利用导数求单调性与已知单调性求参数范围

利用导数求单调性与已知单调性求参数范围
利用导数求单调性与已知单调性求参数范围

利用导数求单调性与已知单调性求参数范围,天差地别,你了解了吗?

前面小数老师已经讲过两道了,分别是“通过分类讨论求函数的单调区间”与“不等式恒成立问题”,大家还记得吗?今天又是一道导数题,小数老师带大家来看第三种常考的类型,“已知函数的单调性,求参数的取值范围”,大家往下看吧!还是建议同学自己先试着做一下!

这道导数题,函数解析式看着不是很复杂,第(1)问求函数的单调区间与最值,也不需要讨论,因为参数k的值已知,按照我们以前说的方法求解即可;第(2)问已知函数的单调性,求参数取值范围,是一个容易出错的点,下面小数老师重点与大家一起分析下!

回顾1、对于函数y=f(x),

若导数f’(x)在区间M上大于0,则函数y=f(x)在区间M上单调递增;

若导数f’(x)在区间M上小于0,则函数y=f(x)在区间M上单调递减。

2、对于函数y=f(x),

若函数y=f(x)在区间M上单调递增,则导函数f’(x)在区间M上大于等于0;

若函数y=f(x)在区间M上单调递减,则导函数f’(x)在区间M上小于等于0;

3、关于含参不等式的恒成立问题,你还记得怎么做吗?

小数老师再提醒下:首先先看能否参变量分离,如果能分离是最好的,如果不能分离,就按照之前说的规律寻找最值即可。有疑问的同学可以翻一下历史消息哈!

4、关于函数单调性的说法,并不仅仅是像题目中直接告诉你哦,你看到的也有可能是这样的,还有可能是这样的:

这两种情况,都是告诉你函数y=f(x)在区间[1,2]上单调递增哦。好了,接下来跟小数老师一起来解题吧!

解析

(1)当k=0时,所以

x (0,1) 1 (1,+ ∞)

f’(x)+ 0 -

f(x) 递增极大值递减

所以y=f(x)的最大值是f(1)=2.

注意:求函数的单调区间之前,千万别忘了函数的定义域哈!

(2)函数y=f(x)在区间[1,2]上单调,(未说明单调增还是单调减,所以此处应该有分类讨论)

①若函数y=f(x)在区间[1,2]上单调递增,根据回顾中的,我们可以知道导数f’(x) ≥0,x∈[1,2],

②若函数y=f(x)在区间[1,2]上单调递减,

根据回顾中的,我们可以知道导数f’(x) ≤0,x∈[1,2],

综上所述,

当k≥0时,函数y=f(x)在区间[1,2]上单调递减;

当k≤-3时,函数y=f(x)在区间[1,2]上单调递增。

总结

到这道题为止,小数老师已经把导数题里面最基础最常考的三种类型告诉大家了,其他的题型都是在这三个题型的基础上变化而来,所以,同学们务必要找一些同类题型多多练习一下哈!

2-4已知单调性求参数取值范围(可编辑修改word版)

【知识点 4】已知单调性求参数取值范围 1. 思路提示:⑴对于函数在某个区间上单调递增或单调递减的问题,转化为导函数在此区 间上恒为非负或非正的问题,进而转化为导数在该区间上的最值问题. ⑵对于可导函数在某个区间不单调的问题,转化为导函数在此区间无实根,可结 合导函数的图像给出此问题的充要条件,从而求解. ⑶对于只有一个极值点的导函数研究其相关问题(如在给定区间上恒为正或负以 及根的分布等),往往可以类比二次函数在区间上的最值或根的分布求解. 例 1:已知函数f (x) = 3ax4- 2(3a + 1)x2- 2(3a + 1)x2+ 4x 1 (I)当a = 时,求f (x) 的极值; 6 (II)若f (x) 在(-1,1)上是增函数,求a 的取值范围 例 2:已知函数f (x) =x3+ax2+x +1(a ∈R) (I)讨论函数f (x) 的单调区间; 3 1 (II)设函数f (x) 在区间(- , - ) 内是减函数,求a 的取值范围. 2 3 例 3:已知函数f (x) = (2ax -x2 )e ax,其中a 为常数,且a ≥ 0 . (I)若a =1 ,求函数f (x) 的极值点; (II)若f (x) 在区间( 2, 2) 内单调递增,求a 的取值范围. 例 4:已知函数f (x) =ax3+bx2 (x ∈R) 的图像过点P(-1, 2) ,且在点P 处的切线恰好与直线x - 3y = 0 垂直. (Ⅰ)求函数f (x) 的解析式; (II)若函数f (x) 在区间[m, m +1]上单调递增,求实数m 的取值范围.

