悬臂梁ansys有限元分析求最大挠度

悬臂梁ansys有限元分析求最大挠度
悬臂梁ansys有限元分析求最大挠度

(一) 悬臂梁ansys 有限元分析求最大挠度

问题:悬臂梁长1000mm ,宽50mm ,高10mm ,左端固定,求其在自重作用下的最大挠度?

解:弯矩方程:

221)

()(x l q x M --= 微分方程:

22

1'')(x l q y EI z -= 积分求解:D

Cx qx qlx x ql y EI C

qx qlx x ql y EI z z +++-=++-=4322322'24

1

6125.06

1

5.05.0

由边界条件:0;

0,

0'

'

====A A A y y x θ 得:C=0,

D=0

I=1/12*h^3*b,h 为梁截面的高,b 为梁截面的宽。

q=ρ*g*a*h*l

材料力学公式求:Y=EI

85

gahl^ρ=5.733mm

L

ANSYS 模拟求:Y=5.5392mm,详细见下步骤

ANSYS 软件设置及其具体过程如下:

步骤1:建立一个模型,在model下creat一个长1,宽0.05,高0.01的长方体实体。(单位默认为m)

步骤2:材料属性设置。密度:7800,杨氏模量:2E11,泊松比0.3。

步骤3:划分网格。设置网格单元为structure solid brick 8node 185,mesh tool中设置网格大小为0.002,HEX下点击mesh。

步骤4:施加载荷;在preprocessor中inertia中设置重力加速度Y方向为9.8。在左面施加固定约束(三个方向固定)

步骤5::求解。在solve下solve current LS。

步骤6:后处理查看。在result中plot result,查看nodes displacement。List查看文本,观察nodes的最大位移点。

梁挠度计算公式

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).

悬臂梁分析报告

悬臂梁受力分析报告 高一博 2016.11.13 西安理工大学 机械与精密仪器工程学院

摘要 利用ANSYS对悬臂梁进行有限元静力学分析,得到悬臂梁的最大应力和挠度位移。从而校验结构强度和尺寸定义,从而对结构进行最优化设计修正。 关键词:悬臂梁,变形分析,应力分析

目录 一.问题描述: (4) 二.分析的目的和内容: (4) 三.分析方案和有限元建模方法: (4) 四.几何模型 (4) 五.有限元模型 (4) 六.计算结果: (5) 七.结果合理性的讨论、分析 (8) 八.结论 (8) 参考文献 (8)

一.问题描述: 现有一悬臂梁,长500MM,一端固定,另外一端施加一个竖直向下的集中力200N。 其截面20MMX20MM的矩形,现在要分析该梁的在集中力作用下产生的位移,应力和局部应力。 二.分析的目的和内容: 1.观察悬臂梁的变形情况; 2.观察分析悬臂梁的应力变化; 3.找出其最大变形和最大应力点,分析形成原因; 三.分析方案和有限元建模方法: 1.使用ANSYS-modeling-create-volumes-block建模, 2.对梁进行材料定义,网格划分。 3.一端固定,另外一端施加一个向下的200N的力。 4.后处理中查看梁的应力和变形情况。 四.几何模型 500X20X20的梁在在ANSYS中进行绘制.由于结构简单规则,无需简化。 五.有限元模型 单元类型:solid brick8node45 材料参数:弹性模量2e+11pa,泊松比0.3 边界条件:一端固定,一端施加载荷 载荷:F=200N 划分网格后的悬臂梁模型

挠度计算公式

挠度计算公式 挠度计划公式简支梁在百般荷载作用下跨中最大挠度计划公 式: 均布荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载准绳值(kn/m). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个齐集荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个齐集荷载准绳值之和(kn). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距安排两个十分的齐集荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个齐集荷载准绳值之和(kn). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距安排三个十分的齐集荷载下的最大挠度,其计划公式:

Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个齐集荷载准绳值之和(kn). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受齐集荷载作用时,自由端最大挠度分别为的,其计划公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载准绳值(kn/m). ;p 为各个齐集荷载准绳值之和(kn). 你可以凭据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 实行反算,看能餍足的上部荷载要求!

