3 不可压缩流体恒定流动量定律实验

3 不可压缩流体恒定流动量定律实验
3 不可压缩流体恒定流动量定律实验

不可压缩流体恒定流动量定律实验

一、实验目的要求:

1.验证不可压缩流体恒定流的动量方程;

2.通过对动量与流速、流量、出射角度、动量矩等因素间相关性的分析研究,进一步掌握流体动力学的动量守恒定理;

3.了解活塞式动量定律实验仪原理、构造,进一步启发与培养创造性思维的能力。

动量定律实验装置图

1. 自循环供水器

2. 实验台

3. 可控硅无级调速器

4. 水位调节阀

5. 恒压水箱

6. 管嘴

7.

集水箱8. 带活塞的测压管9. 带活塞和翼片的抗冲平板10. 上回水管

二、实验原理

恒定总流动量方程为

取脱离体,因滑动摩擦阻力水平分离,可忽略不计,故x方向的动量方程化为

式中:——作用在活塞形心处的水深;

D——活塞的直径;

Q——射流流量;

——射流的速度;

——动量修正系数。

实验中,在平衡状态下,只要测得Q流量和活塞形心水深,由给定的管嘴直径d和

活塞直径D,代入上式,便可验证动量方程,并率定射流的动量修正系数值。其中,测

压管的标尺零点已固定在活塞的园心处,因此液面标尺读数,即为作用在活塞园心处的水深。

三、实验方法与步骤

1.准备:熟悉实验装置各部分名称、结构特征、作用性能,记录有关常数。

2.开启水泵:打开调速器开关,水泵启动2~3分钟后,关闭2~3秒钟,以利用回水排除离心式水泵内滞留的空气。

3.调整测压管位置:待恒压水箱满顶溢流后,松开测压管固定螺丝,调整方位,要求测压管垂直、螺丝对准十字中心,使活塞转动松快。然后旋转螺丝固定好。

4.测读水位:标尺的零点已固定在活塞园心的高程上。当测压管内液面稳定后,记下

值。

测压管内液面的标尺读数,即h

5.测量流量:用体积法或重量法测流量时,每次时间要求大于20秒,若用电测仪测流量时,则须在仪器量程范围内。均需重复测三次再取均值。

6.改变水头重复实验:逐次打开不同高度上的溢水孔盖,改变管嘴的作用水头。调节调速器,使溢流量适中,待水头稳定后,按3-5步骤重复进行实验。

的影响:取下平板活塞,使水流冲击到活塞套内,调整好位置,7.验证 2x≠0对F

使反射水流的回射角度一致,记录回射角度的目估值、测压管作用水深hc′和管嘴作用水头H

四、实验分析与讨论

1、实测β与公认值(β=1.02~1.05)符合与否?如不符合,试分析原因。

参考答案:

实测β=1.035与公认值符合良好。(如不符合,其最大可能原因之一是翼轮不转所致。为排除此故障,可用4B铅笔芯涂抹活塞及活塞套表面。)

2、带翼片的平板在射流作用下获得力矩,这对分析射流冲击无翼片的平板沿x方向的动量力有无影响?为什么?

参考答案:

无影响。因带翼片的平板垂直于x轴,作用在轴心上的力矩T,是由射流冲击平板是,沿yz平面通过翼片造成动量矩的差所致。即

式中Q——射流的流量;

——入流速度在yz平面上的分速;

——出流速度在yz平面上的分速;

——入流速度与圆周切线方向的夹角,接近90°;

——出流速度与圆周切线方向的夹角;

——分别为内、外圆半径。

该式表明力矩T恒与x方向垂直,动量矩仅与yz平面上的流速分量有关。也就是说平板上附加翼片后,尽管在射流作用下可获得力矩,但并不会产生x方向的附加力,也不会影响x方向的流速分量。所以x方向的动量方程与平板上设不设翼片无关。

3、通过细导水管的分流,其出流角度与相同,试问对以上受力分析有无影响?

参考答案:

无影响。当计及该分流影响时,动量方程为

该式表明只要出流角度与垂直,则x方向的动量方程与设置导水管与否无关。

4、滑动摩擦力为什么可以忽略不记?试用实验来分析验证的大小,记录观察结

果。(提示:平衡时,向测压管内加入或取出1mm左右深的水,观察活塞及液位的变化) 参考答案:

因滑动摩擦力<5,故可忽略而不计.