2 例 5:已知函数 f (x ) = x 3 + (1- a )x 2 - a (a + 2)x + b (a , b ∈ R ) . (Ⅰ)若函数 f (x ) 的图像过原点,且在原点处的切线斜率是-3 ,求 a , b 的值; (II )若函数 f (x ) 在区间(-1,1) 上不单调,求 a 的取值范围. 例 6:设 f (x ) = e x 1+ ax ,其中a 为正实数 (Ⅰ)当a = 4 时,求 f (x ) 的极值点; 3 (Ⅱ)若 f (x ) 为 R 上的单调函数,求a 的取值范围. 例 7:设 f (x ) = e x ,其中a 为正实数. 2 (Ⅰ)当 a = 3 时,求 f (x ) 的极值点; 4 (Ⅱ)若 f (x ) 为 R 上的单调函数,求a 的取值范围. 例 8:设 f (x ) = - 1 x 3 + 1 x 2 + 2ax 3 2 (I) 若 f (x ) 在( , +∞) 上存在单调递增区间,求 a 的取值范围. 3 (II )当0 < a < 2 时, f (x ) 在[1, 4] 的最小值为- 16 3 ,求 f (x ) 在该区间上的最大值. 例 9:已知 a ,b 是实数,函数 f (x ) = x 3 + ax , g (x ) = x 2 + bx , f '(x ) 和 g '(x ) 是 f (x ), g (x ) 的导函数,若 f '(x )g '(x ) ≥ 0 在区间 I 上恒成立,则称 f (x ) 和 g (x ) 在区间 I 上单调性一致 (I)设 a > 0 ,若函数 f (x ) 和 g (x ) 在区间[-1,+∞) 上单调性一致,求实数 b 的取值范围;

利用导数求函数的单调区间

利用导数求函数的单调区间 一学习目标: 1结合实例,找出函数的单调性与导数的关系; 2会利用导数研究函数的单调性,会求简单函数的单调区间。 二重点、难点: 重点:求函数的单调区间. 难点:求含参数函数的单调区间。. 三教材分析 本节课主要对函数单调性求法的学习; 它是在学习导数的概念的基础上进行学习的,同时又为导数的应用学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写) 它是历年高考的热点、难点问题 四教学方法 开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法 五教学过程 预习学案: 1.函数单调性的定义是什么?函数的单调区间怎样求? 2.讨论以下问题 (1)求函数y=x的导数,判断其导数的符号; (2)求函数y=x2的导数,判断其导数的符号. 3.根据上述问题,思考导数的符号与函数的单调性之间的关系,并加以总结: 设函数y=f(x)在区间(a,b)内可导: 如果在(a,b)内,______________,则f(x)在此区间是增函数; 如果在(a,b)内,______________,则f(x)在此区间是减函数. 4.根据上述总结,思考一下,函数在某个区间上是单调递增函数,是不是其导数就一定大于零呢?如果函数在某个区间上是单调递减函数,是不是其导数就一定小于零?能否举个例子说明一下?

小测验: 1.当0>x 时,()x x x f 4+ =的单调减区间 2.函数53 123++-=x x y 的单调增区间为_______________,单调减区间为______________. 利用导数求函数的单调区间(讲授学案)——冯秀转 题型:求函数的单调区间 例1、求下列函数的单调区间; (1)x x y 23+= (2)()221 ln x x x f -= 注意:求函数单调区间时必须先考虑函数的定义域. (小结)求函数单调区间的步骤: 练习:求()x e x x f 2=的单调区间。

