FlexRay总线原理及应用

FlexRay总线原理及应用
FlexRay总线原理及应用

FlexRay总线原理及应用

1 FlexRay总线介绍

1.1 FlexRay产生及发展

随着汽车中增强安全和舒适体验的功能越来越多,用于实现这些功能的传感器、传输装置、电子控制单元(ECU)的数量也在持续上升。如今高端汽车有100多个ECU,如果不采用新架构,该数字可能还会增长,ECU操作和众多车用总线之间的协调配合日益复杂,严重阻碍线控技术(X-by-Wire,即利用重量轻、效率高、更简单且具有容错功能的电气/电子系统取代笨重的机械/液压部分)的发展。即使可以解决复杂性问题,传统的车用总线也缺乏线控所必需的确定性和容错功能。例如,与安全有关的信息传递要求绝对的实时,这类高优先级的信息必须在指定的时间内传输到位,如刹车,从刹车踏板踩下到刹车起作用的信息传递要求立即正确地传输不允许任何不确定因素。同时,汽车网络中不断增加的通信总线传输数据量,要求通信总线有较高的带宽和数据传输率。目前广泛应用的车载总线技术CAN、LIN等由于缺少同步性,确定性及容错性等并不能满足未来汽车应用的要求。

宝马和戴姆勒克莱斯勒很早就意识到了,传统的解决方案并不能满足汽车行业未来的需要,更不能满足汽车线控系统(X-by-Wire)的要求。于是在2000年9月,宝马和戴姆勒克莱斯勒联合飞利浦和摩托罗拉成立了FlexRay联盟。该联盟致力于推广FlexRay通信系统在全球的采用,使其成为高级动力总成、底盘、线控系统的标准协议。其具体任务为制定FlexRay需求定义、开发FlexRay 协议、定义数据链路层、提供支持FlexRay的控制器、开发FlexRay物理层规范并实现基础解决方案。

1.2 FlexRay特点

FlexRay提供了传统车内通信协议不具备的大量特性,包括:

(1)高传输速率:FlexRay的每个信道具有10Mbps带宽。由于它不仅可以像CAN和LIN网络这样的单信道系统一般运行,而且还可以作为一个双信道系统运行,因此可以达到20Mbps的最大传输速率,是当前CAN最高运行速率的20倍。

(2)同步时基:FlexRay中使用的访问方法是基于同步时基的。该时基通过协议自动建立和同步,并提供给应用。时基的精确度介于0.5μs和10μs之间(通常为1~2μs)。

(3)确定性:通信是在不断循环的周期中进行的,特定消息在通信周期中拥有固定位置,因此接收器已经提前知道了消息到达的时间。到达时间的临时偏差幅度会非常小,并能得到保证。

(4)高容错:强大的错误检测性能和容错功能是FlexRay设计时考虑的重要方面。FlexRay总线使用循环冗余校验CRC(Cyclic redundancy cheek)来检验通信中的差错。FlexRay总线通过双通道通信,能够提供冗余功能,并且使用星型拓扑可完全解决容错问题。

(5)灵活性:在FlexRay协议的开发过程中,关注的主要问题是灵活性,反映在如下几个方面:

①支持多种方式的网络拓扑结构;

②消息长度可配置:可根据实际控制应用需求,为其设定相应的数据载荷长度;

③使用双通道拓扑时,即可用以增加带宽,也可用于传输冗余的消息;

④周期内静态、动态消息传输部分的时间都可随具体应用而定。

2 FlexRay通讯协议和机制原理

2.1 节点架构

ECU(Electronic Control Unit),即节点node,是接入车载网络中的独立完成相应功能的控制单元。主要由电源供给系统(Power Supply)、主处理器(Host)、固化FlexRay 通信控制器(Communication Controller)、可选的总线监控器(Bus Guardian)和总线驱动器(Bus Driver)组成,如图所示。主处理器提供和产生数据,并通过FlexRay 通信控制器传送出去。其中BD 和BG 的个数对应于通道数,与通讯控制器和微处理器相连。总线监控逻辑必须独立于其他的通讯控制器。总线驱动器连接着通信控制器和总线,或是连接总线监控器和总线。

图2.1 FlexRay节点

节点的两个通讯过程为:

(1)发送数据:Host将有效的数据送给CC,在CC中进行编码,形成数据位流,通过BD发送到相应的通道上。

(2)接受数据:在某一时刻,由BD 访问栈,将数据位流送到CC 进行解码,将数据部分由CC 传送给Host。

2.2 拓扑结构

FlexRay的拓扑主要分为3种:总线式、星型、总线星型混合型。

通常,FlexRay 节点可以支持两个信道,因而可以分为单信道和双信道两种系统。在双信道系统中,不是所有节点都必须与两个信道连接。

与总线结构相比,星状结构的优势在于:它在接收器和发送器之间提供点到点连接。该优势在高传输速率和长传输线路中尤为明显。另一个重要优势是错误分离功能。例如,如果信号传输使用的两条线路短路,总线系统在该信道不能进行进一步的通信。如果使用星状结构,则只有到连接短路的节点才会受到影响,其它所有节点仍然可以继续与其它节点通信。

图2.2 总线式图2.3 星型

图2.4混合型

2.3 数据帧

一个数据帧由头段(Header Segment)、有效负载段(Payload Segment)和尾段(Trailer Segment)三部分组成。FlexRay 数据帧格式如图2.5所示。

图2.5 FlexRay数据帧结构

(1)头段共由5个字节(40位)组成,包括以下几位:

1.保留位(1位):为日后的扩展做准备;

2.负载段前言指示(1位):指明负载段的向量信息;

3.无效帧指示(1位):指明该帧是否为无效帧;

4.同步帧指示(1位):指明这是否为一个同步帧;

5.起始帧指示(1位):指明该帧是否为起始帧;

6.帧ID(11位):用于识别该帧和该帧在时间触发帧中的优先级;

7.负载段长度(7位):标注一帧中能传送的字数;

8.头部CRC(11位):用于检测传输中的错误;

9.周期计数(6位):每一通信开始,所有节点的周期计数器增1。

(2)负载段是用于传送数据的部分,FlexRay有效负载段包含0~254个字节数据。

对于动态帧,有效负载段的前两个字节通常用作信息ID,接受节点根据接受的ID来判断是否为需要的数据帧。

对于静态帧,有效负载段的前13个字节为网络管理向量(NM),用于网络管理。

(3)尾段只含有24位的校验域,包含了由头段与有效负载段计算得出的CRC校验码。计算CRC 时,根据网络传输顺序将从保留位到负载段最后一位的数据放入CRC生成器进行计算。

2.4 编码与解码

编码的过程实际上就是对要发送的数据进行相应的处理“打包”的过程,如加上各种校验位、ID 符等。编码与解码主要发生在通讯控制器与总线驱动器之间,如图2.6。

图2.6 编码与解码

其中RxD 位接受信号,TxD 为发送信号,TxEN 为通讯控制器请求数据信号。信息的二进制表示采用“不归零”码。对于双通道的节点,每个通道上的编码与解码的过程是同时完成的。

图2.7 静态数据帧编码

TSS(传输启动序列):用于初始化节点和网络通信的对接,为一小段低电平。

FSS(帧启动序列):用来补偿TSS后第一个字节可能出现的量化误差,为一位的高电平

BSS(字节启动序列):给接受节点提供数据定时信息,由一位高电平和一位低电平组成。

FES(帧结束序列):用来标识数据帧最后一个字节序列结束,由一位低电平和一位高电平组成。

图2.8 动态帧编码

DST(动态段尾部序列):仅用于动态帧传输,用来表明动态段中传输时隙动作点的精确时间点,并防止接受段过早的检测到网络空闲状态。由一个长度可变的低电平和一位高电平组成。

