其安装的所有设计图纸、产品安装使用说明书等技术文件。师傅们需要到仓库领取配套设备必须检查其完整性,并核对产品铭牌、规格、型号。检查设备的外观是否有碰擦伤、油漆剥落、锈蚀及杂物污染等。检查所有管口、螺纹接头等的防锈封堵状态。对检查完毕的配套设备必须有相应的保洁、防潮、防擦伤等安全措施。对基座、垫块、调整垫片等零部件必须按图纸等有关文件进行核对。 它的工艺要求主要有主机吊装和初步定位应符合设计图纸要求。轴系校中连接法兰镗孔应符合设计图纸;轴系校中、连接、负荷测量符合图纸和《轴系校中计算书》要求;主机曲柄差和轴承间隙符合主机制造厂要求。 具体作业内容: 1.船下水48小时以后,船舶处于漂浮状态,螺旋桨大部分浸入水中。艉轴管充满滑油。 2.检查艉轴管法兰相对船台时做的基点位置,使艉轴中心与轴线偏差小于0.1mm。 3.首先在螺旋桨轴法兰后部适当处安装一个临时支撑,然后再上方增加一个规定值,然后在上方增加一个规定值的力,在中间轴前法兰后部适当安装一个临时支撑。 4.调整中间轴直到螺旋桨轴法兰和中间轴后法兰之间的法兰偏移和开口值出现为止,偏移校准值允许偏差为+0.10mm,曲折校准值偏差允许值为+0.05mm,检查并记录数据。 5.调整主机前后高度,直到中间轴前法兰和主机输出法兰之间的法兰偏移和开口值出现为止,偏移校准值允许偏差为+0.10mm,曲折校准值偏差允许值为

0203船舶轴系校中工艺规范

广东捷仕克造船有限公司 审定 日期 标查 日期 审核 日期 校对 日期 编制 日期 工艺文件 船舶轴系校中工艺 QG/CX-GY-M03 广东捷仕克造船有限公司 标记 数量 修改单号 签字 日期 面积 m 2 页数 1/23 Sign

本规范为公司新编的船舶轴系校中通用工艺。在编制过程中依据《中国造船质量标准》的要求,满足我国《钢质海船入级与建造规范》,参考兄弟船厂的有关资料,并结合本公司的生产实际情况编制而成。 本规范由技术部归口; 本规范由总工程师批准。 1 范围 本规范规定了船舶轴系校中通用工艺,主机安装前准备、人员、工艺要求、工艺过程和检验。 本规范适用于船舶轴系的校中和安装。 2 安装前准备 2.1 熟悉了解并掌握主机、轴系及其安装的所有设计图纸、产品安装使用说明书等技术文件。 2.2 到仓库领取配套设备必须检查其完整性,并核对产品铭牌、规格、型号。 2.3 检查设备的外观是否有碰擦伤、油漆剥落、锈蚀及杂物污染等。 2.4 检查所有管口、螺纹接头等的防锈封堵状态。 2.5 对检查完毕的配套设备必须有相应的保洁、防潮、防擦伤等安全措施。2.6 对基座、垫块、调整垫片等零部件必须按图纸等有关文件进行核对。 3 人员 3.1 安装人员应具备专业知识并经过相关专业培训、考核合格后方可上岗。 3.2 安装人员应熟悉本规范要求,并严格遵守工艺纪律和现场安全操作规程。 4 工艺要求

4.2 轴系校中连接法兰铰孔应符合设计图纸要求。 4.3 轴系校中、连接、负荷测量符合图纸和《轴系校中计算书》要求。 4.4 主机曲柄差和轴承间隙符合主机制造厂要求。 5 工艺过程 5.1 主机输出端和中间轴法兰螺栓孔铰孔 5.1.1 法兰校中 中间轴前法兰与主机输出端轴法兰铰孔前,应用临时螺栓(交错)将两法兰连接,调整两个法兰外圆同轴度,要求两法兰偏移量不大于 0.03mm,平面贴合值为“0”。为确保铰削余量,两法兰的螺孔应尽量成“内切圆”状态。 5.1.2 用专用铰孔工具采用分两批方法进行加工,先行交叉铰削其余几个螺栓孔,螺栓孔应顺锥度,加工要求按相应的图纸执行。 5.1.3 第一批铰孔结束后,用内径分厘卡测量孔的上下、左右两个方向以及 孔长度方向数值并记录,测量结束后,随即打上螺孔编号。 5.1.4 根据测量数据精加工紧配螺栓,并按照技术要求进行无损探伤合格后 作好标记。 5.1.5 将加工好的紧配螺栓按照编号对应安装连接并紧固。 5.1.6 用专用镗孔工具对剩下的螺栓孔进行铰孔。 5.1.7 用内径分厘卡测量孔的上下、左右两个方向,以及孔长度方向数值并记录。测量结束后,随即打上螺孔编号。 5.1.8 待全部螺栓孔都已镗完,松开紧固螺栓,使中间轴成开轴状态。 5.1.9固定螺旋桨轴,并记录螺旋桨轴前法兰位置 4 工艺要求

毕业论文 船舶轴系校中的工艺研究

毕业论文 题目:船舶轴系校中的工程研究 The study of Shapping shaft system alignment 系别:船舶工程学院 专业:机电设备维修与管理 班级: 姓名: 学号: 指导教师: 摘要:在船舶建造、修理过程中,轴系校中极为重要,其质量的好坏不但影响到船舶航行的时间长短,更影响到船舶航行时全体船员的人身安全。因此对轴系合理对中的研究,成为船舶工程的重要课题。 本篇论文主要论述了船舶轴系校中的含义、原理、分类和方法以及其校中状态的检验。

广州航海高等专科学校毕业论文 关键词:船舶轴系校中质量含义原理分类方法检验

目录 (宋体小四号字体) 1 船舶轴系校中的含义 (1) 2 校中原理 (1) 3 分类 (2) 4 方法 (2) 4.1 船舶轴系按线性校中 (2) 4.1.1 轴系按法兰上严格规定的偏中值校中法 (2) 4.1.2 轴系采用光学仪器校中法 (4) 4.2 船舶轴系按轴承上允许负荷校中 (8) 4.2.1 轴系用测力计校中法 (8) 4.2.2 轴系按法兰上计算的允许的偏中值校中法 (11) 4.3 轴系合理校中 (11) 4.3.1 计算方法 (11) 4.3.2 计算内容 (12) 5 轴系校中状态的检查 (12) 5.1 轴系中心线偏差度的检查 (12) 5.1.1相邻轴系连接法兰的性对位置 (12) 5.1.2偏移值和曲折值的测量和计算 (13) 5.1.3用相邻轴连接法兰上的偏中值检验轴系中心线的偏差度 (14) 5.2 轴系两端轴同轴度偏差的检验 (15)