挠度计算公式

挠度计算公式 默认分类 2009-08-20 12:46 阅读2447 评论1 字号:大中小 简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

悬臂梁的受力分析与结构优化

悬臂梁的受力分析与结构优化 吴鑫龙3136202062 【摘要】悬臂梁不管是在工程设计还是在机械设计中都有着广泛的应用,其有着结构简单,经济实用等优点。但受到其自身结构的限制,一般悬臂梁的力学性能和使用性能都会受到很大的限制。本篇主要探究悬臂梁在使用中的受力情况并从材料力学的角度来对其进行优化设计,并对新设计悬臂梁进行分析。 【Abstract 】Cantilever whether in engineering or mechanical design have a wide range of applications, it has a simple structure, economical and practical advantages. But by its own structural limitations, the general cantilever mechanical properties and performance will be greatly limited. This thesis is focus on exploring the cantilever in use from the perspective of the forces and the mechanical design to be optimized., and analysis the new design cantilever . 【关键词】悬臂梁受力设计 【Keywords】cantilever force analysis optimization 背景及意义 悬臂梁是指梁的一端为不产生轴向、垂直位移和转动的固定支座,另一端为自由端(可以产生平行于轴向和垂直于轴向的力)。在实际工程分析中,大部分实际工程受力部件都可以简化为悬臂梁。但是悬臂梁的缺点在于它的受力性能不好,即使只是在悬臂梁末端施加一个较小的载荷,通过较长力臂的放大作用,也会对底部连接处产生一个很大的弯矩。因此,对悬臂梁强度校核前的受力分析和对其进行优化设计对工程和机械领域的发展都有着极大的意义。 一般悬臂梁的受力分析 一般悬臂梁,既没有经过任何结构和形状改变的普通悬臂梁。

悬臂梁应变测量

悬臂梁应变测量 摘要:在航空、机械及材料研究领域中,零件的强度是一个很重要问题。研究强度问题的途径之一便是实验应力分析。本课程设计便是利用实验应力分析中的电测法来测定弹性元件等强度悬臂梁在力的作用下产生的应变。具体方法是通过在悬臂梁上粘贴三个应变片,它们均分布在悬臂梁的上表面上,其中一应变片位于纵向轴的中心线上,其余两个应变片分别位于轴中心线的两侧等距离处,且靠近变动端;然后通过增减砝码的个数改变所加的力,利用数字万用表记录、读取数据。为了减小实验误差,本实验采用多次测量求平均值的方法,并对实验数据利用Excel进行了拟合,作出了应变片的电阻变化值与载荷之间的关系图,再根据有关公式,最终得出在弹性限度内悬臂梁的应变与它所受到的外力大小成线性关系。 关键词:电测法;应变片;悬臂梁;数字万用表

引言 研究强度问题可以有两种途径,即理论分析和实验应力分析。实验应力分析是用实验方法来分析和确定受力构件的应力、应变状态的一门科学,通过实验应力分析可以检验和提高设计质量、工程结构的安全性和可靠性,并且可以达到减少材料消耗、降低生产成本和节约能源的要求。实验应力分析的方法很多,有电测法、光测法、机械测量方法等。本实验主要是利用电测法。电测法有电阻、电容、电感测试等多种方法,其中以电阻应变测量方法应用较为普遍。电阻应变测量方法是用电阻应变片测定构件表面的应变,再根据应变--应力关系确定构件表面应力状态。工程中常用此方法来测量模型或实物表面不同点的应力,它具有较高的灵敏度和精度。由于输出的是电信号,易于实现测量数字化和自动化,并可进行遥测。电阻应变测量可以在高温、高压、高速旋转、强磁场、液下等特殊条件下进行,此外还可以对动态应力进行测量。由于电阻应变片具有体积小、质量轻、价格便宜等优点,且电阻应变测试方法具有实时性、现场性,因此它已成为实验应力分析中应用最广的一种方法。它的主要缺点就是,一个电阻应变片只能测量构件表面一个点在某一个方向的应变,不能进行全域性的测量]1[。 本实验为悬臂梁的应变测量,所谓的悬臂梁,即一端固定,另一端可以动的弹性元件。应变是描述一点处变形程度的力学量,它是由载荷、温度、湿度等因素引起的物体局部的相对变形,主要有线应变和切应变两类。电阻应变片是一种将机械构件上应变的变化转换为电阻变化的传感元件。 本实验使用的方法为电测法,通过逐级加减载荷改变悬臂梁所受的力,使之发生不同的形变,用电阻应变片作为传感器,将微小的形变这个非电学量转换成电学量电阻的变化来测量悬臂梁的主应变。在该实验中电阻的变化量是通过数字万用表直接读数处理得到的,之后通过应力与应变之间的关系得出悬臂梁所受的正应力,利用Excel制作出拟合曲线进行分析。本实验主要目的在于了解悬臂梁、电阻应变片的结构及工作原理,掌握数字万用表测电阻的方法及原理,理解灵敏度对测量结果的影响,最终利用数