将这些序列与有效位(从最大位MSB 到最小位LSB)组装起来就是编码过程,最终形成能够在网络传播的数据位流。

2.5 媒体访问方式

在媒体接入控制中,一个重要的概念就是通信周期(Communication Cycle),如图所示。一个通信周期由静态段(Static Segment)、动态段(Dynamic Segment)、特征窗(Symbol Window)和网络空闲时间(Network Idle Time)4个部分组成。FlexRay提供两种媒体接入时序的选择:静态段采用时分多址方式(TDMA),由固定的时隙数组成,不可修改,且所有时隙的大小一致。用来传输周期性的数据信息;动态段采用灵活的时分多址(FTDMA),由较小的时隙组成,可根据需要扩展变动,一般用于传输事件控制的消息。符号窗用于传输特征符号。网络空闲时间用于时钟同步处理。

图2.11 媒体访问方式

仲裁层包含有仲裁网络,它构成了FlexRay媒介仲裁的主干部分。在静态段中,仲裁网络由叫做静态时槽(Static Slots)的连续时间间隔组成,在动态段中,由称为微型时槽(Minislots)的连续时间间隔组成。

仲裁网络层是建立在由宏节拍(Marcotick)组成的宏节拍层之上的。每个本地宏节拍的时间都是一个整数倍的微节拍的时间。已分配的宏节拍边缘叫做行动点(Action points)。行动点是一些特定的时刻,在这些时刻上,将会发生传输的开始和结束。

微节拍层是由微节拍组成的。微节拍是由通信控制器外部振荡器时钟刻度,选择性地使用分频器导出的时间单元。微节拍是控制器中的特殊单元,它在不同的控制器中可能有不同的时间。节点内部的本地时间间隔尺寸就是微节拍。

2.6 时钟同步

如果使用基于TDMA的通信协议,则通信媒介的访问在时间域中控制。因此,每个节点都必须保持时间同步,这一点非常重要。所有节点的时钟必须同步,并且最大偏差(精度)必须在限定范围内,这是实现时钟同步的前提条件。

时钟偏差可以分为相位和频率偏差。相位偏差是两个时钟在某一特定时间的绝对差别。频率偏差是相位偏差随时间推移的变化,它反映了相位偏差在特定时间的变化。

FlexRay使用一种综合方法,同时实施相位纠正和频率纠正,包含两个主要过程:时间同步校正机制(最大时间节拍生成MTG)和时钟同步计算机制(时钟同步进程CSP)。MTG控制时隙初值,即周期计数器和最大时钟节拍的计数器,并对其进行修正。CSP主要完成一个通信循环开始的初始化,测量并存储偏差值,计算相位和频率的修正值。

图2.12 时钟同步机制

相位修正仅在奇数通信周期的NIT段执行,在下一个通信周期起始前结束。相位改变量指明了添加到NIT相位修正段的微节拍数目,它的值由时钟同步算法决定,并有可能为负数。相位改变量的计算发生在每个周期内,但修正仅应用在奇数通信周期的末尾。

在频率纠正中,需要使用两个通信循环的测量值。这些测量值之间的差值反映每个通信循环中

的时钟偏差变化。它通常用于计算双循环结束时的纠正值。在整个后来的两个通信周期中,都使用该纠正值。

2.7唤醒与启动

为了节省资源,部分节点处于不工作状态时,进入“节电模式”。当这些节点需要再次工作时,就需要“唤醒”它们。主机可以在通信信道上传输唤醒模式,当节点接收到唤醒特征符(Wakeup Symbol)后,主机处理器和通信控制器才进行上电。

在通信启动执行之前,整个簇需要被唤醒。启动节点工作需要在所有通道上同步执行。初始一个启动过程的行为被称为冷启动(Coldstart),能启动一个起始帧的节点是有限的,它们称作冷启动节点(Coldstart Node)。在至少由三个节点组成的簇中,至少要有三个节点被配置为冷启动节点。冷启动节点中,主动启动簇中消息的节点称之为主冷启动节点(Leading Coldstart Node),其余的冷启动节点则称之为从冷启动节点(Following Coldstart Node)。

当节点被唤醒并完成初始化后,它就可以在相应的主机控制命令发出之后进入启动程序。在非冷启动节点接收并识别至少两个相互通信的冷启动节点前,非冷启动节点一直等待。同时,冷启动节点监控两个通信通道,确定是否有其他的节点正在进行传输。当检测到通信信道没有进行传输时,该节点就成为主冷启动节点。

冷启动尝试以冲突避免操作符(Collision Avoidance Symbol)开始,只有传输CAS的冷启动节点能在最开始的四个周期传输帧。主冷启动节点先在两个通道上发送无格式的符号(一定数量的无效位),然后启动集群。在无格式符号发送完毕后,主冷启动节点启动该节点的时钟,进入第一个通信周期。从冷启动节点可以接收主冷启动节点发送的消息,在识别消息后,从冷启动节点便可确认主冷启动节点发送的消息的时槽位置。然后等待下一个通信周期,当接收到第二个消息后,从冷启动节点便开始启动它们的时钟。根据两条消息的时间间隔,测量与计算频率修正值,尽可能地使从启动节点接近主冷启动节点的时间基准。为减少错误的出现,冷启动节点在传输前需等待两个通信周期。在这期间,其余的冷启动节点可继续接收从主冷启动节点及已完成集群冷启动节点的消息。

从第五个周期开始,其余的冷启动节点开始传输起始帧。主冷启动节点接收第五与第六个周期内其余冷启动节点的所有消息,并同时进行时钟修正。在这个过程中没有故障发生,且冷启动节点至少收到一个有效的起始帧报文对,主冷启动节点则完成启动阶段,开始进入正常运行状态。

非冷启动节点首先监听通信信道,并接收信道上传输的信息帧。若接收到信道上传输的信息帧,便开始尝试融入到启动节点。在接下来的两个周期内,非冷启动节点要确定至少两个发送启动帧的冷启动节点,并符合它们的进度。若无法满足条件,非冷启动节点将退出启动程序。非冷启动节点接收到至少两个启动节点连续的两组双周期启动帧后,开始进入正常运行状态。非冷启动节点进入正常工作状态,比主冷启动节点晚两个周期。

如下图所示,描述了正确的启动过程。其中,A是主冷启动节点,B是从冷启动节点,C是非冷启动节点。

图2.13 FlexRay启动过程

3 FlexRay的应用

目前FlexRay最主要的应用领域即是汽车,业界正致力于在汽车设计中转向全电子系统,它将通过创新的智能驾驶辅助系统为司机和乘员提供更高的安全性以及更舒适的车内环境。而这种智能系统必然需要大量的采样、通信以及协调控制,对车载网络提出了较高的要求,这也应该是FlexRay 联盟研发FlexRay的动力所在。

(1)车载骨干网络

FlexRay的拓扑结构非常灵活,包括单/多通道总线结构,单/多通道星型结构一节多种不同总线、星型混合结构等,网络可与现有其他各种总线(如LIN,CAN等)系统兼容。同时,其灵活的系统结构,也可使设计者针对不同的应用背景选择不同的可靠等级以控制成本。

(2)线控系统

FlexRay的重要目标应用之一是线控操作(如线控转向、线控制动等),即利用容错的电气/电子系统取代机械/液压部分。汽车线控系统是从飞机控制系统引申而来的,飞机控制系统中提到的Fly-by-Wire是一种电线代替机械的控制系统,它将飞机驾驶员的操纵控制和操作命令转换成电信号,利用机载计算机控制飞机的飞行。这种控制方式引入到汽车驾驶上,就称为Drive-by-Wire(电控驾驶),引入到制动上就产生了Brake-by-Wire(电控刹车),引入到转向控制上就有Steering-by-Wire(电控转向),因此统称为X-by-Wire。这些创新功能的基础是一种能够满足严格容错要求的宽带总线结构,而FlexRay的高传输速率和良好的容错性使其具有该方面的应用潜力。线控转向系统结构框图如下图所示:

图2.14 线控转向系统结构

(3)工业领域前景

虽然现在现场总线种类繁多,各种总线处于共存状态,工业以太网的应用也越来越广泛。但是由于现场总线几乎覆盖了所有连续、断续领域,不同运用领域的需求各异,还没有哪种工业总线可以完全适用于生产领域的各个方面。因此,FlexRay总线虽然不能涵盖工业生产的全部领域,但一定可以像其他总线技术那样,在特定的领域中发挥优势,比如汽车制造领域以及对实时性可靠性有很高要求的检测控制领域。例如,可将FlexRay总线用于矿井集散式网络监控系统。根据矿井的实际情况,可以采用FlexRay总线,建立一种集散式混合网络控制系统。以实现监控数据和控制指令的实时高速传输,并可保证网络具有较高的鲁棒性,能够在突发事件下安全可靠运行,从而构建煤矿矿井上下可靠高效的安全预警机制和管理决策监控平台,形成兼容性强、有扩展和升级余量的开放性监测控制系统。

系统可以分为井下和井上两部分。井上采用FlexRay星型或者多星型拓扑结构,以进一步提高数据的传输速度和容错能力;井下使用FlexRay的总线型拓扑结构,以方便连接矿井中众多的设备检测装置和传感器等,减少布线长度,节约成本,并使系统具有分散性和完全可互操作等特点。此外,FlexRay具有很强的灵活性,可以方便地增加改变节点网络布置,能够适应移动和随机介入检测设备的需要,符合煤矿监控场所流动性大的特点。

(4)企业上的实际应用

在企业方面,首个投入生产的FlexRay应用是BMW公司X5运动型多功能轿车(SA V)上名为Adaptive Drive的系统。Adaptive Drive基于飞思卡尔半导体的32位FlexRay微控制器,它可以监视有关车辆速度、方向盘转度、纵向和横向加速度、车身和轮子加速度和行驶高度的数据。当驾驶员按下按钮选择“运行”或“舒适”驾驶时,Adaptive Drive会通过控制抗侧倾杆中的旋转发动机和减震器上的电磁阀来相应调整车辆的侧角和阻尼,控制单元相互作用以防止紧急翻车,BMW工程师选择了带10Mbps带宽的FlexRay以获得这些控制单元之间的快速数据传输。

宝马7系中配备的博世ESP至尊版是全球第一个带有FlexRay界面的制动控制系统。通过这一新数据总线,系统能够与相应的传感器、自适应巡航控制(ACC)、集成底盘管理系统(ICM)、发动机以及传输控制单元通信。

新款奥迪A8轿车采用恩智浦的FlexRay、CAN、LIN和SBC收发器打造车载网络(IVN),为轿车增加了高级驾驶辅助系统、自适应巡航控制和主动底盘稳定系统等一系列最新应用。恩智浦的IVN技术通过集线器连接众多电子器件,集线器由几根轻质铜线构成,不仅减轻了车身重量,更节约了油耗。轻质结构还令轿车提速更快、碳排放更低。

尽管FlexRay目前还只是应用在豪华车上,但随着通信要求的进一步提高和技术的进一步成熟,其在汽车的普及只是时间的问题。然而,从更长远的角度来看,汽车发展的趋势是实现全自动无人驾驶(或近乎全自动驾驶),这将需要大量的不同功能的传感器、传输装置以及电子控制单元,而这些零部件的相互通信和协调控制则对车载网络提出了更高的要求。因此,FlexRay及车载网络还有待进一步研究和发展。

CAN总线呕心沥血教程

哥很郁闷,为了CAN研究了不少,看了不少资料,现在我给大家总结一下先看看工作原理 当CAN总线上的一个节点(站)发送数据时,它以报文的形式广播给网络中所有节点,对每个节点来说,无论数据是否是发给自己的,都对其接收。每组报文开头的11位字符为标识符,定义了报文的优先级,这种报文格式成为面向内容的编制方案。同一系统中标识符是唯一的,不可能有两个站发送具有相同标识符的报文,当几个站同时竞争总线读取时,这种配置十分重要。 大体的工作原理我们搞清了,但是根本的协议我们还要花一番功夫。下面介绍一个重要的名词,“显性“和”隐性“ 在我看到的很多文章里,有很多显性和隐性的地方,为此我头痛不已,最终我把它们彻底弄明白了。 首先CAN数据总线有两条导线,一条是黄色的,一条是绿色的。分别是CAN_High线和CAN_Low线 当静止状态时,这两条导线上的电平一样。这个电平称为静电平。大约为2.5伏。这个静电平状态就是隐形状态,也称隐性电平。也就是没有任何干扰的时候的状态称为隐性状态.当有信号修改时,CAN_High线上的电压值变高了,一般来说会升高至少1V,而CAN_Low线上的电压值会降低一个同样值,也是1v,那么这时候。CAN_High就是2.5v+1v=3.5v,它就处于激活状态了。而CAN_Low降为2.5v-1v=1.5v。 可以看看这个图 由此我们得到 在隐性状态下,CAN_High线与CAN_Low没有电压差,这样我们看到没有任何变化也就检测不到信号。但是在显性状态时,改值最低为2V,我们就可以利用这种变化才传输数据了。所以出现了那些帧,那些帧中的场,那些场中的位,云云~~~~~~~~~~~ 在总线上通常逻辑1表示隐性。而0表示显性。这些1啊,0啊,就可以利用起来为我们传数据了。 利用这种电压差,我们可以接收信号。 一般来说,控制单元通过收发器连接到CAN驱动总线上,这个收发器(顾名思义,可发送,可接收)内有一个接收器,该接收器是安装在接收一侧的差动信号放大器。然后,这个放大器很自然地就放大了CAN_High和CAN_Low线的电平差,然后传到接收区。如下图 由上图可知,当有电压差,差动信号放大器放大传输,将相应的数据位任可为0。下面我们进入重点难点。报文 所谓报文,就是CAN总线上要传输的数据报,为了安全,我们要给我们传输的数据报编码定一下协议,这样才能不容易出错,所以出现了很多的帧,以及仲裁啊,CRC效验。这些都是难点。 识别符的概念。 识别符顾名思义,就是为了区分不同报文的可以鉴别的好多字符位。有标准的,和扩展的。标准的是11位,扩展的是29位。他有一个功能就是可以提供优先级,也就是决定哪个报文优先被传输,报文标识符的值越小,报文具有越高的优先权。CAN的报文格式有两种,不同之处其实就是识别符长度不同,具有11位识别符的帧称为标准帧,而还有29位识别符的帧为扩展帧,CAN报文有以下4个不同的帧类型。分别是

现场总线技术的特点及发展趋势

现场总线技术的特点及发展趋势 摘要现场仪表与控制室仪表之间的数字通信统称为现场总线。现场总线技术自20世纪90年代出现以来已成为世界范围内自动化技术发展的热点之一,广泛用于过程自动化、制造自动化、楼宇自动化等领域的现场智能设备互连通讯网络。它作为工厂数字通信网络的基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间的联系,被誉为“自动化仪表与控制系统的一次变革”。我国自20世纪90年代后期即开始引入并研究总线技术,将其作为今后工业过程控制技术研究的重点,并于1996年正式将现场总线技术的研究和产品开发列入九五国家重点科技攻关项目。 关键词现场总线数字通讯集散系统 现场仪表与控制室仪表之间的数字通信统称为现场总线。现场总线技术自20世纪90 年代出现以来已成为世界范围内自动化技术发展的热点之一,广泛用于过程自动化、制造自动化、楼宇自动化等领域的现场智能设备互连通讯网络。它作为工厂数字通信网络的基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间的联系,被誉为“自动化仪表与控制系统的一次变革”。我国自20世纪90年代后期即开始引入并研究总线技术,将其作为今后工业过程控制技术研究的重点,并于1996年正式将现场总线技术的研究和产品开发列入九五国家重点科技攻关项目。现场总线不仅是一个基层网络,而且还是一种开放式、新型全分布控制系统。这项以智能传感、控制、计算机、数字通讯等技术为主要内容的综合技术,受到世界范围的关注,成为自动化技术发展的热点,并将导致自动化系统结构与设备的深刻变革。国际上许多有实力、有影响的公司都先后在不同程度上进行了现场总线技术与产品的开发。 人们把50年代前的气动信号控制系统PCS称作第一代控制系统,把4~20mA等电动模拟信号控制系统称为第二代控制系统,把数字计算机集中式控制系统称为第三代控制系统,把70年代中期以来的集散式分布控制系统DCS称作第四代控制系统,把现场总线系统称为第五代控制系统,也称作FCS——现场总线控制系统。作为新一代控制系统,它一方面突破了DCS系统采用通信专用网络的局限,采用了基于公开化、标准化的解决方案,克服了封闭系统所造成的缺陷;另一方面把DCS的集中与分散相结合的集散系统结构,变成了新型全分布式结构,把控制功能彻底下放到现场。开放性、分散性与数字通讯是现场总线系统最显著的特征。 现有较强实力和影响的现场总线技术有:FoudationFieldbus(FF)、LonWorks、Profibus、HART、CAN、Dupline等。它们具有各自的特色,在不同应用领域形成了自己的优势。 一、现场总线的技术特点 1、具有良好的系统开放性。现场总线技术通信协议公开,相关标准的一致,它可以与任何遵守相同标准的其它设备或系统相连,各不同厂家的设备之间可进行互连并实现信息交换。用户可按自己需要的大小把来自不同供应商的产品随意组成不同的系统。 2、系统结构的高度分散性。因为自控技术的飞速发展,现场设备本身已经具备自动控制的基本功能,所以现场总线技术采用了全分布式控制系统的体系结构。这种体系结构从根本上改变了现有DCS的集散控制系统体系,简化了系统结构,提高了系统可靠性。 3、互可操作性与互用性。现场总线技术可实现互连设备间、系统间的信息传送与沟通,可实行点对点,一点对多点的数字通信。互用性意味着不同生产厂家的性能类似的设备可进行互换而实现互用。 4、现场设备的智能化与功能自治性。它将传感测量、补偿计算、流量处理与控制等功能分散到现场设备中完成,仅靠现场设备即可完成自动控制的基本功能,并可随时诊断设备的运行状态。