(完整版)利用导数求参数的取值范围方法归纳

利用导数求参数的取值范围 一.已知函数单调性,求参数的取值范围 类型1.参数放在函数表达式上 例1. 设函数R a ax x a x x f ∈+++-=其中86)1(32)(23. 的取值范围 求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(. ,3)()1(-∞= 二.已知不等式在某区间上恒成立,求参数的取值范围 类型1.参数放在不等式上 例3.已知时都取得极值与在13 2)(23=-=+++=x x c bx ax x x f (1)求a、b的值及函数)(x f 的单调区间. (2)若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. __________)(]2,1[,522)(.32 3 的取值范围是则实数都有若对任意已知函数m m x f x x x x x f >-∈+--= 类型2.参数放在区间上 例4.已知三次函数d cx x ax x f ++-=2 35)(图象上点(1,8)处的切线经过点(3,0),并且)(x f 在x=3处有极值. (1)求)(x f 的解析式.(2)当),0(m x ∈时, )(x f >0恒成立,求实数m 的取值范围. 分析:(1)935)(23++-=x x x x f ] 3,0(),0(0)(]3,0(),0(0)(30)3()(,)(,0)()3,3 1(9)0()()(,0)()3 1,0(3,310)() 3)(13(3103)().2(''21‘2'的取值范围为所以内恒成立 在时当且仅当内不恒成立在时所以当所以单调递减时当所以单调递增时当得由m m x f m ,m x f m f x f x f x f x f x f ,x f x f x x x x f x x x x x f >∈>>=><∈=>>∈===--=+-= 基础训练: .___________24.434的取值范围是则实数都成立对任意实数若不等式a ,x a x x -≥-

必修一函数的单调性专题讲解(经典)

第一章 函数的基本性质之单调性 一、基本知识 1.定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当 21x x <时,都有 ))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 重点 2.证明方法和步骤: (1) 取值:设21,x x 是给定区间上任意两个值,且21x x <; (2) 作差:)()(21x f x f -; (3) 变形:(如因式分解、配方等); (4) 定号:即0)()(0)()(2121<->-x f x f x f x f 或; (5) 根据定义下结论。 3.常见函数的单调性 时, 在R 上是增函数;k<0时, 在R 上是减函数 (2),在(—∞,0),(0,+∞)上是增函数, (k<0时),在(—∞,0),(0,+∞)上是减函数, (3)二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0

用导数求函数的单调性

用导数求函数的单调性 南江县第四中学 何其孝 指导老师:范永德 一、第一段:点明课题、展示目标、自主学习 1、展示学习目标 (1)理解)0(0(x)f <>'时,f(x)在0x x =附近单调性; (2)掌握用导数求函数的单调区间。 2、板书课题:用导数求函数的单调性 3、学生围绕学习目标看教材第89-93页,进行自主学习。(约10分钟) 二、第二段:合作探究、启发点拨 1、探究1:怎样从导数的几何意义,判断)0(0(x)f <>'时,f(x)在0x x =附近单调性?点拨:以直代曲 探究2:用导数求函数单调性的步骤 点拨:(1)求定义域 (2)求导函数(x)f ' (3)求)0(0(x)f <>',判断函数的单调性 (4)写出f(x)的单调区间 2、应用举例 例 判断下列函数的单调性,写出f(x)区间 (1) )(0,x x,-sinx f(x)π∈= (2) 12432f(x)23+-+=x x x

解:f′(x)=6x2 + 6x -24 当f′(x)>0,解得:2 1712171+->--',判断函数的单调性 (4)写出f(x)的单调区间 作业:课本第98页 习题3.3A 组1、(3) (4) 2、(3) (4)

高一函数单调性完整版

函数的单调性 学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应 用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和 单调性定义判断、证明函数单调性的方法. (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。 重点与难点 (1)判断或证明函数的单调性; (2)奇偶性概念的形成与函数奇偶性的判断。 学习过程 【学习导航】 知识网络 学习要求 1. 从特殊到一般,掌握增函数、减函数、单调区间的概念; 2. 会根据图像说出函数的单调区间,并能指出其增减性; 3. 会用定义证明一些简单函数的单调性. 自学评价 观察函数x x f =)(,2 )(x x f =的图象 从左至右看函数图象的变化规律: (1). x x f =)(的图象是_________的, 2)(x x f =的图象在y 轴左侧是______的,2)(x x f =的图象在y 轴右侧是_______的. (2). x x f =)(在),(+∞-∞上,f (x )随着x 的增大而___________;2 )(x x f =在]0,(-∞ 上, f (x )随着x 的增大而_______;2 )(x x f =在),0(+∞上,f (x )随着x 的增大而________. 一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。 函数的单调性 单调性的定义 定义法证明函数的单调性 增函数 减函数 单调区间 x y 0 x y 0 x x f =)( 2)(x x f =

已知函数单调性求参数(简单)