1船舶校中的含义 众所周知,船舶轴系在运转中承受着复杂的应力和负荷,主要包括:螺旋桨的扭矩及其产生的扭应力、螺旋桨的推力及其产生的压应力、螺旋桨及轴系部件的重量所造成的负荷及其产生的弯曲应力、由于轴系安装时的弯曲或由于船体变形弯曲在轴内所造成的附加弯曲应力及在轴承上所造成的附加负荷等。此外,轴系还要承受由于主机工况变化、螺旋桨震动、轴系中个别轴承失载以及主机或船体发生事故所造成的轴系振动和由此而产生的附加应力及附加负荷。 实践证明,为确保轴系长期安全正常地运转,除在轴系设计时应保证具有足够的强度及刚度外,在轴系安装时,应保证它具有合理的状态,使轴系各轴段内的应力及各轴承上的负荷均处在合理的范畴之内。 经理论分析和圣餐实践证明,安装好的轴系,其各轴的应力及各轴承上的负荷是否合理,除设计因素之外,则主要取决于轴系校中质量的好坏。本论文的任务是力图从轴系校中的合理性方面进行理论及实践的论述。必须指出,有关轴系设计与计算虽不是本论文研究的范围,但轴系校中于轴系设计是密切相关的,这两者应协调一致、统筹设计,才能确保轴系工作的可靠性。 何谓“轴系校中”?轴系校中就是按一定的要求和方法,将轴系敷设成某种状态,处于这种状态下的轴系,其全部轴承上的负荷及各轴段内的应力都处在允许范围之内,或具有最佳的数值,从而可保证轴系持续正常地运转。 显然,对船舶轴系校中原理和方法的研究,及其在生产中的合理应用,是提高船舶建造及其修理质量的一个重要方面,同时对提高船舶动力装置安装工程的经济性也很有意义。 2校中原理 组成船舶轴系的各轴段,通常是用法兰联轴器连接成整根轴系,由于这些轴在加工时规定其法兰的外围与轴颈应用同轴,法兰端面与轴心应垂直,故毗邻两根轴以其法兰连接是,如果两轴的连接法兰达到同轴,则此毗邻的两根轴亦同轴(这是把轴作为刚体看待,未考虑轴的挠度及加工误差);反之,若两连接法兰不同轴,即存在偏中,则此毗邻的两根轴亦不同轴。 两连接法兰的偏中,通常用“偏移”及“曲折”表示。所谓“偏移”(常用符号δ表示),是指狼法兰的轴心线不重合,但平行,如图2-1a)所示。所谓“曲折”(常用符号φ表示),是指两法兰的轴心线交叉成一定角度,如图b)所示。图c)则示出毗邻两法兰既存在偏移,又存在曲折的情况。 图2-1 两轴连接法兰的偏移和曲折

船舶轴系和螺旋桨

第八章船舶轴系和螺旋桨 【学习目标】 掌握船舶轴系的功用、基本组成、日常维护管理;掌握螺旋桨的基本组成和各部分名称;了解船舶轴系扭振及危害。 在船舶推进装置中,从齿轮箱(或主机)输出法兰到螺旋桨,其间以传动轴为主体的用于传递扭矩的装置称为轴系,螺旋桨通过轴系与齿轮箱(或主机)连接。 第一节轴系 一、轴系的功用 轴系的功用是将船舶柴油机输出的功率传递给螺旌桨,使螺旋桨旋转,以推进船舶航行。轴系是齿轮箱(或主机)和螺旋桨之间的连接和传动机构,将柴油机输出功率传递给螺旌桨,以克服螺旌桨在水中转动的所消耗的功率,同时,又将螺旋桨在水中旋转产生的轴向推力通过推力轴承传递给船体,以克服船舶航行的阻力。 二、轴系的基本组成 轴系包括传动轴(推力轴、中间轴、艉轴或螺旋桨轴)、轴承(推力轴承、中间轴承、艉轴承)、轴系附件(润滑、冷却、艉轴密封装置)等,如图8-1所示。轴系是由多支承的传动轴所构成。从机舱到船尾往往有一段距离,其传动轴往往较长,传动轴通常分为几段,并用联轴器将各轴段联接组合而成。每段轴又按其所承担的任务分为推力轴、中间轴、艉轴或螺旋桨轴等,这些轴段依靠相应的轴承支撑。传动轴的总长度、轴段数目及其附件的配置等,与船的大小、船型、船体线型、机舱位置、动力装置形式等因素有关。对于轴线不长的小型船舶,为了缩短轴系,也可只用一根螺旋桨轴直接将螺旋桨与齿轮箱的输出法兰相连。 图8-1 轴系

1、传动轴 传动轴包括推力轴、中间轴和艉轴。推力轴前端用法兰与齿轮箱(或主机)的输出法兰相连,后端的法兰则与中间轴法兰相连。推力轴和推力轴承是一对组合部件。中间轴用来连接推力轴和艉轴。 2、轴承 轴承包括推力轴承、中间轴承和艉轴轴承。推力轴承用于承受螺旋桨通过推力轴传递的推力,并通过它将推力传给船体。中间轴承用于承受中间轴的径向负荷和重量。艉轴轴承用于承受艉轴轴的径向负荷和重量。 3、轴系附件 轴系附件包括隔舱填料函、艉管、油封、润滑管路和冷却管路。隔舱填料函用于保持轴系穿过水密隔舱处的水密。艉轴管用来支撑艉轴承和艉轴。艉轴轴封装于尾轴管中,用于密封水和油。润滑系统用于提供并保证艉轴承中润滑油的供应。冷却管路给艉轴管、中间轴承、推力轴承供给冷却水。 三、轴系对中 轴系对中的目的是使轴系的实际中心线与理论中心线尽量保持一致,以保证船舶推进装置正常运行。 轴系理论中心线是船舶设计时所确定的轴系中心线。通常根据轴系理论中心线确定主机、轴系各传动轴和轴承的安装位置。因此,轴系理论中心线不仅是轴系和主机安装时的安装基准,也是船舶修理时的重要依据。 船舶轴系轴线的对中质量,对轴系和主机的正常运转以及船舶振动均有很大影响,特别是对轴径大、轴承间距小、刚性强的轴系影响更为显著。 若轴系对中质量差,可能造成危害。如运转时引起轴承的负荷急剧增加,导致轴承发热和迅速磨损甚至咬死;艉轴管密封装置迅速磨损产生泄露,引起润滑油泄漏造成污染事故;主机曲轴臂距差超过规定值,导致曲轴裂纹甚至断裂;破坏减速齿轮的正常啮合和支承轴的正常工作;引起船体振动,严重的甚至导致轴系断裂等严重机损辜故。 船舶轴系需要进行良好的对中。船舶经过一段时间营运后,由于各道轴承、轴颈运转中存在不同程度的磨损和船体变形或者发生海损事故等原因,轴系原对中状态会发生变化,因此,应定期检验、调整。 轴系的技术状态主要取决于轴系中心线的状态,而轴系中心线的状态是通过轴系中心线弯曲程度和艉轴与主机中心线同轴度来确定的。 四、轴系的日常维护管理 船舶轴系自重较大,运行工况不断变化,若管理维护不当,会造成轴系及其