完整版FlexRay总线原理及应用

FlexRay总线原理及应用 1 FlexRay总线介绍 1.1 FlexRay产生及发展 随着汽车中增强安全和舒适体验的功能越来越多,用于实现这些功能的传感器、传输装置、电子控制单元(ECU)的数量也在持续上升。如今高端汽车有100多个ECU,如果不采用新架构,该数字可能还会增长,ECU操作和众多车用总线之间的协调配合日益复杂,严重阻碍线控技术(X-by-Wire,即利用重量轻、效率高、更简单且具有容错功能的电气/电子系统取代笨重的机械/液压部分)的发展。即使可以解决复杂性问题,传统的车用总线也缺乏线控所必需的确定性和容错功能。例如,与安全有关的信息传递要求绝对的实时,这类高优先级的信息必须在指定的时间内传输到位,如刹车,从刹车踏板踩下到刹车起作用的信息传递要求立即正确地传输不允许任何不确定因素。同时,汽车网络中不断增加的通信总线传输数据量,要求通信总线有较高的带宽和数据传输率。目前广泛应用的车载总线技术CAN、LIN等由于缺少同步性,确定性及容错性等并不能满足未来汽车应用的要求。 宝马和戴姆勒克莱斯勒很早就意识到了,传统的解决方案并不能满足汽车行业未来的需要,更不能满足汽车线控系统(X-by-Wire)的要求。于是在2000年9月,宝马和戴姆勒克莱斯勒联合飞利浦和摩托罗拉成立了FlexRay联盟。该联盟致力于推广FlexRay通信系统在全球的采用,使其成为高级动力总成、底盘、线控系统的标准协议。其具体任务为制定FlexRay需求定义、开发FlexRay协议、定义数据链路层、提供支持FlexRay的控制器、开发FlexRay物理层规范并实现基础解决方案。 1.2 FlexRay特点 FlexRay提供了传统车内通信协议不具备的大量特性,包括: (1)高传输速率:FlexRay的每个信道具有10Mbps带宽。由于它不仅可以像CAN和LIN网络这样的单信道系统一般运行,而且还可以作为一个双信道系统运行,因此可以达到20Mbps的最大传输速率,是当前CAN最高运行速率的20倍。 (2)同步时基:FlexRay中使用的访问方法是基于同步时基的。该时基通过协议自动建立和同步,并提供给应用。时基的精确度介于0.5μs和10μs之间(通常为1~2μs)。 (3)确定性:通信是在不断循环的周期中进行的,特定消息在通信周期中拥有固定位置,因此接收器已经提前知道了消息到达的时间。到达时间的临时偏差幅度会非常小,并能得到保证。 (4)高容错:强大的错误检测性能和容错功能是FlexRay设计时考虑的重要方面。FlexRay总线使用循环冗余校验CRC(Cyclic redundancy cheek)来检验通信中的差错。FlexRay总线通过双通道通信,能够提供冗余功能,并且使用星型拓扑可完全解决容错问题。 (5)灵活性:在FlexRay协议的开发过程中,关注的主要问题是灵活性,反映在如下几个方面: ①支持多种方式的网络拓扑结构; ②消息长度可配置:可根据实际控制应用需求,为其设定相应的数据载荷长度; 1 ③使用双通道拓扑时,即可用以增加带宽,也可用于传输冗余的消息; ④周期内静态、动态消息传输部分的时间都可随具体应用而定。

I2C原理简介及那些坑

一般情况下, i2c 设备焊接没什么问题,按照设备手册一步步来,基本上就顺风顺水能够用起来。如果这么一个简单的东西,有时候想要的结果死活不出来,反复的检查问题的原因,查询解决办法,核查设备的数据手册,甚至发送和接收的每一条命令与数据都知道是什么意思,仍然无法解决问题,那该怎么办呢? 本文主要针对 i2c 设备,讲解如何解决 i2c 设备主机与从机直接无法正常数据交互的问题,侧重点是针对硬件设计不太合理、i2c 设备设计不标准导致总线故障的情况,并且通过分析现象,提出解决方案。对于在设备初始化中,没有设置相应的寄存器或者发送命令,而导致的无法获取想要的数据情况,不作详细介绍。 1 i2c 基本用法 i2c 总线是一种简单、双向二线制同步串行总线。所有主机在 SCL 线上产生它们自己的时钟来传输总线上的报文,SDA 线传输每个字节必 须为 8 位,每次传输可以发送的字节数量不受限制,每个字节后必须跟 一个响应位。在空闲状态时,SCL 与 SDA 均为高电平。 通常一些低功耗 i2c 设备,芯片引脚使用上拉输出即可满足与其正 常数据交互,还有一些 i2c 设备,则需要在总线上外加一个上拉电阻, 此时相应的 I/O 配置成开漏输出,其他的按照芯片手册进行标准配置。 2 硬件问题汇总 2.1 无法正常拉高拉低引脚 首先确定 SDA 与SCL 引脚能够被拉高、拉低,检测方式直接软件控 制 I/O 口输出引脚低电平/高电平,测量引脚电压是否能够随着芯片引 脚的设置输出相应的状态。 如果不能被拉低,检测虚焊、上拉电阻断开、i2c 设备是否正常、 芯片引脚是否损坏等问题,确保能够正常被拉高或者拉低。 2.2 电气特性无法满足 如果正常拉高、拉低的情况下,依然无法正常读取数据。通常建 议,根据负载电流更换小阻值的电阻。 如果需要详细知道原因,就具体查询 i2c 设备电气特性。大多数 i2c 设备电气特性,大致下图所示