结构力学简支梁跨中挠度计算公式

简支梁跨中最大挠度计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

扰度计算公式(全)

扰度计算公式(全) -CAL-FENGHAI.-(YICAI)-Company One1

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = ^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = ^3/(384EI).

式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求! 机械零件和构件的一种截面几何参量,旧称截面模量。它用以计算零件、构 件的抗弯强度和抗扭强度(见强度),或者用以计算在给定的弯矩或扭矩条件 下截面上的最大应力。根据材料力学,在承受弯矩Μ的梁截面上和承受扭矩T 的杆截面上,最大的弯曲应力σ和最大的扭转应力τ出现于离弯曲中性轴线和扭转中性点垂直距离最远的面或点上。σ和τ的数值为√(C+W)√(RD↑2) 式中Jxx和J0分别为围绕中性轴线XX和中性点O的截面惯性矩;Jxx/y和J0/y分别为弯曲和扭转的截面模量(见图和附表)。一般截面系数的符号为W,单位为毫米3 。根据公式可知,截面的抗弯和抗扭强度与相应的截面系数成正比。

悬臂梁的受力分析

悬臂梁的受力分析 实验目的:学会使用有限元软件做简单的力学分析,加深对材料力学相关内容的理解,了解如何将理论与实践相结合。 实验原理:运用材料力学有关悬臂梁的的理论知识,求出在自由端部受力时,其挠度的大小,并与有限元软件计算相同模型的结果比较 实验步骤: 1,理论分析 如下图所示悬臂梁,其端部的抗弯刚度为 3 3EI l ,在其端部施加力F ,可得到其端部挠度为:3 3Fl EI ,设其是半径为0.05米,长为1米,弹性 模量11 210E =?圆截面钢梁,则其可求出理论挠度值3 4 43Fl ER ωπ=,先分别给F 赋值为100kN ,200kN ,300kN ,400kN ,500kN .计算结果如下表: 2有限元软件(ansys )计算: (1)有限元模型如下图:

模型说明,本模型采用beam188单元,共用11个节点分为10个单元,在最有段施加力为F 计算得到端部的挠度如下表所示, 得到梁端部在收到力为100kN时Y方向的位移云图: 将理论计算结果与ansys分析结果比较如下表:

通过比较可得,理论值与软件模拟结果非常接近,在力学的学习中只要能熟练的掌握理论知识,在软件模拟过程中便可做到心中有数,在本实验中理论值是通过材料力学中得一些假设得到的一个解析解,而实验也是用了相同的假设,并将梁离散为十个单元,得到数值解,因此和理论值的误差是不可避免的,通过增加离散单元的个数可以有效的减少误差,但是增大了计算量,因此在实践中,只要选取合适的离散单元数,能够满足实践要求即可,这就需要有更加扎实有限元知识作为指导。 通过本次试验,让我对力学知识及力学知识的应用有了更进一步的了解,对今后的学习应该有一定的指导意义。 附:ansys命令流 /TITLE,liangfenxi /PREP7 !* ET,1,BEAM188 !* !* MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2e11 MPDATA,PRXY,1,,0.3 SECTYPE, 1, BEAM, CSOLID, q, 0