船舶轴系校中流程及示意图

轴系校中流程及示意图 安装顺序是从船尾向船首逐根定位,先定位尾轴(螺旋桨轴),再定位中间轴,再定齿轮箱,最后对主机,以上校中均以检验一对法兰的偏移和曲折的方法来对中轴系。此种方法均以检验一对法兰的偏移和曲折的方法来对中轴系。检验顺序是从船尾向船首逐根定位,先定位中间轴,再定齿轮箱、推力轴或主机(规范要求偏移应≤0.05mm,曲折应≤0.1mm/m)。 目前,对法兰上的允许偏中值逐步放宽,一般偏移≤0.1mm、曲折≤0.15mm/m,而有些国家放宽到偏移≤0.3mm,曲折≤0.3mm/m,通过大量的实例证明,对法兰上允许的偏中值作出过高的硬性规定是不符合轴系实际工作情况的,另外在毫不考虑其结构特点的情况下,对各种轴系法兰上允许的偏中值采取统一的硬性规定,这也是不科学的。 在进行轴系校中时,为使其支承轴承上的负荷处于允许范围内,只要将轴承上的允许负荷换算成连接法兰上的允许偏移、曲折值,从而可用限制法兰上允许偏移、曲折值以限制轴承上的允许负荷,达到按轴承上允许负荷校中的目的。根据目前最新CCS规范要求,一般大型船厂都开始采用中间轴承负荷测量的方法来检验轴系安装的是否符合要求。 现在的低速机一般都采用顶升试验来对中(也就是测量各段轴承负荷)的方法,当各轴承的负荷均在可以接受的范围内时,就视为对中是合理的。大家有没有兴趣详细的讨论一下? 根据整个轴系的长度,一般超过20m的轴系就不能采用拉线法,均需使用激光直准仪来确定轴系中线,当然其过程种还涉及到很多其它方面的因素(如船台倾斜角度、天气温度、船体震动等), 轴系校中方法一般有三种:平轴法、负荷法、合理校中法;修船从前向后;造船从后向前 平轴法用于中小型船舶,对于螺旋桨轴径>300mm的船舶,CCS要求按合理校中法校中。但目前不少船厂不管轴径多大都用平轴法校中,原因如下:1,合理校中计算书不完善,缺少基本的校中图(法兰的偏移和曲折)及基本的数据,如顶举系数等等。2,工厂缺少这方面的技术力量。3,缺少基本的工具,如液压泵和油顶等等。 本人的观点:对于大型船舶合理校中应该推广。它考虑了轴承负荷的均匀性、齿轮箱和主机的热膨胀性及船舶的变形影响等等。在合理校中计算中有一步是计算平轴法校中的轴承负荷,然后计算合理校中冷态、热态各轴承负荷,仔细研究可知,平轴法校中,有的轴承负荷是负值,即轴承给轴的力不是向上,而是向下,特别是尾轴比较短的尾管前轴承和齿轮箱前轴承处易产生这种情况。 楼上朋友所说的情况在目前中国很多船厂都是普遍存在的事实(无依据、无技术、无工具),这主要还是“中间轴承负荷测量法”没有普及以及和国家法规的执行力度有关,当然这也是我们和世界先进技术的差距所在,个人认为不科学、不合理的工艺应该及时纠正! 据我所知,2008年国家将开始重点整治国内造船业,其中CB/T3000-2007(船舶生产企业生产条件基本要求及评价方法)和PSPC(压载舱涂层标准)的执行将会使很多船厂(以中小型不正规)面临巨大的考验! 轴系校中的规范依据必须是船体交出的CL(中线)和BL(基线)是正确合理,否则一切都是做无用功! 二、再说说43楼朋友提出的问题: 新建船舶在轴系找中前,船体必须要向轮机提交BL(基线)、CL(中线)两条基准线,而提交这两条线船体建造必须具备以下主要条件: 1、机舱前舱壁以后和上甲板以下的船体结构的主要焊接工作和矫正工作应结束; 2、机舱前舱壁向船首的一条环形大接缝焊装结束; 3、主船体尾部区域的双层底、尾尖舱,机舱内与船体连接的舱室和箱柜的密性试验工作应结束,固体压载安装固定; 4、拆除上述区域所有的临时支撑。 否则提交不符合规范要求。