已知函数单调性求参数(简单) 一、选择题 1.函数y=ax3-x在(-∞,+∞)上是减函数,则() A.a= B.a=1 C.a=2 D.a≤0 2.若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是() A. (-∞,-2] B. (-∞,-1] C. [2,+∞) D. [1,+∞) 3.若函数f(x)=a ln x+在区间(1,+∞)上单调递增,则实数a的取值范围是() A. (-∞,-2] B. (-∞,-1] C. [1,+∞) D. [2,+∞) 4.已知f(x)=a ln x+x2,若对任意两个不等的正实数x 1,x2都有>0成立,则实数a的取值范围是() A. [0,+∞) B. (0,+∞) C. (0,1) D. (0,1] 5.已知函数f(x)=-x3+2ax在(0,1]上是单调递增函数,则实数a的取值范围是()

A. (-∞,) B. [,+∞) C. (,+∞) D. (-,) 6.函数f(x)=e x-ax-1在R上单调递增,则实数a的取值范围为() A.R B. [0,+∞) C. (-∞,0] D. [-1,1] 7.已知a,b是正实数,函数f(x)=-x3+ax2+bx在x∈[-1,2]上单调递增,则a+b的取值范围为() A. (0,] B. [,+∞) C. (0,1) D. (1,+∞) 8.已知函数f(x)=x3+ax在[1,+∞)上是增函数,则a的最小值是() A.-3 B.-2 C. 2 D. 3 9.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是减函数,则实数a的取值范围是() A. (-∞,-)∪[,+∞) B. [-,]

利用导数判断函数的单调性

高二(下)数学理科学案9、10、11:1.3.1利用导数判断函数的单调性 【知识目标】 (一)求函数)(x f 单调区间的方法: 1.如果在),(b a 内,0)(/ >x f ,则)(x f 在此区间是增函数,),(b a 为)(x f 的单调增区间; 2.如果在),(b a 内,0)(/x f ,则)(x f 在此区间是增函数,),(b a 为)(x f 的单调增区间; (2).如果在),(b a 内,0)(/

【典型例题】 例题1(1)确定函数422+-=x x y 的单调区间; (2)找出函数14)(23-+-=x x x x f 的单调区间; (3)求函数0(ln 1)(>=x x x x f 且1≠x )的单调区间. 例题2求下列函数的单调区间 (1)x e x f x -=)(;(2)x e x x f ln 2)(2-=; (3)x e x x x f -++=)1()(2 例题3 (1)求方程0=7+6x -2x 23在区间(0,2)上的根的个数. (2)证明方程x -12 sinx =0有惟一解.

函数的单调性重难点分析

《函数的单调性》内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学. 这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的。教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系. 重点:理解函数单调性的概念明确概念的内涵,用定义证明函数的单调性。 难点:求函数的单调区间,及其证明过程. 这一节课是概念课,重点在于理解函数单调性的概念并用概念解决问题。因而对于概念的深度剖析就非常重要,概念的本质属性以及引入这一概念的作用都将帮助学生理解概念。因而再给出概念前要做好铺垫工作,即根据函数图象观察走势再进行数学的严格刻画。由于该概念是根据函数图象性质而来,因此数形结合的思想方法就显得格外重要。在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。学生在学习过程中应动手操作,积极参与到教学活动中,注意概念的本质属性理解概念的内涵,积极思考善于观察。

利用导数判断单调性例题精讲

利用导数判断函数的单调性 【学习目标】会利用导数研究函数的单调性,掌握分类讨论思想的应用. 【重点、难点】利用导数研究函数的单调性. 【自主学习】 1、设函数()y f x =在区间(,)a b 内可导.(1)如果在(,)a b 内, ()0f x '> ,则()f x 在此区间是增函数;(2)如果在(,)a b 内, ()0f x '< ,则()f x 在此区间是减函数. 2、()/0f x <是()f x 为减函数的( A ) A .充分而不必要条件 B.必要而不充分条件 C .充分必要条件 D.既不充分也不必要条件 【自测】 求下列函数的单调区间: (1)3241y x x x =-+- (2)2()f x x x =+ 解:(1)函数的单调递增区间为:413413(,),(,)33 -+-∞+∞ 函数的单调递减区间为:413413(,)33 -+ (2)函数的单调递增区间为:(,2),(2,)-∞-+∞ 函数的单调递减区间为:(2,2)- 课内探究案 【精讲点拨】 例1、 求下列函数的单调区间: (1)()1x f x e x =-- (2)()ln f x x x =- 解:(1)函数的单调递增区间为:(0,)+∞ 函数的单调递减区间为:(,0)-∞ (2)函数的单调递增区间为:(1,)+∞