如第三次实验,此时=19.6cm,当向测压管内注入1mm左右深的水时,活塞所受的

静压力增大,约为射流冲击力的5。假如活动摩擦力大于此值,则活塞不会作轴向移动,亦即变为9.7cm左右,并保持不变,然而实际上,此时活塞很敏感地作左右移动,自动调

整测压管水位直至仍恢复到19.6cm为止。这表明活塞和活塞套之间的轴向动摩擦力几乎

为零,故可不予考虑。

5、若不为零,会对实验结果带来什么影响?试结合实验步骤7的结果予以说明。

参考答案:

按实验步骤7取下带翼轮的活塞,使射流直接冲击到活塞套内,便可呈现出回流与x 方向的夹角大于90°(其不为零)的水力现象。本实验测得135°,作用于活塞套圆

心处的水深,管嘴作用水头。而相应水流条件下,在取下带

翼轮的活塞前,,。表明若不为零,对动量立影响甚大。

因为不为零,则动量方程变为

(1)

就是说随及递增。故实验中。

实际上,随及的变化又受总能头的约束,这是因为由能量方程得

(2)

所以

从式(2)知,能量转换的损失较小时,

经典验证动量守恒定律实验练习题(附答案)

验证动量守恒定律 由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单 位,那么小球的水平射程的数值就等于它们的水平速度。 在右图中分别用OP、OM和O/N表示。因此只需验证: m1?OP=m1?OM+m2?(O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为:m1?OP=m1?OM+m2?ON,两个小球的直径也不需测量 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得小l车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得:碰前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,记录纸上的垂直投影点。B球落点痕迹如图2所示,其中米尺水平放置。且平行于G.R.Or所在的平面,米尺的零点与O 点对齐。 (1)碰撞后B球的水平射程应取为______cm. (2)在以下选项中,哪些是本次实验必须进行的测量?答:

专题三:气体实验定律_理想气体的状态方程

专题三:气体实验定律 理想气体的状态方程 [基础回顾]: 一.气体的状态参量 1.温度:温度在宏观上表示物体的________;在微观上是________的标志. 温度有________和___________两种表示方法,它们之间的关系可以表示为:T = ________.而且ΔT =____(即两种单位制下每一度的间隔是相同的). 绝对零度为____0 C,即___K ,是低温的极限,它表示所有分子都停止了热运动.可以无限接近,但永远不能达到. 2.体积:气体的体积宏观上等于___________________________________,微观上则表示_______________________.1摩尔任何气体在标准状况下所占的体积均为_________. 3.压强:气体的压强在宏观上是___________;微观上则是_______________________产生的.压强的大小跟两个因素有关:①气体分子的__________,②分子的_________. 二.气体实验定律 1.玻意耳定律(等温变化) 一定质量的气体,在温度不变的情况下,它的压强跟体积成______;或者说,它的压强跟体积的________不变.其数学表达式为_______________或_____________. 2.查理定律(等容变化) (1)一定质量的气体,在体积不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的压强等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在体积不变的情况下,它的压强与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(P ,T )开始,发生一等容变化过程,其压强的变化量△P 与温度变化量△T 的关系为_____________. 3.盖·吕萨克定律(等压变化) (1)一定质量的气体,在压强不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的体积等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在压强不变的情况下,它的体积与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(V ,T )开始,发生一等压变化过程,其体积的变化量△V 与温度变化量△T 的关系为_____________. 三.理想气体状态方程 1.理想气体 能够严格遵守___________的气体叫做理想气体.从微观上看,分子的大小可忽略,除碰撞外分子间无___________,理想气体的内能由气体_____和_____决定,与气体_____无关.在___________、__________时,实际气体可看作理想气体. 2.一定质量的理想气体状态方程: 2 2 2111T V P T V P = 3.密度方程: 2 22111ρρT P T P = [重难点阐释]: 一.气体压强的计算