船舶轴系校中流程及示意图

个人收集整理-ZQ 轴系校中流程及示意图 安装顺序是从船尾向船首逐根定位,先定位尾轴(螺旋桨轴),再定位中间轴,再定齿轮箱,最后对主机,以上校中均以检验一对法兰地偏移和曲折地方法来对中轴系.此种方法均以检验一对法兰地偏移和曲折地方法来对中轴系.检验顺序是从船尾向船首逐根定位,先定位中间轴,再定齿轮箱、推力轴或主机(规范要求偏移应≤0.05mm,曲折应≤0.1mm). 目前,对法兰上地允许偏中值逐步放宽,一般偏移≤0.1mm、曲折≤0.15mm,而有些国家放宽到偏移≤0.3mm,曲折≤0.3mm,通过大量地实例证明,对法兰上允许地偏中值作出过高地硬性规定是不符合轴系实际工作情况地,另外在毫不考虑其结构特点地情况下,对各种轴系法兰上允许地偏中值采取统一地硬性规定,这也是不科学地. 在进行轴系校中时,为使其支承轴承上地负荷处于允许范围内,只要将轴承上地允许负荷换算成连接法兰上地允许偏移、曲折值,从而可用限制法兰上允许偏移、曲折值以限制轴承上地允许负荷,达到按轴承上允许负荷校中地目地.根据目前最新规范要求,一般大型船厂都开始采用中间轴承负荷测量地方法来检验轴系安装地是否符合要求. 现在地低速机一般都采用顶升试验来对中(也就是测量各段轴承负荷)地方法,当各轴承地负荷均在可以接受地范围内时,就视为对中是合理地.大家有没有兴趣详细地讨论一下? 根据整个轴系地长度,一般超过20m地轴系就不能采用拉线法,均需使用激光直准仪来确定轴系中线,当然其过程种还涉及到很多其它方面地因素(如船台倾斜角度、天气温度、船体震动等), 轴系校中方法一般有三种:平轴法、负荷法、合理校中法;修船从前向后;造船从后向前 平轴法用于中小型船舶,对于螺旋桨轴径>300地船舶,CCS要求按合理校中法校中.但目前不少船厂不管轴径多大都用平轴法校中,原因如下:1,合理校中计算书不完善,缺少基本地校中图(法兰地偏移和曲折)及基本地数据,如顶举系数等等.2,工厂缺少这方面地技术力量.3,缺少基本地工具,如液压泵和油顶等等. 本人地观点:对于大型船舶合理校中应该推广.它考虑了轴承负荷地均匀性、齿轮箱和主机地热膨胀性及船舶地变形影响等等.在合理校中计算中有一步是计算平轴法校中地轴承负荷,然后计算合理校中冷态、热态各轴承负荷,仔细研究可知,平轴法校中,有地轴承负荷是负值,即轴承给轴地力不是向上,而是向下,特别是尾轴比较短地尾管前轴承和齿轮箱前轴承处易产生这种情况. 楼上朋友所说地情况在目前中国很多船厂都是普遍存在地事实(无依据、无技术、无工具),这主要还是“中间轴承负荷测量法”没有普及以及和国家法规地执行力度有关,当然这也是我们和世界先进技术地差距所在,个人认为不科学、不合理地工艺应该及时纠正! 据我所知,年国家将开始重点整治国内造船业,其中(船舶生产企业生产条件基本要求及评价方法)和(压载舱涂层标准)地执行将会使很多船厂(以中小型不正规)面临巨大地考验! 轴系校中地规范依据必须是船体交出地(中线)和(基线)是正确合理,否则一切都是做无用功! 二、再说说楼朋友提出地问题: 新建船舶在轴系找中前,船体必须要向轮机提交(基线)、(中线)两条基准线,而提交这两条线船体建造必须具备以下主要条件: 、机舱前舱壁以后和上甲板以下地船体结构地主要焊接工作和矫正工作应结束; 、机舱前舱壁向船首地一条环形大接缝焊装结束; 、主船体尾部区域地双层底、尾尖舱,机舱内与船体连接地舱室和箱柜地密性试验工作应结束,固体压载安装固定; 、拆除上述区域所有地临时支撑. 否则提交不符合规范要求. 1 / 1

船舶推进课后练习答案

第一章习题 1. 除螺旋桨之外,船用推进器还有那些类型?简述他们的特点及所适用船舶类型? 螺旋桨,风帆,明轮,直叶推进器,喷水推进器,水力锥形推进器 螺旋桨:构造简单,造价低廉,使用方便,效率较高。 风帆:推力依赖于风向和风力以至于船的速度和操纵性都受到限制。仅在游艇,教练船和小渔船上仍采用 明轮:构件简单,造价低廉,但蹼板入水时易产生拍水现象,而出水时又产生提水现象,因而效率较低。目前用于部分内河船舶。 直叶推进器:可以发出任何方向的推理,操纵性好,推进器的效率高,在汹涛海面下,工作情况也较好,但构造复杂,造价昂贵,叶片保护性差极易损坏。用于港口作业船或对操纵性有特殊要求的船舶 喷水推进器:活动部分在船体内部,具有良好的保护性,操纵性能良好,水泵及喷管中水的重量均在船体内部,减少了船舶的有效载重量,喷管中水力损耗很大,故推进效率较低。多用于内河潜水拖船上,近年来也用于滑行艇,水翼艇等高速船上。 水力锥形推进器:构造简单,设备轻便,船内无喷管效率比一般喷水推进器为高,航行于浅水及阻塞航道中的船只常采用此种推进器。 2. 何谓有效马力(有效功率)? 有效功率:若船以速度v航行时所受到的阻力为R,则阻力R在单位时间内所消耗的功为Rv,而有效推力Te在单位时间内所作的功为Te*v,两者在数值上相等,故Te*v(或者R*v)称为有效功率。 阻力试验R和V都可测。 3. 何谓收到马力?它与主机马力的关系如何? 收到马力:机器功率经过减速装置,推力轴承及主轴等传送至推进器,在主轴尾端与推进器连接处所量得的功率称为推进器的收到功率Pd表示。 Pd=Ps*ηs→传递效率或轴系功率 4. 推进效率。推进系数如何定义?如何衡量船舶推进性能的优劣? 推进效率:由于推进器本身在操作时有一定的能量损耗,且船身与推进器之间有相互影响,故有效功率总是小于推进器所收到的功率,两者之比称为推进效率,以ηd表示。 推进系数:有效功率与机器功率之比称为推进系数以P.C表示 P.C=Pe/Ps P.C=ηdηs 5. 何谓船舶快速性?快速性优劣取决于那些因素? 快速性:指船舶在给定主机功率情况下,在一定装载时于水中航行的快慢问题。 ①船舶于航行时所遭受的阻力要小,所谓优良船型的选择问题 ②选择推力足够,且效率较高的推进器 ③选择合适的主机 ④推进器与船体和主机之间协调一致