函数的单调递减区间为:(0,1) 例2、 证明:函数16()f x x x =+ 在()0,4上是减函数 证明:222 221616()1(0,4)16 160 0,4.x f x x x x x x -'=-=∈∴<∴-<∴ 函数在()上是减函数 例3、 若函数321y x x mx =+++在(),-∞+∞上是增函数,求实数m 的取值范围。 解:232y x x m '=++ 4120 1 3 R R m m '∴≥∴?=-≤∴≥ 2函数在上是增函数 y =3x +2x+m 0在上恒成立 【当堂检测】 函数11 y x =+的减区间是 (,1),(1,)-∞--∞ 利用导数判断函数的单调性教学案 课后拓展案 A 组 1、求函数32()15336f x x x x =--+的增区间。 解:函数的递增区间: ∞∞(-,-1),(11,+) 2、求函数2()2ln f x x x =-的减区间。 解:函数的定义域(0,)+∞

(完整版)利用导数研究函数的单调性(超好复习题型)

利用导数研究函数的单调性 考点一 函数单调性的判断 知识点: 函数()f x 在某个区间(),a b 内的单调性与其导数的正负关系 (1)若 ,则()f x 在(),a b 上单调递增; (2)若 ,则()f x 在(),a b 上单调递减; (3)若 ,则()f x 在(),a b 是常数函数. 1、求下列函数的单调区间. (1)()ln f x x e x =+ (2)2 1()ln 2 f x x x =- (3)()()3x f x x e =- (4)()2x f x e x =- (5)()3ln f x x x =+ (6)ln ()x f x x = (7)2()(0)1 ax f x a x =>+ (8)32333()x x x x f x e +--=

2、讨论下列函数的单调性. (1)()ln (1),f x x a x a R =+-∈ (2)3(),f x x ax b a R =--∈ (3)2 ()ln ,2 x f x a x a R =-∈ (4)32(),,f x x ax b a b R =++∈ (5)2()(22),0x f x e ax x a =-+> (6)2 1()2ln (2),2 f x x a x a x a R =-+-∈ (7)2()1ln ,0f x x a x a x =-+-> (8)221 ()(ln ),x f x a x x a R x -=-+∈

3、已知函数32(),f x ax x a R =+∈在4 3 x =-处取得极值. (1)确定a 的值; (2)若()()x g x f x e =,讨论函数()g x 的单调性. 4、设2()(5)6ln ,f x a x x a R =-+∈,曲线()y f x =在点()1,(1)f 处的切线与y 轴相交于点()0,6. (1)确定a 的值; (2)求函数()f x 的单调区间. 5、(2016全国卷2节选)讨论2()2 x x f x e x -=+的单调性, 并证明当0x >时,(2)20x x e x -++>. 6、(2016年全国卷1节选)已知函数2()(2)(1)x f x x e a x =-+-.讨论()f x 的单调性.

已知函数单调性求参数范围公开课教案

已知函数单调性求参数范围 教学目标 1.知识与技能:学会利用导数来解决已知单调性求参数范围问题; 2.过程与方法:通过实例讲解,归纳,解决问题的方法; 3.情感与态度:通过问题的解决,体会转化思想的应用. 教学重点 已知单调性,利用导数求参数范围. 教学难点 不同问题的处理方法. 教学过程 (一)知识梳理 函数y =f (x )的导数为)('x f y =,对于区间(a ,b ). 1.若y =f (x )的单调区间为(a ,b ),则? ??==0)('0)('b f a f 2.若y =f (x )在区间(a ,b )上单调递增(递减),则)0)('(0)('≤≥x f x f 在(a ,b )上恒成立. (二)典例分析 例1 函数)(ln )(22R a ax x a x x f ∈+-=的单调递减区间是),1(+∞,求a 的值. 例2 函数)(ln )(22R a ax x a x x f ∈+-=在),1(+∞上是减函数, 求a 的取值范围. 例3 函数)0(22 1ln )(2<--=a x ax x x f 在定义域内单调递增,求a 的取值范围. 例4 函数1331)(223+-+=x m mx x x f 在区间)3,2(-上是减函数,求m 的取值范围. 例5已知R a ∈,函数3)1()(223+-+-=x a ax x x f 在)0,(-∞和),1(+∞上都是增函数, 求a 的取值范围.