现场总线控制系统的现状和发展前景

现场总线控制系统的现状和发展前景 序言 随着计算机技术、通信技术和控制技术的发展,传统的控制领域正经历着一场前所未有的变革,开始向网络化方向发展。计算机控制系统的发展在经历了基地式气动仪表控制系统、电动单元组合式模拟仪表控制系统、集中式数字控制系统以及集散控制系统(DCS)后,今后将朝着现场总线控制系统的方向发展。 现场总线(Fieldbus)是指开放式、国际标准化、数字化、相互交换操作的双向传送、连接智能仪表和控制系统的通信网络。它作为工厂数字通信网络的基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间的联系。它不仅是一个基层网络,而且还是一种开放式、新型全分布控制系统。这是一项以智能传感、控制、计算机、数字通讯等技术为主要内容的综合技术,是信息化带动工业化和工业化推动信息化的适用技术,是能应用于各种计算机控制领域的工业总线,因现场总线潜在着巨大的商机,世界范围内的各大公司都投入相当大的人力、物力、财力来进行开发研究[1]。当今现场总线技术一直是国际上各大公司激烈竞争的领域,由于现场总线技术的不断创新,过程控制系统由第四代的DCS 发展至今的FCS(Fieldbus Control System)系统,已被称为第五代过程控制系统。而FCS和DCS的真正区别在于其现场总线技术。现场总线技术以数字信号取代模拟信号,在3C(Computer计算机、Control控制、Commcenication通信)技术的基础上,大量现场检测与控制信息就地采集、就地处理、就地使用,许多控制功能从控制室移至现场设备。由于国际上各大公司在现场总线技术这一领域的竞争,仍未形成一个统一的标准,目前现场总线网络互联都是遵守OSI参考模型。由于现场总线以计算机、微电子、网络通讯技术为基础,这一技术正在从根本上改变控制系统的理念和方法,将极大地推动整个工业领域的技术进步,对工业自动化系统的影响将是积极和深远的。 现场总线技术是当代工业数字通信的前沿技术,是计算机技术、通信技术和自动化控制技术的集成,也是信息技术、测量技术在信息时代的体现。现场总线技术经过10年的研发、试验和局部应用阶段,现已开始大量地在中小系统中应用,并开始在超大规模的自动化系统工程中应用。现场总线技术是工业数字通信时代的先驱,它的出现正在引起工业控领域的一次前所未有的技术革命。现场总线不仅仅是分散于最底层的控制系统,而且是建立于整个工业体系的通信系统,它的通信协议建立在控制策略之上,标准的编程语言(DDL)和强大的通信功能,使现场总线控制系统成为贯彻操作者意志的最得力的工具,由于其巨大的技术优势,被认为是工业控制发展的必然趋势,将逐步取代传统的控制方法。 进入二十一世纪以来,随着我国国民经济的高速发展,我国现场总线控制系统行业保持了多年高速增长,并随着我国加入WTO, 近年来,现场总线控制系统行业的出口也形势喜人,2008年,全球金融危机爆发,我国现场总线控制系统行业发展也遇到了一些困难,如国内需求下降,出口减少等,现场总线控制系统行业普遍出现了经营不景气和利润下降的局面,2009年,随着我国经济刺激计划出台和全球经济走出低谷,我国现场总线控制系统行业也逐渐从金融危机的打击中恢复,重新进入良性发展轨道。

FlexRay汽车通信总线介绍及测试环境(原创博文)

FlexRay汽车通信总线介绍及测试环境 综述 FlexRay通信总线是由多个汽车制造商和领先的供应商共同开发的确定性、容错和高速总线系统。FlexRay满足了线控应用(即线控驱动、线控转向、线控制动等)的容错性和时间确定性的性能要求,本文介绍FlexRay的基础知识。 为了使汽车继续提高安全性、提升性能、减少环境影响并增强舒适性,必须提高汽车电子控制单元(ECU)之间传送数据的速度、数量和可靠性。先进的控制和安全系统(结合了多个传感器、执行器和电子控制单元)开始要求同步功能和传输性能超过现有标准的控制器局域网(CAN)所能提供的性能。随着带宽需求的增长和各种先进功能的实现,汽车工程师急需下一代嵌入式网络。经过OEM厂商、工具供应商和最终用户的多年合作,FlexRay标准已经成为车载通信总线,以应对下一代车辆中的这些新的挑战。 FlexRay还能够提供很多CAN网络不具有的可靠性特点,尤其是FlexRay 具备的冗余通信能力可实现通过硬件完全复制网络配置,双通道冗余进行数据通信。FlexRay同时提供灵活的配置,可支持各种拓扑,如总线、星型和混合拓扑。设计人员可以通过结合两种或两种以上的该类型拓扑来配置分布式系统。 了解FlexRay的工作原理对工程师在车辆设计和生产过程的各个方面都至关重要。本文将解释FlexRay的核心概念。

FlexRay基础 FlexRay的许多方面旨在降低成本,同时在恶劣的环境中提供最佳性能。FlexRay使用非屏蔽双绞线电缆将节点连接在一起,FlexRay总线可以由一对或两对电缆组成的单通道和双通道组成。每对线缆上的差分信号减少了外部噪声对网络的影响,而无需昂贵的屏蔽层。大多数FlexRay节点通常还具有可用于收发器和微处理器的电源线和地线。 双通道配置可提高容错能力或增加带宽。大多数第一代FlexRay网络仅利用一个信道来降低布线成本,但是随着应用程序对复杂性和安全性要求的提高,未来的网络将同时使用这两个信道。 FlexRay总线要求信号线两边端接电阻,仅多分支总线上的末端节点需要端接,端接太多或太少都会破坏FlexRay网络。尽管特定的网络实现有所不同,但典型的FlexRay网络的电缆阻抗在80到110欧姆之间,并且端节点端接以匹配该阻抗。将FlexRay节点连接到测试装置时,终端电阻是造成网络通讯失败的最常见原因之一。基于PC的现代FlexRay接口可能包含板上端接电阻器,以简化布线。 FlexRay拓扑和布局 FlexRay,CAN和LIN与更传统的网络(如以太网)的区别之一是其拓扑结构或网络布局。FlexRay支持简单的多点无源连接以及更复杂的有源星形连接。根据车辆的布局和FlexRay的使用水平,选择正确的拓扑有助于设计人员针对给定的设计优化成本、性能和可靠性。 总线型网络 FlexRay通常用于简单的多点总线拓扑结构中,该拓扑结构具有将多个ECU连接在一起的单根网络电缆。这是CAN和LIN使用的相同拓扑,并且是OEM熟悉的拓扑,使其成为第一代FlexRay车辆中流行的拓扑。每个ECU可以“分支”到离总线核心“主干”很小的距离。网络的末端安装了终端电阻,可消除信号反射问题。由于FlexRay在高频率下运行,与CAN的1 Mbit相比,