(完整word版)船舶动力装置原理与设计复习思考题及答案2016

船舶动力装置原理与设计复习思考题 第1章 1、如何理解船舶动力装置的含义?它有哪些部分组成? 答:船舶动力装置的含义:保证船舶正常航行、作业、停泊以及船员、旅客正常工作和生活所 必需的机械设备的综合体。 组成部分:推进装置:包括主机、推进器、轴系、传动设备。 辅助装置:发电机组、辅助锅炉、压缩空气系统。 甲板机械 船舶管路系统 机舱自动化设备。 特种设备 2、简述柴油机动力装置的特点。 ?优点: a)有较高的经济性,耗油率比蒸汽、燃气动力装置低得多; b)重量轻(单位重量的指标小); c)具有良好的机动性,操作简单,启动方便,正倒车迅速; d)功率范围广。 ?缺点: a)柴油机尺寸和重量按功率比例增长快; b)柴油机工作中的噪声、振动较大; c)中、高速柴油机的运动部件磨损较厉害; d)柴油机低速稳定性差; e)柴油机的过载能力相当差 3、船舶动力装置的技术特征包括哪些技术指标? a)技术指标标志动力装置的技术性能和结构特征的参数。包括功率指标﹑质量指标和 尺寸指标。 b)经济指标代表燃料在该动力装置中的热能转换率。有燃料消耗率﹑装置总效率﹑推 进装置热效率﹑每海里航程燃料耗量及动力装置的运转-维修经济性。 c)性能指标代表动力装置在接受命令,执行任务中的服从性﹑坚固性和对外界条件、 工作人员的依赖性。因此它包括机动性﹑可靠性﹑自动远操作性能﹑牵曳性能以及噪声振动的控制等指标

4、说明推进装置功率传递过程,并解释各个效率的含义。 BHP、主机输出有效功率;DHP、螺旋桨收到功率;EHP、螺旋桨发出 指示功率→主机额定功率→最大持续功率→轴功率→收到功率→推力功率→船舶有效功率 ?指示功率:表示柴油机气缸中气体作功的能力; ?最大持续功率(额定功率)MCR:在规定的环境状况(不同航区有不同的规定,如无限航 区环境条件:绝对大气压为0.1Mpa;环境温度为45℃;相对湿度为60%;海水温度“中冷器进口处”为32 ℃和转速下),柴油机可以安全持续运转的最大有效功率; ?轴功率:指在扣除传动设备、推力轴承和中间轴承等传动设备后的输出功率; ?螺旋桨收到功率:扣除尾轴承及密封填料损失后所输出的功率。 ?推力功率:是螺旋桨产生使船航行的功率。 ?船舶有效功率:P e=R×V s×10-3 7、如何理解经济航速的含义? ? 1.节能航速:节能航速是指每小时燃油消耗量最低时的静水航速,它常由主机按推进特性运行时能维持正常工作的最低稳定转速所决定。营运船舶在实现减速航行时,主机所输出的功率大大减少,其每海里燃油消耗率大幅度降低。但航速降低后,营运时间被延长,运输的周转量也少,故当船舶需实现减速航行时,应结合企业的货源、运力及完成运输周转量的情况综合考虑后再决策。 ? 2.最低营运费用航速:船舶航行一天的费用,主要由其固定费用(折旧费、修理费、船员工资、港口驶费、管理费、利息、税金,以及船舶停泊期间的燃、润油费等)和船舶航行时燃、润油费用构成。 最低营运费用航速是指船舶每航行1海里上述固定费用及航行费用最低时的航速,可供船舶及其动力装置的性能评价及选型用。在满足完成运输周转量的前提下,船舶按最低营运费用航速航行,其成本费用最省,但它并未考虑停港时间及营运收入的影响,故不够全面。 ? 3.最大盈利航速:最大盈利航速是指每天(或船舶在营运期间)能获得最大利益的航速。此航速的大小,往往与每海里(或公里)运费收入、停港天数及船舶每天付出的固定费用有关。一般在运费收入低、停港时间长、运距短、油价高的情况下,其最大盈利航速相对较小。 (图在下一页)

船舶推进轴系扭振控制技术

船舶推进轴系扭振控制技术 雷洪涛 122210009 船舶推进轴系是船舶动力装置的重要组成部分,主要包括主机曲轴知道螺旋桨直接的传动轴及其附件。其主要作用是将发动机发出的功率传递给螺旋桨,同时又将螺旋桨的推力传给船体,推动船舶航行。在船舶航行过程中船舶轴系会受到多种复杂的载荷作用,使轴系产生相应的振动,轴系的振动可导致柴油机、传动装置故障及机架振动,已经上层建筑的纵向振动,同时也可以导致轴承和尾轴管的磨损,使船舶在航行过程中带来了安全隐患和噪声污染。所以对船舶推进轴系进行轴系扭振控制是十分必要的! 轴系装置之所以产生扭转振动,其内因是轴系本身不仅具有惯性,还有弹性,由此确定了其固有振动特性。其外因则是因为作用在轴系上的周期性变化的激振力矩,该力矩是产生扭振的能量来源,主要激振力矩主要来自1)气缸内气体压力产生的激振力矩;2)往复运动质量产生的惯性力矩;3)螺旋桨、泵等吸收功率部件不能均匀吸收扭矩而产生的激振力矩。当轴系激振的频率与轴系固有频率相同时,就好产生共振现象,当扭振超过轴系所能承受的应力时,轴系将发生断裂。因此,进行轴系扭振分析控制,使其在工作转速范围内不发生过大振幅及过大轴段应力危险共振。 目前已有的轴系振动计算分析主要分为两大类,一类是轴系质量经离散化后集总到许多集中点的集总参数模型,另一类是轴系质量沿轴线连续分布的分布参数模型,集总参数模型是将轴系离散成具有集中转动惯量的圆盘、无质量的弹性轴以及内部阻尼和外部阻尼,故又称周盘模型。周盘模型是轴系扭振计算分析中应用最早的力学模型之一,使用简单,计算方便,但是精度不高,分布参数模型中轴系的质量沿轴线分布,因此比集总参数模型更接近实际,此外,随着有限元方法的应用,框架模型和阶梯轴模型更接近实际模型。对自由振动的计算分析方法有Holzer法、传递矩阵发、解析法;用于强迫振动的计算方法有能量发、放大系数法、传递矩阵法、解析法、有限元法等。通过对船舶轴系进行扭振计算分析,得到抓哟简谐系数、气缸的不均衡负荷,以及分支轴系系统尤其是双机并车轴系、非线性问题、纵扭耦合计算等轴系扭振计算中的