(三)课时小结 本节课主要介绍了已知函数单调性来利用导数求参数范围. (四)备用练习 1.函数)0(3)(223>+-+=a x a ax x x f 在[-1,1]上没有极值点, 求a 的值. 2.函数)0(1)(2>+=a ax e x f x 在R 上为单调函数, 求a 的取值范围. 3.函数1)5()1()(23-++-+=x k x k x x g 在区间) (3,0上有极值点,求参数k 的取值范围。 (五)作业布置 <<状元之路>>第48页 11,12

1函数的单调性(教师版)

函数的单调性 __________________________________________________________________________________ __________________________________________________________________________________ 1、 通过已学过的函数模型,特别是二次函数,理解函数的单调性; 2、 掌握单调性的判断方法,并能简单应用; 一、函数单调性的定义 1、图形描述: 对于函数)(x f 的定义域I 内某个区间D 上,若其图像为从左到右的一条上升的曲线,我们就说函数)(x f 在区间D 上为单调递增函数;若其图像为从左到右的一条下降的曲线,我们就说函数)(x f 在区间D 上为单调递减函数。 2、定量描述 对于函数)(x f 的定义域I 内某个区间D 上的任意两个自变量的值21,x x , (1)若当1x <2x 时,都有1()f x <)(2x f ,则说)(x f 在区间D 上是增函数; (2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在区间D 上是减函数。 3、单调性与单调区间 若函数y =)(x f 在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。此时也说函数是这一区间上的单调函数。在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 特别提醒: 1、函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上不是增函数.例如函数2 x y =(图1),当[)0,x ∈+∞时是增函数,当(] ,0 x ∈-∞时是减函数。而有的函数在整个定义域上都是单调的。2、函数的单调区间是其定义域的子集;3、21,x x 应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数)。 二、用定义证明函数的单调性: 定义法证明函数在某个区间上是增(减)函数是最基本方法其步骤是: 1、取量定大小:即设21,x x 是区间上的任意两个实数,且1x <2x ; 2、作差定符号:即()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形; 3、判断定结论: 即根据定义得出结论。

(完整版)2-4已知单调性求参数取值范围

【知识点4】已知单调性求参数取值范围 1. 思路提示:⑴对于函数在某个区间上单调递增或单调递减的问题,转化为导函数在此区 间上恒为非负或非正的问题,进而转化为导数在该区间上的最值问题. ⑵对于可导函数在某个区间不单调的问题,转化为导函数在此区间无实根,可 结合导函数的图像给出此问题的充要条件,从而求解. ⑶对于只有一个极值点的导函数研究其相关问题(如在给定区间上恒为正或负 以及根的分布等),往往可以类比二次函数在区间上的最值或根的分布求解. 例1:已知函数422()32(31)2(31)4f x ax a x a x x =-+-++ (I )当16 a =时,求()f x 的极值; (II )若()f x 在()1,1-上是增函数,求a 的取值范围 例2:已知函数32()1()f x x ax x a R =+++∈ (I )讨论函数()f x 的单调区间; (II )设函数()f x 在区间31(,)23 --内是减函数,求a 的取值范围. 例3:已知函数2()(2)ax f x ax x e =-,其中a 为常数,且0a ≥. (I )若1a =,求函数()f x 的极值点; (II )若()f x 在区间内单调递增,求a 的取值范围. 例4:已知函数32()f x ax bx =+()x R ∈的图像过点(1,2)P -,且在点P 处的切线恰好与直线30x y -=垂直. (Ⅰ)求函数()f x 的解析式; (II )若函数()f x 在区间[],1m m +上单调递增,求实数m 的取值范围.