三角形悬臂梁应力分析备课讲稿

三角形悬臂梁应力分 析

三角形悬臂梁应力分析 摘要:在有限元分析软件ANSYS12.0平台上建立三角形悬臂梁的力学模型, 添加约束和载荷,计算出应力分布,并与理论计算值相比较。 ⒈ 引言 目前,ANSYS 软件具有其强大的功能已经被广泛的应用于机械,化工,土 木,交通等各个领域。应用ANSYS 分析,可以大大减少人力物力的投入,而且可 靠性高,对于三角形悬臂梁分析其应力和变形情况,分析方法和结论可作为这 类设计的参考。 ⒉ 计算模型 Ⅰ问题描述 【三角形悬臂梁忽略重力作用,∠BAC=α,AB 边上作用均布载荷q ,求应 力的解析表达,计算出BC 边上的应力值并与ANSYS 计算值比较,绘出应力曲线 图】 选取应力函数: Ansys 计算参数值:AB=1000mm ,α=30°,厚度t=20mm 2222[()sin cos cos tan ]C r r r ?θθθθα=?-+- Ⅱ解析解 根据弹塑性平面问题的极坐标解答,利用以下公式推导:

222 222211111()r r r r r r r r r r r θθ??σθ?σ???τθθθ ??=+???=?????=-=-????? 以及 2222cos sin 2sin cos sin cos 2sin cos x r r y r r θθθθσσθσθτθθ σσθσθτθθ=+-=++ 已知 2222[()sin cos cos tan ]C r r r ?θθθθα=?-+-, 故有以下式子成立: 22222222222[2()2sin cos 2cos tan ][2()2sin cos 2cos tan ][cos 2sin 2tan ][2sin 22cos 2tan ]C r r r r C r C r r r C r r ?αθθθθα?αθθθθα?θθαθ ?θθαθ ?=-+-??=-+-??=-++??=-+? 所以, 22222222211[2()sin 22cos tan 2cos 2tan ][2()sin 22cos tan ]111()[1cos 2sin 2tan ]r r C r r r C r C r r r r r θθ??σαθθθαθαθ ?σαθθθα???τθθαθθθ ??=+=---+???==-+-?????=-=-=--????? 因此, 222222222224cos sin 2sin cos [2()2sin 2cos 2cos tan 2cos cos 2tan sin 2cos 2sin 2tan ]sin cos 2sin cos [2()2cos sin 2cos 2sin 2tan 2tan sin cos 3tan cos ]x r r y r r C C θθθθσσθσθτθθ αθθθθαθθαθθθασσθσθτθθ αθθθθθααθθαθ=+-=---+++=++=-+-++- 由边界0()/y y q t σ==-,即当0θ=时,/y q t σ=-;带入y σ的表达式中可 得:

自己整理的简支梁挠度计算公式

简支梁在各种荷载作用下跨中最大挠度计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

悬臂梁变形及应力分析

基于ANSYS 10.0 对悬臂梁的强度及变形分析 姓名:刘吉龙 班级:机制0803班 学号:200802070516

对悬臂梁的受力及变形分析摘要:本研究分析在ANSYS10.0平台上,采用有限元法对悬臂梁进行强度与变形分析、验证此悬臂梁设计的合理性。 一、问题描述 长度L=254 mm的方形截面的铝合金锥形杆,上端固定,下端作用有均布拉力P=68.9 Mpa,上截面的尺寸50.8×50.8 mm,下截面尺寸25.4×25.4 mm(见右图),弹性模量E=7.071×104 Mpa,泊松比μ=0.3,试用确定下端最大轴向位移δ和最大轴向应力。试将分析结果与理论解进行比较,说明有限元分析的误差。(理论解:最大轴向位移δ=0.1238 mm)。 二、建立有限元模型: 定义模型单元类型为:solid(实体)95号单元,材料常数为:弹性模量 E=7.071×104 Mpa,泊松比μ=0.3。 三、有限元模型图: 建立有限元模型时,观察模型的形状可知,我们可以先建立模型的上下底面,再根据有上下底面形成的八个关键点(keypoints)生成线,接着生成面,生成体。最后生成该悬臂梁的模型图,示图如下:

整个模型建立好之后即可对其划分网格,划分网格时,若选择自由划分则生成的网格比较混乱,不能比较准确的模拟该梁真实的受力变形情况。故我们选择智能划分模式,并且分别对模型的各个棱边(lines)进行均匀分割,这样可以划分出比较理想的网格,更利于我们的研究和分析。网格划分之后的模型图为: 四、加载并求解: 根据该悬臂梁的受力特点,我们在其下底面(比较大的底面)上进行六个自由度的位移约束,而在其上地面上施加大小为P=68.9 Mpa均布拉力,将载荷加载好之后便可进行运算求解,求解完成之后,我们得到其位移变形图如下:

第二个问题的实作范例1——悬臂梁应力分析——操作指导

第二个问题的实作范例1——悬臂梁受均布压力载荷的弯曲问题 1.问题描述与解析解 有一个如图0所示的悬臂梁(截面为10mm*10mm的矩形,长度100mm),受均布压力载荷10N/m2。试求出该悬臂梁的最大应力和最大挠度。 (它的解析解已经解完了,在图0的下面,挠度7.5e- 6mm,应力0.003MPa,即3000Pa。)

图0 悬臂梁的问题描述 2. 用CATIA中的工程分析模块(即CAE模块)求解该问题的思路 1). 启动CATIA,建立一个悬臂梁的3D模型,设置单位,加材料。(这一步已经做完了。) 2). 然后,进入工程分析模块,加固定约束,加均布载荷,求解,查看结果。 3). 分析两次计算,第一次线性单元的边长为6mm,计算精度很低。第二次抛物线单元的边长为3mm, CATAI得到的挠度、应力与解析解基本一致。 3 在CATIA求解该问题的操作指导 1). 启动CATIA,打开xuanbiliang目录下的xuanbiliang.CATPart文件,在该文件中的几何模型中已经加好了材料(钢)。 2). 进入创成式零件有限元分析模块,如图1。之后点击“确定”,如图2。 图1

图2 3). 在零件的有限元模块中选择 工具条中的 按钮,按照如图3所示的方式选择梁的一个端面,点击“确 定”,即可完成悬臂约束的施加。 (该约束限制了空间中的6各自由度。) 图3 4). 选择 工具条中的 按钮,并选择悬臂梁的上表面,在pressure中输入10N_m2,如图4、图5。施加了载荷与约束的悬臂梁如图6。

图4 图5 图6 5). 在特征树的finite element model.1——nodes and elements 下的 上双击,如图7。弹出如图8的对话框,在size中输入6mm的单元边长,点击确定。

悬臂梁ansys有限元分析求最大挠度

(一) 悬臂梁ansys 有限元分析求最大挠度 问题:悬臂梁长1000mm ,宽50mm ,高10mm ,左端固定,求其在自重作用下的最大挠度? 解:弯矩方程: 221) ()(x l q x M --= 微分方程: 22 1'')(x l q y EI z -= 积分求解:D Cx qx qlx x ql y EI C qx qlx x ql y EI z z +++-=++-=4322322'24 1 6125.06 1 5.05.0 由边界条件:0; 0, 0' ' ====A A A y y x θ 得:C=0, D=0 I=1/12*h^3*b,h 为梁截面的高,b 为梁截面的宽。 q=ρ*g*a*h*l 材料力学公式求:Y=EI 85 gahl^ρ=5.733mm L

ANSYS 模拟求:Y=5.5392mm,详细见下步骤 ANSYS 软件设置及其具体过程如下: 步骤1:建立一个模型,在model下creat一个长1,宽0.05,高0.01的长方体实体。(单位默认为m) 步骤2:材料属性设置。密度:7800,杨氏模量:2E11,泊松比0.3。