轴系对中工艺中文版

轴系校中工艺 1.概述: 长轴系、单轴平行布置,其中间轴、艉轴的主要参数如下: 1.1 艉轴:长7945mm 基本轴颈φ545mm 重14600kg 1.2 中间轴Ⅰ:长6930mm 基本轴颈φ445mm 重8940kg 1.3 中间轴Ⅱ:长7480mm 基本轴颈φ445mm 重9609kg 本工艺是按韩国现代主机厂的轴系校中计算书而编写的,为校核校中的安装质量;按要求,在轴系联接安装后尚需进行前艉管轴承、中间轴承及主机最后两档轴承的冷热态负荷测量。 2轴系校中工艺的编写依据 2.1 轴系校中计算书 2.2 轴系布置图K4300440 2.3 艉轴管装置图K4330450 2.4 中国造船质量标准CSQS 2.5 MBD 生产建议 3船台排轴校中的环境要求及流程 3.1要求: a.)主机安装到位,主要部件已装配完,主要部件螺栓按要求锁紧,机 外接口未安装(排气、滑油、启动空气等). b.)具备盘车条件 c.)大链条按要求锁紧 d.)船舶在船台上 e.)主机机座扭曲在船台已向船东提交 3.2流程 3.2.1校中前应在F17及F32位置装妥可调临时支撑二只,将中间轴排放好, 临时支撑的架设必须有足够的强度。 3.2.2 艉轴安装到位后,在艉轴法兰上外加7000Kg的力,且艉轴法兰左右 及下方用螺栓顶牢,使艉轴所施加的压力不变,左右位置不变。 3.2.3调整中间轴的二只临时支撑,使艉轴与中间轴Ⅱ、中间轴Ⅱ与中间轴 Ⅰ的法兰对中数据符合表1 3.2.4顶丝 表

1的要求。应注意在调整主机座的同时,使主机曲轴开档满足MBD 的要求 3.2.5上述各法兰处的曲折(SAG)/偏移(GAP)允许误差为±0.1mm. 3.2.6考虑到主机所浇注的环氧树脂垫片的干涸过程中约有1/1000的收缩 量,所以在调整主机座时,应有意识地将主机稍稍顶高,顶高的具 体数据应根据垫片的厚度来确定。(即:δ/1000 ;δ为最终垫片厚度 40~60mm,浇注目标厚度为50mm) 3.2.7螺旋桨轴与中间轴Ⅱ、中间轴Ⅱ与中间轴Ⅰ以及中间轴Ⅰ与主机飞轮 端法兰处的联轴节数据调妥后(但不去掉7000 kg附加力),检查如 下对中数据,并经检查员确认提交给船东、船检。 a.) 法兰对中的偏移(sag)和开口(gap)。(见如上表1) b.) 主机机座的水平挠度(sag)(在此阶段,此数据仅供参考);(用拉线 法---详见附件八) c.) 主机机座的扭曲(详见附件九)(船台测量并提交船东、船检) d.) 第九缸曲轴甩档. e.) 主机最后两档轴承间隙(0.40mm~0.58mm) 3.2.8在此过程中,应检查轴法兰的对中情况,以便能及时发现偏差做出纠正, 并最后向检查员、船东、船检报验。对中数据经检查合格,并得到确认后,用液压螺栓将轴系进行临时联接,(联结前去掉7吨附加力). 3.2.9 船舶下水 3.2.10 船舶下水后第二或第三天,拆卸连接轴系法兰的临时液压螺栓,检 查开口及偏移值.(此值仅作为参考) 4.水上轴承负荷测量 4.1 轴承负荷测量的前提条件

船舶轴系校中的原理及方法分析

船舶轴系校中的原理及方法分析 【摘要】船舶轴系是船舶动力装置的重要组成部分之一。本论文对影响轴系校中质量有关发面进行了分析,同时介绍了轴系校中的一些方法。最后以水下轴系校中为例,从中提出轴系校中工艺方面的意见,确保整个轴系在安装过程中,尽可能接近轴系校中计算书所计算出的状态。 【关键词】船舶;轴系;校中;安装;工艺 1.影响船舶轴系校中质量优劣的因素主要有 1.1传动轴的加工精度 传动轴(包括艉轴、中间轴、推力轴)是组成轴系的主要部件,在加工制造时必须按照规定的精度要求进行加工。若加工误差过大,传动轴对轴系校中的质量会造成不良的影响。 1.2轴系的安装弯曲 在安装轴系时,为获得良好的校中质量,往往将轴系按一定的弯曲状态敷设,也就是轴系的安装弯曲。但,当轴系存在安装弯曲时,在各支承轴承上就会造成附加负荷,该附加负荷的大小及方向由轴系的弯曲度及方向所决定。 1.3船体变形 船体在安装轴系范围内发生变形则会造成安装在其上的轴系随之发生弯曲。轴系的这种弯曲是附加的,且往往使难以控制。 1.4轴法兰端的下垂 各轴端因自重或其他载荷的作用而引起轴系的下垂,以至造成主机和基座高度的改变,或重镗尾轴管。 影响轴系校中质量的因素,除上述几种之外,还包括轴系的结构设计、尾轴管轴承中的油膜、海水或润滑油压力的影响,螺旋桨水动力不平衡力矩及推力中心偏心所形成力矩的影响,减速齿轮箱运转时温升的影响等。在研究轴系校中质量时,这些因素均应予以考虑或研究。 2.船舶轴系校中指导 2.1轴系校中方法 轴系校中的方法一般有三种:平轴法、负荷法、合理校中法。修船从前向后,造船从后向前,平轴法用于中小型船舶,对于螺旋桨>300mm的船舶,我国船级社要求按合理校中法校中。轴系合理校中是通过校中计算确定各轴承的合理变位,使支撑螺旋桨的艉管后轴承的负荷减为最小;把轴承的负荷限制在某个最大与最小值间的范围内;把轴的弯曲应力也限制在允许值内;使施加到柴油机输出法兰的弯矩与剪力在允许范围内等。此种校中方法更贴合实际,避免校中不良而引起的严重后果。轴系合理校中一般分为:静态校中(热态、冷态、安装状态)、动态校中、运转状态校中。 2.2轴系校中时需要进行的计算 (1)进行轴系各结构要素的处理、建立轴系计算的物理模型。 (2)计算按直线校中时轴系各支座处的弯矩、反力、挠度及截面转角。 (3)计算能表征轴承负荷与位移关系的轴承负荷影响数(必要时也计算弯矩影响数)。 (4)根据给定的约束条件,用线性规划法或试错法确定轴承的最佳位移或合理位移量。