例5:已知函数32 ()(1)(2)(,)f x x a x a a x b a b R =+--++∈. (Ⅰ)若函数()f x 的图像过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调,求a 的取值范围. 例6:设()1x e f x ax =+,其中a 为正实数 (Ⅰ)当a 43 =时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 例7:设()2 x e f x =,其中a 为正实数. (Ⅰ)当34 a =时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 例8:设3211()232 f x x x ax =-++ (I)若()f x 在2(,)3+∞上存在单调递增区间,求a 的取值范围. (II )当02a <<时,()f x 在[1,4]的最小值为163 - ,求()f x 在该区间上的最大值. 例9:已知a ,b 是实数,函数,)(,)(23bx x x g ax x x f +=+= )(x f '和)(x g '是)(),(x g x f 的导函数,若0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性一致

函数单调性

函数单调性及其应用 1.一元函数单调性及其应用 2.多元函数单调性及其应用 2.1 多元函数单调性的定义 一元函数)(x f y =在某个区间上的单调性,如该区间为),(+∞-∞时,可看成该函数在有向直线x 轴上的单调性;如该区间为[]b a ,或()b a ,时,可以看成该函数在x 轴上的一条有向线段(方向与x 轴正方向相同)上的单调性等等,类似地,可定义二元函数在xoy 面上的一条有向线段,有向直线或射线上的单调性。 定义 设AB 为xoy 面上的一条有向线段,二元函数),(y x f z =在AB 上有定义,对于AB 任意两点21,P P ,设21P P 与AB 同向。 若)()(21P f P f <,则称二元函数),(y x f z =在AB 上单调增加。 若)()(21P f P f >,则称二元函数),(y x f z =在AB 上单调减少。 2.2多元函数单调性的判别法 如果),(y x f u =在点),(y x P 可微,l 的方向余弦是βαcos ,cos ,则),(y x f u =在),(y x P 沿射线l 的方向导数存在,且 βαcos cos y f x f l f ??+??=??。其中l 是),(y x P 出发的一条射线,他的方向向量记作l 由二元函数的中值公式:),(),(0000y x f k y h x f -++ =k h y h x f h k y h x f y x ),(),(0000?+?++?+?+θθθθ 定理 1 设二元函数),(y x f z =在区域I 内连续,有向线段I AB l ?=,且),(y x f z =在),(B A 内每个点处都可微,则在),(B A 内至少存在一点C ,使得 AB l f A f B f C ???=-)()( 其中),(B A 表示有向线段AB 上不包括两个端点的所有点构成的点集。AB 表示AB 的长度,l 是点A 出发的并且经过点B 的一条射线。 定理2 设二元函数),(y x f z =在区域I 内连续,有向线段I AB l ?=,且

专题2.13 利用导数求函数的单调性、极值、最值(解析版)

第十三讲 利用导数求函数的单调性、极值 、最值 【套路秘籍】 一.函数的单调性 在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值 (1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时: ①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x ); ②求方程f ′(x )=0的根; ③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值 (1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值. (2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 【套路修炼】 考向一 单调区间 【例1】求下列函数的单调区间: (1)3 ()23f x x x =-; (2)2 ()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析 【解析】(1)由题意得2 ()63f x x '=-. 令2 ()630f x x '=->,解得2x <- 或2 x >. 当(,2x ∈-∞- 时,函数为增函数;当)2 x ∈+∞时,函数也为增函数. 令2 ()630f x x '=-<,解得22x - <<.当(22 x ∈-时,函数为减函数.

(完整版)利用导数求函数单调性题型全归纳

利用导数求函数单调性题型全归纳 一.求单调区间 二.函数单调性的判定与逆用 三.利用单调性求字母取值范围 四.比较大小 五.证明不等式 六.求极值 七.求最值 八.解不等式 九.函数零点个数(方程根的个数) 十.探究函数图像 一.求单调区间 例1. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间 解: ()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++. 则令()()g x f x '=,因为当0,1a a >≠,所以2 ()2ln 0x g x a a '=+> 所以()f x '在R 上是增函数,又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+, 故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞, 变式:已知()x f x e ax =-,求()f x 的单调区间 解:' ()x f x e a =-,当0a ≤时,' ()0f x >,()f x 单调递增 当0a >时,由' ()0x f x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增 由' ()0x f x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增 综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间 当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞, 二.函数单调性的判定与逆用 例2.已知函数32 ()25f x x ax x =+-+在1132 (,)上既不是单调递增函数,也不是单调递减 函数,求正整数a 的取值集合 解:2 ()322f x x ax '=+-

函数单调性方法和各种题型

(一)判断函数单调性的基本方法 Ⅰ、定义法: 定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明 Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性 Ⅲ、图像法: 说明:⑴单调区间是定义域的子集 ⑵定义x 1、x 2 的任意性 ⑶代数:自变量与函数值同大或同小→单调增函数 自变量与函数相对→单调减函数 例3:y=|x2+2x-3| 练习:

(二) 函数单调性的应用 Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论: (1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。 (2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。 例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题: 1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在 [a,b]上的最小值是 ( ) 2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是 ( ) 3、( )有函数13+--=x x y 存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4 -44 -00 4 4、](()()的值域为 时,函数当1435,02+-=∈x x x f x ()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、????? ? ??????????? ?? 5、求函数y=-x-6+ 的值域 x -1

利用导数研究函数的单调性之二阶求导型

利用导数研究函数的单调性之二阶求导型 一、解答题(题型注释) 1.已知函数ax x xe x f x --=ln )(2. (1)当0=a 时,求函数)(x f 在]1,2 1[上的最小值; (2)若0>?x ,不等式1)(≥x f 恒成立,求a 的取值范围; (3)若0>?x ,不等式e x x e x e e x x f 1111 1)1(2+ -+≥-恒成立,求a 的取值范围. 1.(1) ln 22 e +; (2)2a ≤;(3)11(1)e e a e e ≤---. 【解析】 试题分析:(1)由0=a 时,得出x xe x f x ln )(2-=,则21 ()(21)x f x x e x '=+- ,再求导()f x '',可得函数)(/ x f 在),0(+∞上是增函数,从而得到函数()f x 的单调性,即可求解函数)(x f 在]1,2 1[上的最小值; (2)由(1)知函数)(/ x f 在),0(+∞上是 增函数,且00>?x ,使得0()0f x '=,得01 )12(0 200 =-- +a x e x x ,即022000(2)1x ax x x e =+-,设022000()1ln 2x f x x x e =--,利用函数0()f x 的单调性, 即可求解求a 的取值范围;(3)根据题意,转化为1 1ln x e x e a x x x e +-≤--对任意0>x 成 立,令e x e e x x x x x g 11ln )(+---=,所以()g x ',可得出()g x 的单调性,求解出()g x 的最小值,即可a 的取值范围. 试题解析:(1)0=a 时,x xe x f x ln )(2-=,x e x x f x 1)12()(2/-+=∴, 01 )44()(22//>++=?x e x x f x ,所以函数)(/x f 在),0(+∞上是增函数,

导数中含参数单调性及取值范围

应用导数的概念及几何意义解题仍将是高考出题的基本出发点;利用导数研究函数的单调性、极值、最值、图象仍将是高考的主题;利用导数解决生活中的优化问题将仍旧是高考的热点;将导数与函数、解析几何、不等式、数列等知识结合在一起的综合应用,仍将是高考压轴题. 一. 含参数函数求单调性(求可导函数单调区间的一般步骤和方 法:(1)确定函数定义域;(2)求导数;(3)令导数大于0,解得增区间, 令导数小于0,解得减区间.) 例1(2012西2)已知函数2221 ()1 ax a f x x +-=+,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间. (1a =22()1 x f x x = +22(1)(1)()2 (1)x x f x x +-'=-+ (0)2f '=()y f x =20x y -= 2()(1) ()2 1x a ax f x x +-'=-+ 0a =2 2()1 x f x x '=+.所()f x (0,)+∞(,0)-∞ 0a ≠2 1 ()() ()21x a x a f x a x +-'=-+ , 0a >()0f x '=1x a =-21 x = ()f x ()f x ' 【 )(x f (,)a -∞-1(,)a +∞1 (,)a a - 0a <()f x ()f x '

% ()f x 1 (,)a -∞1(,)a a --(,)a -+∞ 0a = 0a >)(x f 1(0,)a 1(,)a +∞)(x f (0,)+∞21 ()0f a a => 0x )(x f 2012a x a -=01 x a <0x x >()0f x >0x x <()0f x < )(x f [0,)+∞(0)0f ≤11a -≤≤ 0a >)(x f [0,)+∞a (0,1] 0a <)(x f (0,)a -(,)a -+∞)(x f (0,)+∞()1f a -=- )(x f [0,)+∞(0)0f ≥1a ≥1a ≤- 0a <)(x f [0,)+∞a (,1]-∞- | a (,1](0,1]-∞- 例2 设函数f (x )=ax -(a +1)ln(x +1),其中a ≥-1,求f (x )的单调区间. 【()f x (1,)-+∞'1()(1),1 ax f x a x -=≥-+ 10a -≤≤'()0,f x <()f x (1,)-+∞ 0a >'()0,f x =1.x a = '()f x x 1(1,)x a ∈-' ()0,f x <()f x 1(1,)a -

相关文档
最新文档