I2C总线的结构与工作原理

I2C总线的结构与工作原理 2.1概述 2.1.1 I2C总线在单片机应用系统设计中的意义 现代消费类产品、通讯类产品、仪器仪表、工业测控系统中,逐渐形成了以一个或 多个单片机组成的智能系统,这些系统硬件结构都有相似之处: 1.单片机电路已日趋简单化和标准化。通常是由单片机(MICROCONTROLLER)、程序存储器(EPROM)、数据存储器(SRAM)构成的三片体系,或采用有在片程序存储器的单片机与数据存储器构成的二片体系,以及单片机与通用外围接口器件(PSD)构成的最简单体系。 2. 都有一些外围通用电路,如EEPROM、I/O口、A/D、D/A、日历时钟等外围器件和键盘、LED/LCD显示器、打印机接口等外围设备模块等。 3.面对系统特殊应用的一些电路,如无线电、电视、音像系统中的数字协调、编码、解码、图象处理、频率合成、音调控制、立体声处理等。 在上述的一些电路中,除与单片机直接相关的程序存储器、并行扩展的数据存储器外,单片机对许多外围电路之间主要是实现控制功能,而且许多外设并不要求很高的数据传送速度。为了简化系统,提高系统的可靠性,缩短产品开发周期,增加硬件结构的灵活性,Philips公司推出了一种高效、可靠、方便的串行扩展总线I2C总线。 在单片机应用系统中推广I2C总线后将会大大改变单片机应用系统结构性能、对单片机的应用开发带来以下好处: 可最大限度地简化结构。二线制的I2C串行总线使得各电路单元之间只需最简单的连接,而且总线接口都集成在器件中,不需另加总线接口电路。电路的简化省去了电路板上大量走线,减少电路板面积,提高了可靠性,降低了成本。 可实现电路系统的模块化、标准化设计。在I2C总线上各单元电路除了个别中断引线外,相互之间没有其他连线,用户常用的单元电路基本上与系统电路无关,故极易形成用户自己的标准化、模块化设计。 标准I2C总线模块的组合开发方式大缩短了新品的开发周期。 I2C总线各节点具有独立的电器特性,各节点单元电路能在相互不受影响的情况下,甚至在系统供电情况下,接入或撤除。I2C总线系统构成具有最大的灵活性。系统该型设计、或对已加工好的电路板需扩展功能时,对原有设计及电路板系统影响最小。 I2C总线系统可方便地对某一接点电路进行故障诊断与跟踪,有极好的可维护性 目前Philips及I2C总线器件,除带有I2C总线单片机、常用的通用外围器件外,在家电产品、电讯、电视、音像产品中已发展成套I2C总线器件,在这些部门中I2C总线系统已得到了广泛的应用。 2.1.2 I2C总线的一般应用特性 I2C总线系统中,带有I2C总线的单片机,其I2C总线输入输出口的电器结构、相关的特殊功能寄存器(SFR)设置以及所提供的标准程序模块,为用户掌握I2C总线的系统设计和应用软件的编制带来极大的方便。 I2C总线的串行数据传送与一般UART的串行数据传送无论从借口电器特性、传送状态管理以及程序编制特点都有很大的不同,了解这些特点十分重要。 1.二线传输。I2C总线上所有的节点,如主器件(单片机,微处理器)、外围器件、借口模块等都连到同名端的SDA、SCL上。 2.系统中有多个主器件时,这些器件都可作总线的主控制器(无中心主机),I2C总线工作时任何一个主件都可成为主控制器,多机竞争时的时钟同步与总线仲裁都由硬件与标准软件模块自动完成,无须用户介入。 3.I2C总线传输时,采用状态码的管理方法。对应于总线数据传输时的任何一种状态,在状态寄存器中会出现相应的状态码,并且会自动进入响应的状态处理程序中进行自动处理,无须用户介入,用户只须将Philips公司提供的标准状态处理器一定的空间即可。 4.系统中所有外围器件及模块采用器件地址及引脚地址的编码方法。系统中主控制器对任何节点的寻址采用纯软件寻址方法,避免了片选线的先连方法。系统中若有地址编码冲突可通过改变地址引脚的电平设置来解决。 5.所有带I2C接口的外围器件都具有应答功能。片有多少单元地址时,读数据、写时都有地址自动加1功能。这样,在I2C 总线对某一器件读写多个字节时很容易实现自动操作,即准备好读、写入口条件后,只须启动I2C总线就可自动完成n个字节的读、写操作。 6.I2C总线电器接口为开漏晶体管组成,开路输出没有找到电源的钳位二级管,而连到I2C总线的每个器件上,其自身

CAN总线的工作原理

CAN总线的特点和优点 CAN总线的特点和优点; (1)多主控制 在总线空闲时,所有的单元都可开始发送消息(多主控制)。最先访问总线的单元可获得发送权(CSMA/CA)。多个单元同时开始发送时,发送高优先级D消息的单元可获得发送权。 (2)消息的发送 在CAN协议中,所有的消息都以固定的格式发送。总线空闲时,所有与总 线相连的单元都可以开始发送新消息。两个以上的单元同时开始发送消息时, 根据标识符(D)决定优先级。两个以上的单元同时开始发送消息时,对各消 息ID的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最高)的单元可 继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工作。 (3)系统的柔软性 与总线相连的单元没有类似于“地址”的信息。因此在总线上增加单元时,连接在总线上的其它单元的软硬件及应用层都不需要改变。 (4)通信速度 根据整个网络的规模,可设定适合的通信速度。在同一网络中,所有单元 必须设定成统一的通信速度。即使有一个单元的通信速度与其它的不一样,此 单元也会输出错误信号,妨碍整个网络的通信。不同网络间则可以有不同的通 信速度。 表1一1 CAN总线系统任意两节点间的最大距离

最大距离/m 位速率bps 10 1000 130 500 270 250 530 125 620 100 1300 50 3300 20 6700 10 10000 5 CAN总线上任意两节点之间的通信距离与其位速率有关,表2一1列举了相关数据。 (5)远程数据请求可通过发送“请求帧”请求其他单元发送数据。 (6)错误检测功能·错误通知功能·错误恢复功能 所有的单元都可以检测错误(错误检测功能)。检测出错误的单元会立即同 时通知其他所有单元(错误通知功能)。正在发送消息的单元一旦检测出错误, 会强制结束当前的发送。强制结束发送的单元会不断反复地重新发送此消息直 到成功发送为止(错误恢复功能)。 (7)故障封闭 CAN可以判断出错误的类型是总线上暂时的数据错误(如外部噪声等)还 是持续的数据错误(如单元内部故障、驱动器故障、断线等)。由此功能,当总 线上发生持续数据错误时,可将引起此故障的单元从总线上隔离出去。

现场总线技术的现状及其发展前景

现场总线综述 设计题目:现场总线技术的现状及其发展前景学院名称:电子与信息工程学院 专业:电气工程及其自动化 姓名: +++ 班级:电气112 班 学号: 11401170236 指导教师:邱雪娜 2014 年 11 月 17 日

现场总线技术的现状及其发展前景 +++ (宁波工程学院,电子与信息工程学院,浙江宁波 315000) 摘要:现场总线技术是自动化领域里的一项新技术。本文阐述了现场总线技术的产生与发展及各类现场总线技术的历史、现状及特点 ,最后展望了该技术的未来发展趋势。 关键词:现场总线;产生与发展;特点;发展趋势 Present situation and development prospect of Fieldbus Technology LI Gensheng (School of Electron and Information Engineering, Ningbo University of Technology, Ningbo 315000 , China) Abstract: The fieldbus technology is a new technology in automatization. This paper expounds the origin and development of fieldbus technology and all kinds of history, present situation and characteristics of field bus technology, the future development trend of this technology are discussed. Key words:f ieldbus; generation and development; characteristic; the development trend 引言 现场总线控制系统技术自70年代诞生至今,由于它在减少系统线缆,简化系统安装、维护和管理,降低系统的投资和运行成本,增强系统性能等方面的优越性引起人们的广泛注意,得到大范围的推广,导致了自动控制领域的一场革命。随着计算机技术的发展,现场总线技术不断向数字化、微型化、个性化,专用化发展。现场总线技术的市场不断扩大,前景广阔。 1 现场总线的定义与特点 1.1现场总线技术的定义 从名词定义来讲,现场总线是用于现场电器、现场仪表及现场设备与控制主机系统之间的一种开放的、全数字化、双向、多站的通信系统。而现场总线标准规定某个控制系统中一定数量的现场设备之间如何交换数据。数据的传输介质可以是电线电缆、光缆、电话线、无线电等等。通俗地讲,现场总线是用在现场的总线技术。传统控制系统的接线方式是一种并联接线方式,从PLC控制各个电器元件,对应每一个元件有一个I/O口,两者之间需用两根线进行连接,作为控制和/或电源。当PLC所控制的电器元件数量达到数十个甚至数百个时,整个系统的接线就显得十分复杂,容易搞错,施工和维护都十分不便。为此,人们考虑怎样把那么多的导线合并到一起,用一根导线来连接所有设备,所有的数据和信号都在这根线上流通,同时设备之间的控制和通信可任意设置。因而这根线自然而然地称为了总线,就如计算机内部的总线概念一样。由于控制对象都在工矿现场,不同于计算机通常用于室内,所以

I2C总线中文讲解,详尽通俗

一. I2C总线简介 I2C管理总线:(Intel-Integrated Circuit bus)I2C总线是一种由飞利浦Philip公司开发的串行总线,产生于80年代,最初为音频和视频设备开发,现主要在服务器管理中使用。是两条串行的总线,它由一根数据线(SDA)和一根时钟线(SDL)组成。 ◆I2C总线的数据传输过程基本过程为: ●主机发出开始信号。 ●主机接着送出1字节的从机地址信息,其中最低位为读写控制码(1为读、0为写), 高7位为从机器件地址代码。 ●从机发出认可信号。 ●主机开始发送信息,每发完一字节后,从机发出认可信号给主机。 ●主机发出停止信号。 I2C数据传输图 ◆I2C总线上各信号的具体说明: ●开始信号:在时钟线(SCL)为高电平其间,数据线(SDA)由高变低,将产生一 个开始信号。 ●停止信号:在时钟线(SCL)为高电平其间,数据线(SDA)由低变高,将产生一 个停止信号。 ●应答信号:既认可信号,主机写从机时每写完一字节,如果正确从机将在下一个时钟 周期将数据线(SDA)拉低,以告诉主机操作有效。在主机读从机时正确读完一字节后,主机在下一个时钟周期同样也要将数据线(S DA)拉低,发出认可信号,告诉从机所发数据已经收妥。(注:读从机时主机在最后1字节数据接收完以后不发应答,直接发停止信号)。 注意:在I2C通信过程中,所有的数据改变都必须在时钟线SCL为低电平时改变,在时钟线SCL为高电平时必须保持数据SDA信号的稳定,任何在时钟线为高电平时数据线上的电平改变都被认为是起始或停止信号。 ◆I2C总线数据格式:

I2C数据格式图 I2C支持两种数据格式: _ 7-bit/10-bit 寻址数据格式 _ 7-bit/10-bit 寻址和重复开始信号的数据格式 ?S ―I2C 开始标识 ?Slava address ―从设备地址。 有两种从地址类型: 1)固定的从地址,I2C总线只能接一个同类型的固定的从地址设备。 2)半固定的从地址,前半部分地址是固定的,后半部分地址是可编程的,I2C总线只能接多个同类型的半固定的从地址设备。 如7bit半固定从地址通常7-bit 中四个较重要的位(MSB) 为固定的,并依器件本身性质的分类区分,如1010 即代表串行EEPROM,而其他三个较不重要的位(LSB),即A2、A1 与A0 则可以通过硬件电子引脚设定,并取得高达8 个不同的I2C 地址组合,因此在同一个I2C 总线上可以有8 个相同形式的器件运作,这些引脚固定在VCC 高电压代表逻辑1,固定在接地低电压则代表逻辑0,7-bit 的定址方式可以带来总线上128 个器件的组合,但由于部份地址设定保留给特殊指令应用,因此实际上最高器件数大约为120 个。 ?R/W ―读写操作表示位,0 表示写,1表示读。 ?ACK ―读写完一个byte的地址数据的应答信号 ?Data ―数据,紧跟设备地址传输的第一个byte数据(Data)可以是子地址(sub-address) 表示设备的寄存器。 ?S ―I2C结束标识 ◆关于从地址的分配 I2C器件的从地址是由I2C总线协会实行统一分配的,飞利浦作为标准I2C总线标准的维护者,负责所有I2C从地址的注册程序以确保能够适当协助授权厂商或其他公司进行从地址的分配。为了避免I2C器件的从地址的冲突必须依赖现有从地址的完整性和可靠的申请注册资料才能达成,所以I2C器件厂家必须向philip公司提交I2C从地址申请并提交一定的费用。 从地址的申请有两种: 第一种是为某一特定的I2C器件设备申请从地址;

FlexRay总线调研报告

FlexRay总线调研报告 汽车电子已成为汽车行业的一个重要市场。汽车电子行业最大的热点就是网络化[1]。如今的汽车,已然是一个移动式的信息装置,通过车内网络系统,可以接收、发送并处理大量的数据,对某些状况做出必要的反应。未来汽车的发展趋势必然是自动化程度越来越高,使汽车更安全、更可靠、更舒适,这意味着在车内使用更多的传感器、传动装置及电子控制单元,这也将对车载网络提出更高的要求。针对未来汽车车载网络的发展要求,FlexRay应运而生。FlexRay关注的是当今汽车行业的一些核心需求,包括更快的数据速率,更灵活的数据通信,更全面的拓扑选择和容错运算等。FlexRay的出现,弥补了既有总线协议应用在汽车线控系统或者同安全相关的系统时容错性和传输速率太低的不足,并将逐步取代CAN总线成为新一代的汽车总线[2]。 1FlexRay总线介绍 1.1车载网络概述 现代科技推动了汽车网络技术的不断发展,早在20世纪80年代国际上众多知名汽车公司就积极致力于汽车网络技术的研究及应用,迄今为止,已有多种网络标准。1994年,SAE车辆网络委员会将汽车数据传输网划分为A、B、C等3类。A类为面向传感器∕执行器控制的低速网络,B类为面向数据共享的中速网络,C类为面向高速、实时闭环控制的多路传输网络[3]。另外它还保留了D类网的定义,这类网络主要是面向车内的娱乐设备的信息传输。四种汽车网络标准总结如表1所示。 表1汽车网络标准

A类网络主要面向传感器、执行器控制,是低速网络。在该类网络中对实时性要求不高,且不需要诊断功能,数据速率一般在1~10Kbps,主要应用于电动门窗、座椅调节、灯光照明等控制。目前A类网络协议主要有TTP/A(Time-Triggered Protocol)、LIN(Local Interconnect Network)等协议。 B类网络主要面向独立模块间的数据共享,是中速网络,该类网络适用于对实时性要求不高的通信场合,数据速率一般在10~100Kbps,主要应用于电子车辆信心中心、故障诊断、仪表显示、安全气囊等系统,以减少冗余的传感器和其他电子部件。在B类网络中,具有代表性的有SAEJ1850、V AN(Vehicle Area Network)、CAN(ISO11595-2,不高于125Kbps)等协议。其中,CAN凭其优越的性能,目前已经成为被全世界接受的主流协议。 C类网络主要面向高速、实时闭环控制的多路传输网,该类网络适用于与安全性相关的实时系统,如发动机定时、燃油供给等系统,数据速率通常在125kbps~1Mbps之间。目前,C类网络中的主要协议包括高速CAN(ISO118982)、正在发展中的TTP/C和FlexRay等协议。其中高速CAN基于优先级的随机访问方式,总线传输速率通常在125kbps~1Mbps之间而其它几种协议基于TDMA(Time Division Multiple Access)或FTDMA(Flexible Time Division Multiple Access)的确定性访问方式,数据传输具有确定的延迟时间,且有很高的传输速率(1~10Mbps)。 D类网络主要面向汽车信息娱乐和远程信息设备,特别是汽车导航系统,需要功能强大的操作系统和连接能力。在D类网络中,具有代表性的有MOST、IDBC、IDB1394、D2B、蓝牙等协议[4]。 1.2FlexRay的产生及发展 随着汽车中增强安全和舒适体验的功能越来越多,实现这些功能的传感器、传输装置、电子控制单元(ECU)的数量也在持续上升。如今高端汽车有100多个ECU,如果不采用新架构,该数字可能还会增长,ECU操作和众多车用总线之间的协调配合日益复杂,严重阻碍线控技术(X-by-wire,即利用重量轻、效率高、更简单且具有容错功能的电气/电子系统取代笨重的机械/液压部分)的发展。即使可以解决复杂性问题,传统的车用总线也缺乏线控所必需的确定性和容错功能,例如,与安全有关的信息传递要求绝对的实时,这类高优先级的信息必须在指定的时间内传输到位,如刹车,从刹车踏板踩下到刹车起作用的信息传递要求立即正确地传输不允许任何不确定因素。同时,汽车网络中不断增加的通信总线传输数据量,要求通信总线有较高的带宽和数据传输率。目前广泛应用的车载总线技术CAN,LIN等由于缺少同步性,确定性及容错性等并不能满足未来汽车