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

气体实验定律及应用答案

第2节 气体实验定律及应用 知识梳理 一、气体分子运动速率的统计分布 气体实验定律 理想气体 1.气体分子运动的特点 (1)分子很小,间距很大,除碰撞外不受力. (2)气体分子向各个方向运动的气体分子数目都相等. (3)分子做无规则运动,大量分子的速率按“中间多,两头少”的规律分布. (4)温度一定时,某种气体分子的速率分布是确定的,温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率增大,但不是每个分子的速率都增大. 2.气体的三个状态参量 (1)体积;(2)压强;(3)温度. 3.气体的压强 (1)产生原因:由于气体分子无规则的热运动,大量的分子频繁地碰撞器壁产生持续而稳定的压力. (2)大小:气体的压强在数值上等于气体作用在单位面积上的压力.公式:p =F S . (3)常用单位及换算关系: ①国际单位:帕斯卡,符号:Pa,1 Pa =1 N/m 2. ②常用单位:标准大气压(atm);厘米汞柱(cmHg). ③换算关系:1 atm =76 cmHg =1.013×105 Pa ≈1.0×105 Pa. 4.气体实验定律 (1)等温变化——玻意耳定律: ①内容:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比. ②公式:p 1V 1=p 2V 2或pV =C (常量). (2)查理定律: ①内容:一定质量的某种气体,在体积不变的情况下,压强p 与热力学温度T 成正比. ②公式:p 1p 2=T 1T 2或p T =C (常量). ③推论式:Δp =p 1 T 1 ·ΔT . (3)等压变化——盖—吕萨克定律: ①内容:一定质量的某种气体,在压强不变的情况下,其体积V 与热力学温度T 成正比. ②公式:V 1V 2=T 1T 2或V T =C (常量). ③推论式:ΔV =V 1 T 1 ·ΔT . 5.理想气体状态方程 (1)理想气体:在任何温度、任何压强下都遵从气体实验定律的气体. ①理想气体是一种经科学的抽象而建立的理想化模型,实际上不存在. ②理想气体不考虑分子间相互作用的分子力,不存在分子势能,内能取决于温度,与体积无关. ③实际气体特别是那些不易液化的气体在压强不太大,温度不太低时都可看作理想气体. (2)一定质量的理想气体状态方程: p 1V 1T 1=p 2V 2T 2或pV T =C (常量). 典例突破 考点一 气体压强的产生与计算 1.产生的原因:由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强. 2.决定因素 (1)宏观上:决定于气体的温度和体积. (2)微观上:决定于分子的平均动能和分子的密集程度. 3.平衡状态下气体压强的求法 (1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程.求得气体的压强. (2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强. (3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等. 4.加速运动系统中封闭气体压强的求法 选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解. 例1.如图中两个汽缸质量均为M ,内部横截面积均为S ,两个活塞的质量均为m ,左边的汽缸静止在水平面上,右边的活塞和汽缸竖直悬挂在天花板下.两个汽缸内分别封闭有一定质量的空气A 、B ,大气压为p 0,求封闭气体A 、B 的压强各多大? 解析:题图甲中选m 为研究对象. p A S =p 0S +mg 得p A =p 0+mg S 题图乙中选M 为研究对象得p B =p 0-Mg S . 答案:p 0+mg S p 0-Mg S 例2 .若已知大气压强为p 0,在下图中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强. 解析:在甲图中,以高为h 的液柱为研究对象,由二力平衡知p 气S =-ρghS +p 0S

应用气体实验定律解决“三类模型问答”

专题强化十四应用气体实验定律解决“三类模型问题” 专题解读 1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题. 2.学好本专题可以帮助同学们熟练的选取研究对象和状态变化过程,掌握处理三类模型问题的基本思路和方法. 3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验定律等.

命题点一 “玻璃管液封”模型 1.三大气体实验定律 (1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数). (2)查理定律(等容变化): p 1T 1 = p 2T 2 或p T =C (常数). (3)盖—吕萨克定律(等压变化): V 1T 1 = V 2T 2 或V T =C (常数). 2.利用气体实验定律及气态方程解决问题的基本思路

3.玻璃管液封模型 求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意: (1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力; (3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等; (4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷.

类型1 单独气体问题 例 1(2017·全国卷Ⅲ·33(2))一种测量稀薄气体压强的仪器如图1(a)所示,玻璃泡M的上端和下端分别连通两竖直玻璃细管K1和K2.K1长为l,顶端封闭,K2上端与待测气体连通;M下端经橡皮软管与充有水银的容器R连通.开始测量时,M与K2相通;逐渐提升R,直到K2中水银面与K1顶端等高,此时水银已进入K1,且K1中水银面比顶端低h,如图(b)所示.设测量过程中温度、与K2相通的待测气体的压强均保持不变.已知K1和K2的内径均为d,M的容积为V0,水银的密度为ρ,重力加速度大小为g.求:

流体力学第七章不可压缩流体动力学基础

第七章不可压缩流体动力学基础在前面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的观点,求得平均量。但是,很多问题需要求得更加详细的信息,如流速、压强等流动参数在二个或三个坐标轴方向上的分布情况。本章的内容介绍流体运动的基本规律、基本方程、定解条件和解决流体问题的基本方法。 第一节流体微团的运动分析 运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。位移和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则是基于液体的易流动性而特有的运动形式,在刚体是没有的。 在直角坐标系中取微小立方体进行研究。