步骤3:划分网格。设置网格单元为structure solid brick 8node 185,mesh tool中设置网格大小为0.002,HEX下点击mesh。

步骤4:施加载荷;在preprocessor中inertia中设置重力加速度Y方向为9.8。在左面施加固定约束(三个方向固定)

步骤5::求解。在solve下solve current LS。 步骤6:后处理查看。在result中plot result,查看nodes displacement。List查看文本,观察nodes的最大位移点。

ansys-二维悬臂梁有限元分析

1 研究目的与问题阐述 1.1 基本研究目的 (1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 (2) 熟悉有限元建模、求解及结果分析步骤和方法。 (3) 利用ANSYS软件对梁结构进行有限元计算。 (4) 研究不同泊松比对同一位置应力的影响。 1.2 基本问题提出 图1.1 模型示意图 如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。 采用二维模型,3*0.09m。

2 软件知识学习 2.1 软件的使用与介绍 软件介绍: ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE工具之一。 ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。 软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。 前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型; 分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力; 后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。 软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。

悬臂梁设计计算

钢丝绳经验公式 现场快速口算的经验公式:钢丝绳最小破断拉力≈D*D/20 (吨)。D 为钢丝绳直径。 如:υ20mm 钢丝绳最小破断拉力≈20*20/20=20(吨) 理论值:6*37+FC-1670 υ20的钢丝绳为197kN ;6*19+FC-1670的为205kN 。 吊耳计算 [σ]—许用应力,MPa ,一般情况下, [] 1.5 s σσ= σs-屈服强度 [τ]—许用剪应力,MPa , [] τ= []c σ:许用挤压应力,MPa ,[][]1.4c σσ= 1、简化算法 (1)拉应力计算 如上图所示,拉应力的最不利位置在c -d 断面,其强度计算公式为: []2()P R r σσδ = ≤- 其中:σ—c-d 截面的名义应力, P —吊耳荷载,N [σ]—许用应力,MPa ,一般情况下, [] 1.5 s σσ= (2)剪应力计算 如图所示,最大剪应力在a-b 断面,其强度计算公式为: []()p P A R r ττδ = =≤-

式中:[τ]—许用剪应力,MPa , [] στ= (3)局部挤压应力计算 局部挤压应力最不利位置在吊耳与销轴结合处,其强度计算公式为: []c c P d σσδ = ≤? 式中:[]c σ:许用挤压应力,MPa ,[][]1.4c σσ=。d-销轴直径 (4)焊缝计算: A :当吊耳受拉伸作用,焊缝不开坡口或小坡口,按照角焊缝计算: h h e w k P h l ττ???= ≤??? P —焊缝受力, N k —动载系数,k=1.1, e h —角焊缝的计算厚度,0.7e f h h = ,f h 为焊角尺寸,mm ; w l —角焊缝的计算长度,取角焊缝实际长度减去2f h ,mm ; h τ???? —角焊缝的抗压、抗拉和抗剪许用应力,h τ??= ?? ,[] σ为母材的基本许 用应力。 B :当吊耳受拉伸作用,焊缝开双面坡口,按照对接焊缝计算: (2)h h k P L σσ δδ???= ≤?? - 式中: k —动载系数,k=1.1; L —焊缝长度,mm ; δ—吊耳板焊接处母材板厚,mm ; h σ????—对接焊缝的纵向抗拉、抗压许用应力, []0.8h σσ? ?=??,[]σ为母材的基本许用应力。