CAN总线原理2009

CAN总线原理2009-09-22 08:54一、概述 对于一般控制,设备间连锁可以通过串行网络完成。因此,BOSCH公司开发了CAN总线(Controller Area Network),并已取得国际标准化组织认证(ISO11898),其总线结构可参照I SO/OSI参考模型。同时,国际上一些大的半导体厂商也积极开发出支持CAN总线的专用芯片。通过CAN总线,传感器、控制器和执行器由串行数据线连接起来。它不仅仅是将电缆按树形结构连接起来,其通信协议相当于ISO/OSI参考模型中的数据链路层,网络可根据协议探测和纠正数据传输过程中因电磁干扰而产生的数据错误。CAN网络的配制比较容易,允许任何站之间直接进行通信,而无需将所有数据全部汇总到主计算机后再行处理。 二、CAN在国外的发展 对机动车辆总线和对现场总线的需求有许多相似之处,即较低的成本、较高的实时处理能力和在恶劣的强电磁干扰环境下可靠的工作。奔驰S型轿车上采用的就是CAN总线系统;美国商用车辆制造商们也将注意力转向CAN总线;美国一些企业已将CAN作为内部总线应用在生产线和机床上。同时,由于CAN总线可以提供较高的安全性,因此在医疗领域、纺织机械和电梯控制中也得到广泛应用。 三、CAN的工作原理 当CAN总线上的一个节点(站)发送数据时,它以报文形式广播给网络中所有节点。对每个节点来说,无论数据是否是发给自己的,都对其进行接收。每组报文开头的11位字符为标识符,定义了报文的优先级,这种报文格式称为面向内容的编址方案。在同一系统中标识符是唯一的,不可能有两个站发送具有相同标识符的报文。当几个站同时竞争总线读取时,这种配置十分重要。 CAN总线的报文发送和接收参见图1。当一个站要向其它站发送数据时,该站的CPU将要发送的数据和自己的标识符传送给本站的CAN芯片,并处于准备状态;当它收到总线分配时, 转为发送报文状态。CAN芯片将数据根据协议组织成一定的报文格式发出,这时网上的其它站处于接收状态。每个处于接收状态的站对接收到的报文进行检测,判断这些报文是否是发给自己的,以确定是否接收它。 由于CAN总线是一种面向内容的编址方案,因此很容易建立高水准的控制系统并灵活地进行配置。我们可以很容易地在CAN总线中加进一些新站而无需在硬件或软件上进行修改。当所提供的新站是纯数据接收设备时,数据传输协议不要求独立的部分有物理目的地址。它允许分布过程同步化,即总线上控制器需要测量数据时,可由网上获得,而无须每个控制器都有自己独立的传感器。 四、位仲裁 要对数据进行实时处理,就必须将数据快速传送,这就要求数据的物理传输通路有较高的速度。在几个站同时需要发送数据时,要求快速地进行总线分配。实时处理通过网络交换的紧急数据有较大的不同。一个快速变化的物理量,如汽车引擎负载,将比类似汽车引擎温度这样相对变化较慢的物理量更频繁地传送数据并要求更短的延时。 CAN总线以报文为单位进行数据传送,报文的优先级结合在11位标识符中,具有最低二进制数的标识符有最高的优先级。这种优先级一旦在系统设计时被确立后就不能再被更改。总线

现场总线基础知识

现场总线基础知识 现场总线技术综述 现场总线(Fieldbus)是80年代末、90年代初国际上发展形成的,用于过程自动化、制造自动化、楼宇自动化等领域的现场智能设备互连通讯网络。它作为工厂数字通信网络的基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间的联系。它不仅是一个基层网络,而且还是一种开放式、新型全分布控制系统。这项以智能传感、控制、计算机、数字通讯等技术为主要内容的综合技术,已经受到世界范围的关注,成为自动化技术发展的热点,并将导致自动化系统结构与设备的深刻变革。国际上许多实力、有影响的公司都先后在不同程度上进行了现场总线技术与产品的开发。现场总线设备的工作环境处于过程设备的底层,作为工厂设备级基础通讯网络,要求具有协议简单、容错能力强、安全性好、成本低的特点。 具有一定的时间确定性和较高的实时性要求,还具有网络负载稳定,多数为短帧传送、信息交换频繁等特点。由于上述特点,现场总线系统从网络结构到通讯技术,都具有不同上层高速数据通信网的特色。 一般把现场总线系统称为第五代控制系统,也称作FCS——现场总线控制系统。人们一般把50年代前的气动信号控制系统PCS称作第一代,把4~20mA等电动模拟信号控制系统称为第二代,把数字计算机集中式控制系统称为第三代,而把70年代中期以来的集散式分布控制系统DCS称作第四代。现场总线控制系统FCS作为新一代控制系统,一方面,突破了DCS系统采用通信专用网络的局限,采用了基于公开化、标准化的解决方案,克服了封闭系统所造成的缺陷;另一方面把DCS的集中与分散相结合的集散系统结构,变成了新型全分布式结构,把控制功能彻底下放到现场。可以说,开放性、分散性与数字通讯是现场总线系统最显著的特征。 现场总线技术在历经了群雄并起,分散割据的初始阶段后,尽管已有一定范围的磋商合并,但至今尚未形成完整统一的国际标准。其中有较强实力和影响的有:FoudationFieldbus (FF)、LonWorks、Profibus、HART、CAN、Dupline等。它们具有各自的特色,在不同应用领域形成了自己的优势。本文将在简要描述现场总线技术特点的基础,紧扣系统的可靠性、实用性等,介绍现场总线网络结构、体系结构等关键技术及目前较为流行的几种有实力的现场总线技术的现状,最后阐述现场总线的发展趋势与技术展望。 一、现场总线的技术特点 1、系统的开放性。开放系统是指通信协议公开,各不同厂家的设备之间可进行互连并实现信息交换,现场总线开发者就是要致力于建立统一的工厂底层网络的开放系统。这里的开放是指对相关标准的一致、公开性,强调对标准的共识与遵从。一个开放系统,它可以与任何遵守相同标准的其它设备或系统相连。一个具有总线功能的现场总线网络系统必须是开放的,开放系统把系统集成的权利交给了用户。用户可按自己的需要和对象把来自不同供应商的产品组成大小随意的系统。 2、互可操作性与互用性,这里的互可操作性,是指实现互连设备间、系统间的信息传送与沟通,可实行点对点,一点对多点的数字通信。而互用性则意味着不同生产厂家的性能类似的设备可进行互换而实现互用。 3、现场设备的智能化与功能自治性。它将传感测量、补偿计算、工程量处理与控制等

i2c总线原理

I2C总线原理 ?什么是I2C总线? I2C即Inter IC,由Philips公司开发,是当今电子设计中应用非常广泛的串行总线之一,主要用于电压、温度监控,EEPROM数据的读写,光模块的管理等。 I2C总线只有两根线,SCL和SDA,SCL即Serial Clock,串行参考时钟,SDA即Serial Data,串行数据。 ?I2C总线的速率能达到多少? 标准模式下:100Kbps 快速模式下:400Kbps 高速模式下:3.4Mbps I2C总线结构如下图所示: 如上图所示,I2C是OC或OD输出结构,使用时必须在芯片外部进行上拉,上拉电阻R的取值根据I2C总线上所挂器件数量及I2C总线的速率有关,一般是标准模式下R选择10kohm,快速模式下R选取1kohm,I2C总线上挂的I2C器件越多,就要求I2C的驱动能力越强,R的取值就要越小,实际设计中,一般是先选取4.7kohm上拉

电阻,然后在调试的时候根据实测的I2C波形再调整R的值。 ?I2C总线上最多能挂多少个I2C器件? I2C总线上允许挂接I2C器件的数量由两个条件决定: 1).I2C从设备的地址位数。I2C标准中有7位地址和10位地址两种。如果是7位地址,允许挂接的I2C器件数量为:27=128,如果是10位地址,允许挂接的I2C 器件数量为:210=1024,一般I2C总线上挂接的I2C器件不会太多,所以现在几乎所有的I2C器件都使用7位地址。 2).挂在I2C总线上所有I2C器件的管脚寄生电容之和。I2C总线规范要求,I2C 总线容性负载最大不能超过470pF。 ?I2C总线是如何工作的? 1).I2C总线传输的特点。 I2C总线按字节传输,即每次传输8bits二进制数据,传输完毕后等待接收端的应答信号ACK,收到应答信号后再传输下一字节。等不到ACK信号后,传输终止。空闲情况下,SCL和SDA都处于高电平状态。 2).如何判断一次传输的开始? 如上图所示,I2C总线传输开始的标志是:SCL信号处于高电平期间,SDA信号出现一个由高电平向低电平的跳变。 3).如何判断一次传输的结束? 如上图所示,I2C总线传输结束的标志是:SCL信号处于高电平期间,SDA信号出现一个由低电平向高电平的跳变。跟开始标识正好相反。 4).什么样的I2C数据才是有效的。

相关文档
最新文档