一、平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成了液体基体的单纯位移,其移动速度为z y x u u u 、、。基体在运动中可能沿直线也可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不变)。 二、线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比A 点和D 点大了 dy y u y ??,而 y u y ??就代表1=dy 时液体基体运动时,在单位时间内沿 y 轴方向的伸长率。 x u x ??,y u y ??,z u z ?? 三、角变形(角变形速度) d d d D C A B C D B A

dt y u dy dt dy y u d x x ??=???=α dt x u dx dt dx x u d y y ??=???=β θβθα+=-d d 2 βαθd d -= ∴ 角变形: ???? ????+??=+=-=x u y u d d d y x z 212βαθαθ ?? ? ????+??= x u z u z x y 21θ ???? ????+??=y u z u z y x 21θ 四、旋转(旋转角速度) ??? ? ????-??=-=y u x u x y z 21θω ??? ? ????-??=z u y u y z x 21ω 即, ?? ? ????-??=x u z u z x y 21ω z y x u u u z y x k j i ??????= 21ω 那么,代入欧拉加速度表达式,得: z x x x x x x z y y z z y y y y y y y x z z x x z z z z z z z y x x y y x x y du u u u u u u u dt t x u u u u u u u u dt t y u u u u u u u u dt t z αθθωωαθθωωαθθωω??? = =++++-???? ????==++++-???? ????==++++-? ??? 各项含义: (1) 平移速度 (2)线变形运动所引起的速度增量

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

气体实验定律(学生)

气体实验定律 ★1.关于温度,下列说法中正确的是( ).【1】 (A)气体的温度升高1℃,也可以说温度升高1K;温度下降5K,也就是温度下降5℃ (B)温度由摄氏温度t升至2t,对应的热力学温度由T升至2T (C)绝对零度就是当一定质量的气体体积为零时,用实验方法测出的温度 (D)随着人类制冷技术的不断提高,总有一天绝对零度会达到 ★2.一定质量的气体在等温变化过程中,下列物理量中将发生变化的是( ).【1】 (A)分子的平均动能(B)单位体积内的分子数 (C)气体的压强(D)分子总数 ★★3.一定质者的气体在等容变化过程中.温度每升高1℃,压强的增加等于它在300K时压强的( ).【2】 (A)1/27 (B)1/273 (C)1/300 (D)1/573 ★★4.下列关于盖·吕萨克定律的说法中正确的是( ).【2】 (A)对于一定质量的理想气体,在保持压强不变的情况下,温度每升高1℃时,其体积的增量是温度升高前体积的1/273 (B)对于一定质量的理想气体.在保持压强不变的情况下,温度每升高1℃时,其体积的增量是它在0℃时体积的1/273 (C)对于一定质量的气体,在保持压强不变的情况下,其体积与温度成止比 (D)对于一定质量的气体,在保持压强不变的情况下,其体积与热力学温度成正比 ★★5.如图所示,将一只倒置的试管竖直地插入容器内,试管内原有的空气被压缩,此 时,试管内外水面的高度差为h,若使试管插入水中的深度增大一些,则试管内外水面 的高度差将( ).(1990年上海高考试题)【2.5】 (A)增大(B)减少(C)保持不变(D)无法确定 ★★6.如图所示,密封的U形管中装有水银,左、右两端都封有空气,两水银 面的高度差为h.把U形管竖直浸没在热水中,高度差将( ).【3】 (A)增大(B)减小 (C)不变(D)两侧空气柱的长度未知,不能确定 ★★7.在冬季,剩有半瓶热水的暖水瓶经过一个夜晚,第二天拔瓶口的软木 塞时觉得很紧,不易拔出来,主要原因是( ).(2001年上海理科综合试题)【2】 (A)软木塞受潮膨胀(B)瓶口因温度降低而收缩变小 (C)白天气温升高,大气压强变大(D)瓶内气体因温度降低而压强减小 ★★8.人们常常用充气泵为金鱼缸内的水补充氧气,右图所示为充气 泵气室的工作原理图.没大气压强为p0,气室中的气体压强为p,气通 过阀门S1、S2与空气导管相连接,下列选项中正确的是( ). (A)当橡皮碗被拉伸时,p>p0,S1关闭S2开通