简支梁在各种荷载作用下跨中最大挠度计算公式

简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求! 机械零件和构件的一种截面几何参量,旧称截面模量。它用以计算零件、构件的抗弯强度和抗扭强度(见强度),或者用以计算在给定的弯矩或扭矩条件下截面上的最大应力。根据材料力学,在承受弯矩Μ的梁截面上和承受扭矩T 的杆截面上,最大的弯曲应力σ和最大的扭转应力τ出现于离弯曲中性轴线和扭转中性点垂直距离最远的面或点上。σ和τ的数值为 -0.032√(C+W)-0.21√(RD↑2) 式中Jxx和J0分别为围绕中性轴线XX和中性点O的截面惯性矩;Jxx/y和J0/y分别为弯曲和扭转的截面模量(见图和附表)。一般截面系数的符号为W,单位为毫米3 。根据公式可知,截面的抗弯和抗扭强度与相应的截面系数成正比。

悬臂梁的挠度计算公式

悬臂梁的挠度计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 挠度计算公式:Ymax=5ql^4/(384EI)(长l的简支梁在均布荷载q作用下,EI是梁的弯曲刚度) 挠度与荷载大小、构件截面尺寸以及构件的材料物理性能有关。 挠度——弯曲变形时横截面形心沿与轴线垂直方向的线位移称为挠度,用γ表示。

悬臂梁应力分析有限元程序设计

题目:悬臂梁应力分析有限元程序设计

毕业设计(论文)外文摘要

本科毕业设计(论文)第Ⅰ页共Ⅰ页 目录 1 引言 (1) 2 有限元理论 (2) 2.1 有限元法产生的动因分析 (2) 2.2 有限元的发展历程 (3) 2.3 有限元分析的研究特点 (4) 2.4 有限元法的分析过程 (4) 2.5 有限元的发展趋势 (6) 3 悬臂梁应力分析有限元程序开发 (9) 3.1 Matlab语言指南 (9) 3.1.1 Matlab语言简介 (9) 3.1.2 Matlab的优点 (10) 3.2 悬臂梁应力分析程序设计 (11) 3.2.1平面问题的4节点矩形单元描述 (11) 3.2.2 平面问题4节点矩形单元的MATLAB程序 (16) 3.2.3 悬臂梁应用举例 (20) 结束语 (34) 致谢 (35) 参考文献 (36)

1 引言 悬臂梁在工程力学受力分析中,是一种比较典型的简化模型。在实际工程分析中,大部分实际工程受力部件都可以简化为悬臂梁。根据有限元法的基本原理和解决问题的基本思路,对悬臂梁所受的应力进行有限元分析有着重要的作用。尽管目前已有不少从国外引进的大型通用程序,但由于这些程序通用性很强,语句多,要求计算内存大,在计算具体问题时往往占用机时多,计算成本高,在PC微机广泛普及的今天,编制一些便于推广应用的专用程序无论对于工业设计还是教学实践都是具有一定意义的。 目前,悬臂梁结构在实际工程中被得到广泛的应用,是一种较为常用的结构,尤其在机械设计、建筑设计中更是常见。悬臂梁结构在实际的使用过程中,经常要承受各种集中载荷、分布载荷、弯矩和扭矩的作用,在梁的任意一处都有可能产生较大的应力和变形,从而使得悬臂梁结构破坏或失效。悬臂梁的强度及刚度是否满足要求将关系到整个设备的安全使用[1]。因此,在对悬臂梁结构设计的过程中,如何对悬臂梁的应力进行分析,具有工程实用价值和现实意义。有限元分析是用来决定复杂机械结构中的应力和变形的一种非常有效的方法,当前用计算机进行的应力分析几乎全部都是以有限元理论为基础的。反过来说,有限元方法的广泛应用也是以计算机技术的发展为其前提。机械结构的有限元模型可以看做是一个弹性系统,当该系统有载荷作用时,系统中所有单元发生变形直到全部力达到平衡为止。对于每一单元,可写出其节点位移和作用力的关系式,从而达到对悬臂梁进行应力分析的目的。悬臂梁应力分析有限元程序设计方法是计算机程序开发方法的一种变革,是利用计算机解决问题的一种新的思维方式,它使程序设计更加贴近现实。悬臂梁在计算机程序中表示为对象,其目的在于使实际问题中的悬臂梁与程序中的对象具有一一对应的关系,实现利用计算机解决实际问题的目的[2,3]。

相关文档
最新文档