(完整版)船舶动力装置轴系设计计算

轴系强度计算 在推进装置中,从主机(机组)的输出法兰到推进器之间以传动轴为主的整套设备称为轴系。轴系的基本任务是:连接主机(机组)与螺旋桨,将主机发出的功率传递给螺旋桨,同时又将螺旋桨所产生的推力通过推力轴承传给船体,以实现推进船舶的使命。 当机舱位置确定,主机布置好后,即可考虑轴系设计和布置。 4.1轴系的布置 4.1.1传动轴的组成和基本轴径 传动轴一般由螺旋桨轴(尾轴)、中间轴和推力轴,以及将它们相连接的联轴器所组成。本船因其推力轴承已放置在减速齿轮箱中,所以不设推力轴。 而且本船螺旋桨轴不分段制造,最后本船传动轴组成设计成1根中间轴和1根螺旋桨轴。 轴的基本直径d(mm)应不小于按下式计算的值(考虑到标准化的要求,各轴轴径一般取不小于计算值的整数) d 100C3 P eb(608)(4.1) “就 b 176.5 ,3~608~' 100C3 ( ---------- ) V 170.9 530 176.5 =191.88C mm C=1.0——中间轴的直轴部分, d 191.88 mm,取200 mm作为设计尺寸。 C=1.27――对于油润滑的且具有认可型油封装置的,或装有连续轴套(或轴 承之间包有适当保护层)的具有键的螺旋桨轴 d 191.88 1.27=243.69mm,设计时取250mm。 C=1.05――尾尖舱隔舱壁前的尾轴或螺旋桨轴的直径可按圆锥减小,但在联轴器法兰处的最小直径应不小于C=1.05计算所得的值。 d 191.88 1.05=201.47mm,即螺旋桨轴在联轴器法兰处的最小 直径应不小于201.47mm 。

4.1.2 轴系布置的要求 传动轴位于水线以下,工作条件比较恶劣,在其运转时,还将受到螺旋桨所产生的阻力矩和推力的作用,使传动轴产生扭转应力和压缩应力;轴系本身重量使其产生的弯曲应力;轴系的安装误差、船体变形、轴系振动以及螺旋桨的水动力等所产生的附加应力等。上述诸力和力矩,往往还是周期变化的,在某些时候表现更为突出,例如船舶在紧急停车、颠繁倒车或转弯,或是在大风大浪中受到剧烈纵摇或横摇时,使传动轴所受负荷更大,有时甚至使它产生发热或损坏。 为了保证传动轴工作可靠,且有较长的寿命,在设计时必须使其有足够的强度、刚度、有合理酌结构尺寸,并尽可能减少其长度和重量,还必须考虑怎样有利于制造和管理等问题。 4.1.3 轴系的布置 本船轴系布置从齿轮箱法兰开始,至螺旋桨为止,包括:轴承位置及间距的选择;各种辅助设备选择与位置的决定;滑油与冷却水管系的布置。具体内容如下。 1、轴线的长度、数量、位置和倾角 (1)长度的确定这是轴系设计首先遇到的环节。轴线长度是由两个端点来决定,一个端点为主机(或齿轮箱)输出法兰的中心;另一个端点为螺旋桨的中心,此二端点间的距离,即为轴线的基本长度。 本船轴系长度为11.47 m (传动轴的实际长度尚应考虑螺旋桨中心后用来装螺旋桨的尾轴伸出和螺纹部分)。 (2)轴线的倾角 一般的,船舶纵向倾角约在00~50之间。有些双轴系的船舶,容许轴线在水平投影上离开船舶的中线面向外或向内偏斜,偏斜角在00 ~ 30之间。 由于轴系倾斜给主机带不良的工作状态,降低螺旋桨有效推力,而且轴系重量也产生轴向分力,该力与推力方向相反,进一步降低了螺旋桨的有效推力,所以轴线最好设计成没有纵向倾角和横向偏斜角的形式。本船轴系设计成没有纵向倾角和横向偏斜角。 (3)轴线的数量和位置 本船是双轴系拖轮,轴线数目是2。 轴线位置和主机与螺旋桨的布置位置有关。螺旋桨的布置位置“2900kW近

_船舶推进轴系校中_国家标准修订的探讨

收稿日期:2004-07-21 作者简介:徐立华,男,硕士,副教授,主要从事船舶内燃机专业的教学和科研工作。 5船舶推进轴系校中6国家标准修订的探讨 徐立华1,黄 政1,周瑞平2 (1.武汉船舶职业技术学院动力系,湖北武汉430050;2.武汉理工大学能源与动力学院,湖北武汉430063)摘 要:介绍了CB*/Z 338-845船舶推进轴系校中6国家标准修订的主要技术内容,新标准与国内外现行法规、标准的关系,对新标准的实施提出了具体措施。关键词:船舶;推进轴系;校中;标准;修订. 中图分类号:U 66412 文献标识码:A 文章编号:1671-8100(2004)03-0038-04 根据中国船舶工业集团公司船工计[2002]478号5关于下达2002年技术基础计划的通知6,由武汉船舶职业技术学院、武汉理工大学与中国船舶工业综合技术经济研究院合作编制国家船舶行业新标准5船舶推进轴系校中方法6,课题组就标准编写中的理论问题和轴系实际安装工艺等问题,与同行专家和技术人员进行了广泛的讨论与交流,确定了修订的主要技术内容,探讨了新标准与国内外现行法规、标准之间的关系,并对新标准的实施提出了具体措施。 1 标准修订的主要技术内容 编写组在CB*/Z 338-84基础上,从形式和内容上作了较大的调整和修改,以适应新的技术发展需要。新标准与CB*/Z338旧标准相比,主要修改有:(1)对本标准适用范围进行了修改;(2)增加了规范性引用文件;(3)增加了术语和定义;(4)修改了校中计算和校中计算前数据准备的内容;(5)增加计算坐标及计算模型的建立;(6)对限制条件进行了补充;(7)增加了校中计算方法, 即传统三弯矩方程法、改进的三弯矩方程法和传 递矩阵法;(8)修改了校中计算内容;(9)增加了带液压联轴节轴系安装计算内容;(10)增加运转状态校中计算;(11)修改了负荷检验法;(12)修改了 附录A 的内容;(13)增加了运转状态校中计算资料性报告。1.1 单位 原来使用的非国际单位都改为国际单位。1.2 校中计算状态及方法 新标准对校中状态进行了界定,并在原来的冷态、热态等静态校中的基础上,增加了动态校中和运转状态校中的内容。特别是运转状态校中计算,强调在计入了齿轮力和螺旋桨水动力后进行轴系校中计算,更符合轴系在实际运转时的受力情况,其计算结果也更接近实际运转状态。 新标准增加了校中计算方法,即三弯矩法、传递矩阵法和有限元法,并对各种计算方法进行了说明。为了能够满足运转状态校中计算的要求,新标准对一般的三弯矩方程进行了改进。 第i 支承(如图1所示)的传统三弯矩方程为[1](n 表示截面个数): l i -1E i -1I i -1M i -1+2(l i -1E i -1I i -1+l i E i I i )M i +l i E i I i M i + 1 -6l i -1z i -1+6(1 l i -1+1l i )z i -6l i z i +1=-14(q i -1l 3i -1E i -1I i -1+q i l 3 i E i I i ) (i =1,2,3,,n)改进后的三弯矩方程:

船舶轴系校中通用工艺规范

船舶轴系校中通用工艺规范 1 范围 本规范规定了船舶轴系校中通用工艺的安装前准备、人员、工艺要求、工艺过程和检验。 本规范适用于船舶轴系的校中和安装。 2 安装前准备 2.1 熟悉了解并掌握主机、轴系及其安装的所有设计图纸、产品安装使用说明书等技术文件。 2.2 到仓库领取配套设备必须检查其完整性,并核对产品铭牌、规格、型号。 2.3 检查设备的外观是否有碰擦伤、油漆剥落、锈蚀及杂物污染等。 2.4 检查所有管口、螺纹接头等的防锈封堵状态。 2.5 对检查完毕的配套设备必须有相应的保洁、防潮、防擦伤等安全措施。 2.6 对基座、垫块、调整垫片等零部件必须按图纸等有关文件进行核对。 3 人员 3.1 安装人员应具备专业知识并经过相关专业培训、考核合格后,方可上岗。 3.2 安装人员应熟悉本规范要求,并严格遵守工艺纪律和现场安全操作规程。 4 工艺要求 4.1 主机吊装和初步定位应符合设计图纸要求。 4.2 轴系校中连接法兰镗孔应符合设计图纸要求。 4.3 轴系校中、连接、负荷测量符合图纸和《轴系校中计算书》要求。 4.4 主机曲柄差和轴承间隙符合主机制造厂要求。 5 工艺过程 5.1 主机输出端和中间轴法兰螺栓孔镗孔 5.1.1 法兰校中 中间轴前法兰与主机输出端轴法兰镗孔前,应用临时螺栓(交错)将两法兰连接,调整两个法兰外圆同轴度,要求两法兰偏移量不大于0.03mm,平面贴合值为“0”。为确保镗削余量,两法兰的螺孔应尽量成“内切圆”状态。 5.1.2 用专用镗孔工具采用分两批方法进行加工,先行交叉镗削其余几个螺栓孔,螺栓孔应顺锥度,加工要求按相应的图纸执行。

5.1.3 第一批镗孔结束后,用内径分厘卡测量孔的上下、左右两个方向以及孔长度方向数值,并记录。测量结束后,随即打上螺孔编号;将液压定位螺栓安装于已镗好的螺栓孔处,确定联轴节紧固好后,拆除临时定位螺栓。 5.1.4 用专用镗孔工具对剩下的螺栓孔进行镗孔。 5.1.5 用内径分厘卡测量孔的上下、左右两个方向,以及孔长度方向数值,并记录。测量结束后,随即打上螺孔编号。 5.1.6 待全部螺栓孔都已镗完,松开液压定位螺栓,使中间轴成开轴状态。

轴系拉线工艺

轴系拉线照光工艺 轴系拉线照光工艺 1.主要参考图纸和技术文件资料 1) 轴系布置图 2) 主机安装图 3) 艉管装置总图 2.拉线照光准备 2.1 拉线钢丝线 2 .1.1 质量和选择 a) 拉线钢丝线的质量,应无任何锈蚀斑点和曲折伤痕。 b) 拉线钢丝线应持有产品合格证。否则,易会出现的断裂现象和事故的发生。 c) 根据舵轴线的长度,可采用Ф0.8mm琴钢丝。 2 .1.2 钢丝挠度修正计算公式如下(暂不考虑船台斜度): 式中:Y—挠度值:mm Where: Y - flexility: mm q—每米钢丝重量:g/m x—为拉线固定点到挠度点处距离: m L—钢丝线基准点之间的距离: m G—钢线吊重: 30~50kg 2.2 拉线常用工具 手锤、洋冲、卷尺、粉线、30m卷尺、500~1000克铅锤和内卡,以及内径分厘卡等常用工具。 2.3 照光工具 常用仪器:测微准直望远镜和激光衍射准直仪。 专用工具:靶筒支架、靶筒、固定光靶、活动光靶和专用仪器安装架。2.4工艺基准螺钉 2.4.1 结构 它由焊接式支架、可调式工艺基准螺钉和锁紧螺母等零件组成,见图1。2.4.2 布置和焊装要求 a)将2×4只工艺基准螺钉支架分别均布在前艉管座的前端面和后艉柱的后端面十字中心线的外侧上,并将它焊妥。 b)此端面的工艺基准螺钉,将是艉管组件安装时的“校中”基准。 2.4.3调节方法和要求 待照光结束后,在靶筒里塞一根芯轴,用内径分厘卡测量每一个可调式工艺基准螺钉的顶端到靶筒芯轴之间的距离,而他们之间的距离几乎相等,误差值应控制在0.02mm之内。然后,用点焊方法将这些锁紧螺母逐一点焊固定。冷却后,继续测量修正和核对,最后,仍然保持上述要求。 2.5清除端面(艉管)异物,修磨平整,并涂上锌氧粉,为划线作业创造条件。 2.6在主机凹坑处用20#槽钢将主机基座平面临时连接成丰字型结构,为拉线测量、主机定位坐标的设计和基座顶钻孔作业创造条件。 2.7按图2所示位置和要求,焊装中间轴承底座。

相关文档
最新文档