气体实验定律及应用参考答案

第2节气体实验定律及应用 知识梳理 一、气体分子运动速率的统计分布气体实验定律理想气体 1.气体分子运动的特点 (1)分子很小,间距很大,除碰撞外不受力. (2)气体分子向各个方向运动的气体分子数目都相等. (3)分子做无规则运动,大量分子的速率按“中间多,两头少”的规律分布.(4)温度一定时,某种气体分子的速率分布是确定的,温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率增大,但不是每个分子的速率都增大. 2.气体的三个状态参量 (1)体积;(2)压强;(3)温度. 3.气体的压强 (1)产生原因:由于气体分子无规则的热运动,大量的分子频繁地碰撞器壁产生持续而稳定的压力. (2)大小:气体的压强在数值上等于气体作用在单位面积上的压力.公式:p=. (3)常用单位及换算关系: ①国际单位:帕斯卡,符号:Pa,1Pa=1N/m2. ②常用单位:标准大气压(atm);厘米汞柱(cmHg). ③换算关系:1atm=76cmHg= 1.013×105Pa≈1.0×105Pa. 4.气体实验定律 (1)等温变化——玻意耳定律: ①内容:一定质量的某种气体,在温度不变的情况下,压强p与体积V成反比. ②公式:p1V1=p2V2或pV=C(常量). (2)等容变化——查理定律: ①内容:一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T 成正比.②公式:=或=C(常量). ③推论式:Δp=·ΔT. (3)等压变化——盖—吕萨克定律: ①内容:一定质量的某种气体,在压强不变的情况下,其体积V与热力学温度T 成正比. ②公式:=或=C(常量). ③推论式:ΔV=·ΔT. 5.理想气体状态方程 (1)理想气体:在任何温度、任何压强下都遵从气体实验定律的气体. ①理想气体是一种经科学的抽象而建立的理想化模型,实际上不存在. ②理想气体不考虑分子间相互作用的分子力,不存在分子势能,内能取决于温度,与体积无关. ③实际气体特别是那些不易液化的气体在压强不太大,温度不太低时都可看作理想气体. (2)一定质量的理想气体状态方程: =或=C(常量). 典例突破 考点一气体压强的产生与计算1.产生的原因:由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强. 2.决定因素 (1)宏观上:决定于气体的温度和体积. (2)微观上:决定于分子的平均动能和分子的密集程度. 3.平衡状态下气体压强的求法 (1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程.求得气体的压强. (2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强.

流体力学动量定理实验

动量定理实验 一、概述 动量定理指出:流体微团动量的变化率等于作用在该微团上所有外力的矢量和。即某控制体内的动量在时间dt内的增量等于作用在控制体上所有外力在dt时间内的总冲量。 水射流冲击平板和内半球是用来验证动量定理的一个很好实例,本实验仪则采用水射流冲击平板通过称重系统测出冲击力。 二、实验目的: 1.测定管嘴喷射水流对平板或曲面板所施加的冲击力。 2.测定动量修正系数,以实验分析射流出射角度与动量力的相关性 3.将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。 三、设备性能与主要技术参数 1、该实验装置主要由:流量计、水泵、实验水箱、管嘴、蓄水箱和平衡秤等组成。 2、流量计采用LZS-15(60-600)L/h。 3、水泵为增压泵,最高扬程:10m,最大流量:10L/min,转速2800r/min,输入功率90W。 4、量器为平衡杆秤,上面刻度每小各格为2mm,称上平衡游码为150g。 5、实验水箱由有机玻璃制成,顶部装有称重装置,内部则有实验平板与管嘴,其中管嘴距平板距离为40mm,管嘴的内径为9mm。 6、蓄水箱由PVC板焊制而成。容积:35L。 四、实验原理 1、本实验装置给出计量杠杆为平衡杆称。 2、计算每个状态下的体积流量和质量流量 体积流量QV通过转子流量计直接得出读数,质量流量QM=ρW·QV其中水的密度ρW可根据水温查得。 3、计算每个状态下水射流冲击模型的当地速度u。 由公式u0=Qv/A0 (m/s)计算管嘴出口处的水流速度,其中A0为喷嘴出口截面积(m2)。在地心引力的作用下,水射流离开喷嘴后要减速,当水流射到模板上时,当地

高中物理_复习:《验证动量守恒定律实验》教学设计学情分析教材分析课后反思

复习:《实验:验证动量守恒定律》教学设计 一、教学目标: 【知识与技能】 1、明确验证动量守恒定律的基本思路; 2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法; 3、掌握实验数据处理的方法; 【过程与方法】 1、学习根据实验要求,设计实验,完成气垫导轨实验和斜槽小球碰撞实验的设计方法; 2、学习根据实验数据进行处理、归纳、总结的方法。 【情感态度与价值观】 1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。 2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。 3、在对实验数据处理、误差处理的过程中合作探究、头脑风暴,提高学生合作探究能力。 4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。 【教学重难点】 教学重点:验证动量守恒定律的实验探究 教学难点:速度的测量方法、实验数据的处理. 【教学过程】 (一)复习导入:问题1、动量守恒定律的内容是什么? 2、动量守恒的条件是什么? (二)讲授新课 实验方案一:气垫导轨以为碰撞实验 1、实验器材 气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2、实验步骤

(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨. (3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量;②改变滑块的初速度大小和方向③通过放置橡皮泥、振针、胶布等改变能量损失). (4)验证:一维碰撞中的动量守恒. (5)数据处理 1.滑块速度的测量:v =Δx Δt ,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. 2.验证的表达式:m 1v 1+m 2v 2=m 1v′1+m 2v′2。 (6)注意事项 气垫导轨应水平 [典例1] 现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. (b) 若实验允许的相对误差绝对值× 100%最大为5%,本实验是否在误差范围内验证了动量守恒

应用气体实验定律解决“三类模型问题”-共23页

专题强化十四 应用气体实验定律解决“三类模型问题” 专题解读 1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题. 2.学好本专题可以帮助同学们熟练的选取研究对象和状态变化过程,掌握处理三类模型问题的基本思路和方法. 3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验定律等. 命题点一 “玻璃管液封”模型 1.三大气体实验定律 (1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数). (2)查理定律(等容变化):p 1T 1=p 2T 2或p T =C (常数). (3)盖—吕萨克定律(等压变化):V 1T 1=V 2T 2或V T =C (常数). 2.利用气体实验定律及气态方程解决问题的基本思路 3.玻璃管液封模型

求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意: (1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力; (3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等; (4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷.

类型1 单独气体问题 例1 (2019·全国卷Ⅲ·33(2))一种测量稀薄气体压强的仪器如图1(a)所示,玻璃泡M 的上端和下端分别连通两竖直玻璃细管K 1和K 2.K 1长为l ,顶端封闭,K 2上端与待测气体连通;M 下端经橡皮软管与充有水银的容器R 连通.开始测量时,M 与K 2相通;逐渐提升R ,直到K 2中水银面与K 1顶端等高,此时水银已进入K 1,且K 1中水银面比顶端低h ,如图(b)所示.设测量过程中温度、与K 2相通的待测气体的压强均保持不变.已知K 1和K 2的内径均为d ,M 的容积为V 0,水银的密度为ρ,重力加速度大小为g .求: 图1 (1)待测气体的压强; (2)该仪器能够测量的最大压强. 答案 (1)ρπgh 2d 24V 0+πd 2(l -h ) (2)πρgl 2d 24V 0 解析 (1)水银面上升至M 的下端使玻璃泡中气体恰好被封住,设此时被封闭的气体的体积为V ,压强等于待测气体的压强p .提升R ,直到K 2中水银面与K 1顶端等高时,K 1中水银面比顶端低h ;设此时封闭气体的压强为p 1,体积为V 1,则 V =V 0+1 4πd 2l ① V 1=1 4πd 2h ② 由力学平衡条件得 p 1=p +ρgh ③ 整个过程为等温过程,由玻意耳定律得 pV =p 1V 1 ④

自循环动量定律实验

JK-DL 自循环动量定理实验装置指导说明书 目录 一、实验目的 (1) 二、实验外形图 (1) 三、实验原理 (3) 四、实验方法与步骤 (3) 五、实验成果及要求 (4) 六、实验分析与讨论 (4)

湘潭金凯化工装备技术有限公司

JK-DL 自循环动量定律实验指导说明书 一、实验目的: 1.验证不可压缩流体恒定流的动量方程; 2.通过对动量与流速、流量、出射角度、动量矩等因素间相关性的分析研讨,进一步掌握液体动力学的动量守恒定理; 3.了解活塞式动量定律实验仪原理、构造,进一步启发与培养创造性思维的能力。 二、实验外形图: 本实验的装置如下图所示。 自循环供水装置由离心式水泵和蓄水箱组合而成。水泵的开启、

流量大小的调节均由阀门控制。水流经供水管供给恒压水箱,溢流水经回水管流回蓄水箱。流经管嘴的水流形成射流,冲击带活塞和翼片的抗冲平板,并以与入射角成90°的方向离开抗冲平板。抗冲平板在射流冲力和测压管中的水压力作用下处于平衡状态。活塞形心水深h 可由测压管测得,由此可求得射流的冲击,即动量力F。冲击后的弃水经集水箱汇集后,再经上回水管流出,最后经漏斗和下回水管流回蓄水箱。 为了自动调节测压管内的水位,以使带活塞的平板受力平衡并减小摩擦阻力对活塞的影响,本实验装置应用了自动控制的反馈原理物动磨擦减阻技术。 工作时,在射流冲击力作用下,水流经导水管a向测压管内加水。当射流冲击大于测压管内水柱对活塞的压力时,活塞内移,窄槽c关小,水流外溢减少,使测压管内水位升高,水压力增大。反之,活塞外移,窄槽开大,水流外溢增多,测管内水位降低,水压力减小。在恒定射流冲击下,经短时段的自动调整,即可达到射流冲击力和水压力的平衡状态。这时活塞处在半进半出、窄槽部分开启的位置上,过a流进压管的水量和过c外溢的水量相等。由于平板上设有翼片b,在水流冲击下,平板带动活塞旋转,因而克服了活塞在沿轴向滑移时的静磨擦力。 为验证本装置的灵敏度,只要在实验中的恒定流受力平衡状态下,人为地增减测压管中的液位高度,可发现即使改变量不足总液柱面度的±5‰(约0.5-1mm),活塞在旋转下亦能有效地克服动磨擦力

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

气体实验定律

气体实验定律 专题一:密闭气体压强的计算 一、平衡态下液体封闭气体压强的计算 1. 理论依据 ① 液体压强的计算公式 gh p ρ=。 ② 液面与外界大气相接触。则液面下h 处的压强为 gh + p = p 0ρ 帕斯卡定律:加在密闭静止液体(或气体)上的压强能够大小不变地由液体(或气体)向各个方向传递(注意:适用于密闭静止的液体或气体) ③ 连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平面上的压强 是相等的。 2、计算的方法步骤(液体密封气体) ① 选取假想的一个液体薄片(其自重不计)为研究对象 ② 分析液体两侧受力情况,建立力的平衡方程,消去横截面积,得到液片两面侧的压 强平衡方程 ③ 解方程,求得气体压强 例1:试计算下述几种情况下各封闭气体的压强,已知大气压P 0,水银的密度为ρ,管中 水银柱的长度均为h 。均处于静止状态 练1:计算下图中各种情况下,被封闭气体的压强。(标准大气压强0p =76cmHg ,图中液体为水银 θ θ

练2、如图二所示,在一端封闭的U 形管内,三段水银柱将空气柱A 、B 、C 封在管中,在竖直放置时,AB 两气柱的下表面在同一水平面上,另两端的水银柱长度分别是h 1和h 2,外界大气的压强为0p ,则A 、B 、C 三段气体的压强分别是多少? 练3、 如图三所示,粗细均匀的竖直倒置的U 型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1和2。已知12cm Hg =h 1,15cm Hg =h 2,外界大气压强76cm Hg =p 0,求空气柱1和2的压强。 二、平衡态下活塞、气缸密闭气体压强的计算 1. 解题的基本思路 (1)对活塞(或气缸)进行受力分析,画出受力示意图; (2)列出活塞(或气缸)的平衡方程,求出未知量。 注意:不要忘记气缸底部和活塞外面的大气压。 例2 如下图所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M 。不计圆板与容器内壁之间的摩擦。若大气压强为P 0,则被圆板封闭在容器中的气体压强P 等于( ) A B. C. D. P Mg S 0+ cos θP Mg S 0cos cos θθ + P Mg S 02+ cos θ P Mg S 0+

CFD可压缩及不可压缩流体的解释

1、可压缩/ 不可压缩流体的概念 不可压缩流体压缩性是流体的基本属性。任何流体都是可以压缩的,只不过可压缩的程度不同而已。液体的压缩性都很小,随着压强和温度的变化,液体的密度仅有微小的变化,在大多数情况下,可以忽略压缩性的影响,认为液体的密度是一个常数。dP/dT=0的流体称为不可压缩流体,而密度为常数的流体称为不可压均质流体。 气体的压缩性都很大。从热力学中可知,当温度不变时,完全气体的体积与压强成反比,压强增加一倍,体积减小为原来的一半;当压强不变时,温度升高1℃体积就比0℃时的体积膨胀1/273。所以,通常把气体看成是可压缩流体,即它的密度不能作为常数,而是随压强和温度的变化而变化的。我们把密度随温度和压强变化的流体称为可压缩流体。 2、特例 把液体看作是不可压缩流体,气体看作是可压缩流体,都不是绝对的。在实际工程中,要不要考虑流体的压缩性,要视具体情况而定。例如,研究管道中水击和水下爆炸时,水的压强变化较大,而且变化过程非常迅速,这时水的密度变化就不可忽略,即要考虑水的压缩性,把水当作可压缩流体来处理。又如,在锅炉尾部烟道和通风管道中,气体在整个流动过程中,压强和温度的变化都很小,其密度变化很小,可作为不可压缩流体处理。再如,当气体对物体流动的相对速度比声速要小得多时,气体的密度变化也很小,可以近似地看成是常数,也可当作不可压缩流体处理。 3、维基百科中的解释 在连续介质力学里,不可压缩流是流速的散度等于零的流动,更精确地称为等容流。这理想流动可以用来简化理论分析。实际而言,所有的物质多多少少都是可压缩的。请注意“等容”这术语指的是流动性质,不是物质性质;意思是说,在某种状况,一个可压缩流体会有不可压缩流的动作。由于做了不可压缩这假设,物质流动的主导方程能够极大地简化。 4、应用 1、在一般情况下,液体的可压缩性可以忽略,建立不可压缩流体模型(ρ=常数)。 2、在常温常压下气体作低速流动时(v< 100 m/s ),气体密度的相对变化小于5%,也可按不可压缩流体处理(液体和气体压缩性比较)。当气体作高速流动时(V>100m/s ),要考虑其密度变化带来的影响,称之为可压缩流体。

动量守恒实验

动量守恒实验 1.某物理兴趣小组利用如图1所示的装置进行实验.在足够大的水平平台上的A点放 置一个光电门,水平平台上A点右侧摩擦很小可忽略不计,左侧为粗糙水平面,当地重力加速度大小为g.采用的实验步骤如下: ①在小滑块a上固定一个宽度为d的窄挡光片; ②用天平分别测出小滑块a(含挡光片)和小球b的质量m a、m b; ③在a和b间用细线连接,中间夹一被压缩了的轻弹簧,静止放置在平台上; ④细线烧断后,a、b瞬间被弹开,向相反方向运动; ⑤记录滑块a通过光电门时挡光片的遮光时间t; ⑥滑块a最终停在C点(图中未画出),用刻度尺测出AC之间的距离S a; ⑦小球b从平台边缘飞出后,落在水平地面的B点,用刻度尺测出平台距水平地面 的高度h及平台边缘铅垂线与B点之间的水平距离S b; ⑧改变弹簧压缩量,进行多次测量. (1)该实验要验证“动量守恒定律”,则只需验证______ = ______ 即可.(用上述实验数据字母表示) (2)改变弹簧压缩量,多次测量后,该实验小组得到S a与的关系图象如图2所 示,图线的斜率为k,则平台上A点左侧与滑块a之间的动摩擦因数大小为 ______ .(用上述实验数据字母表示) 2.如图,用“碰撞试验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分 碰撞前后的动量关系. ①试验中,直接测定小球碰撞前后的速度是不容易的.但是,可以通过仅测量______ (填选项前的序号)来间接地解决这个问题 A.小球开始释放高度h B.小球抛出点距地面的高度H C.小球做平抛运动的射程 ②图中O点是小球抛出点在地面上的垂直投影,实验时,先让入射球m1多次从斜 轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP,然后,把被碰小球m2静止于轨道的水平部分,再将入射小球m1从斜轨上S位置静止释放,与小球m2相撞,并多次重复.椐图可得两小球质量的关系为______ ,接下来要完成的必要步骤是______ (填选项的符号) A.用天平测量两个小球的质量m1、m2 B.测量小球m1开始释放高度h C.测量抛出点距地面的高度h D.分别找到m1、m2相碰后平均落地点的位置M、N E.测量平抛射程OM,ON ③若两球相碰前后的动量守恒,其表达式可表示为______ 用②中测量的量表示) 若碰撞是弹性碰撞.那么还应满足的表达式为______ (用②中测量的量表示). 3.如图所示,气垫导轨是常用的一种实验仪器。 它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑 块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦。

相关文档
最新文档