水泥罐抗风验算计算书

水泥罐抗风验算计算书
水泥罐抗风验算计算书

京新高速公路临河至白疙瘩段三标一分部(K532+150~K565+000段)

水泥罐抗风验算计算书

中国交通建设股份有限公司

京新高速公路LBAMSG-3项目总承包管理部第一项目部

二〇一五年四月

水泥罐抗风验算计算书

一、验算内容及验算依据

为保证我项目水泥罐安全性对我分部拌合站筒仓的抗风性能进行了验算。主要从拌合站筒仓支撑构件的强度、稳定性及基础的倾覆性进行了验算,并提出相应的抗风加固措施。

验算依据为:《公路桥涵设计通用规范》(JTG D60-2004)及《公路桥梁钢结构设计规范》。 二、风荷载大小的确定

根据现场调研及相关工区提供的资料,检算时取罐体长度为12m ,支腿长度为9.0m 。罐体直径为5.0m, 自重为10 t ,满载时料重300 t 。

根据《公路桥涵设计基本规范》中的4.4.1条确定风荷载的大小。

根据资料显示,我项目部施工范围内混凝土搅拌站在沿线大风区分区范围、风向、最大风速分别为主导风向NW ,最大风速53m/s 。相关抗风的设计计算以此为依据。

表1 风级风速换算表

《公路桥涵设计基本规范》中的4.4.1条规定,作用于结构物上的风荷载强度可按下式计算:

0321W K K K W = (1)

式中 W —风荷载强度(Pa );

0W —基本风压值(Pa ),2

06

.11ν=

W ,系按平坦空旷地面,离地面20m 高,频率1/100的10min 平均最大风速ν(m/s )计算确定;一般情况0W 可按《铁路桥涵设计基本规范》中附录D “全国基本风压分布图”,并通过实地调查核实

后采用;

K—风载体形系数,对桥墩可参照《铁路桥涵设计基本规范》中表4.4.1-1,1

其它构件为1.3;

K—风压高度变化系数,可参照《铁路桥涵设计基本规范》中表4.4.1-2,2

风压随离地面或常水位的高度而异,除特殊高墩个别计算外,为简化计算,桥梁工程中全桥均取轨顶高度处的风压值;

K—地形、地理条件系数,可参照《铁路桥涵设计基本规范》中表4.4.1-3。

3

针对本工程场地实际特点,取k1=1.3,k2=1.0 ,k3=1.3。取风级11下的风速为30m/s,风级13下的风速为39m/s,风级15下的风速为48m/s;风级17下的风速为58m/s。计算得罐体每延米的荷载强度见表2。

表2 风级与风荷载强度大小

三、不同工况下立柱强度、稳定性及整体倾覆检算

为了考虑罐体支架的内力,检算过程采用有限元数值计算方法。根据工程的实际使用情况及受力最不利原则,验算时重点对罐体满载的情况进行了立柱的强度及稳定性验算。罐体立柱采用φ330mm(壁厚8mm),立柱间横撑采用槽钢120x40 x4.5mm。有限元模型见图1及图2。

3.1 风级11结构性能抗风验算

风级11时的风荷载和罐体满载时的恒荷载(包括自重)组合进行立柱的强度、稳定性验算。同时对风级11时的风荷载和罐体空载时的恒荷载组合进行了基础的稳定性验算。

(1)罐体满载状态下立柱的强度及稳定性验算

在11级风荷载作用下,按照风荷载+罐体满载时计算得到的立柱应力见图3。

图3 风荷载+罐体满载时立柱应力图(单位:kpa)

从图3可知,在立柱底截面的应力最大,最大压应力为111MPa。《铁路桥梁钢结构设计规范》中3.2.1条的规定,Q235钢的弯曲基本容许应力为140 MPa。在主力+风力组合下,容许应力提高系数为1.2倍,所以提高后的弯曲容许应力为140*1.2=168 MPa。从分析结果上看,立柱底截面的最大应力数值均小于168 MPa,故在风级11+罐体满载状态下,立柱的强度满足规范要求。

从杆件的局部稳定性来看:

取钢管立柱L=4.5m检算。

钢管回转半径r=2

2314

330 /4=113.9mm

长细比λ=L/r=4500/113.9=40

查轴心受压稳定系数表,φ=0.88

立柱的稳定容许应力为0.88x168=148 Mpa, 立柱的实际应力小于立柱的稳定容许应力,所以立柱的稳定性满足规范要求。

(2)罐体满载状态下支撑构件的整体稳定性验算

为了进一步研究罐体满载状态下支撑构件的整体稳定性,本报告采用有限

元软件进行了屈曲特征值分析,输入自重(不变)和风荷载(可变)后进行屈曲分析。分析结果输出的特征值变成屈曲荷载系数,屈曲荷载系数乘以风荷载(可变)加上自重等于屈曲荷载值,分析结果见表3。

表3 支撑构件的整体稳定性

模态特征值

1 20.72

2 35.76

3 60.15

从表3可知,罐体满载状态下支撑构件的整体稳定性屈曲荷载系数最小为20.72,满足稳定性要求。第一阶失稳模态见图4。

图4 第一阶失稳模态

图1 整体有限元模型图2 局部放大模型

(3)罐体空载状态下基础的稳定性检算

根据罐体受力分析,在空罐情况下较满灌情况下,地基土体发生剪切破坏,发生整体倾覆,故只检算空罐情况下基础的整体稳定情况。

图5 单个罐体整体稳定性计算简图

上图中:

N:罐体竖向力kN;

F:风荷载产生的水平力kN;

G:基础重力kN;

M:风荷载产生的弯矩k N·m;

H:基础高m;

a:基础宽m;

b :基础长m ;

11级风荷载作用下相关的计算参数:

N=98.32kN M=855k N ·m c=30kPa φ=30° γ(土体容重)=19kN/m 3

a=5.00m b=5.00m H=2.1m F=57 kN

1)整体抗倾覆检算

2p 1

E 22

p H K γ=+=343.923k N/m

式中:p E :单宽被动土压力kN/m ;

p K :朗肯被动土压力系数,2(45)2

p K tg φ

=+=3;

H :基础埋深;

c :土体粘聚力kPa ;

γ:土体容重;

13

p H

M E b =?

?=343.923*2.1*5/3=1203.732k N ·m 式中: 1M :被动土压力p E 所产生的转动力矩;

'2p 1E ()223p H K γ=+式中: '

p E :单宽被动土压力kN/m ;

'2133

p H

M E b =???=701.0326 k N ·m

式中: 2M :被动土压力'

p E 所产生的转动力矩;

1G V γ==23*a*b*H=1207.5kN

式中: G :基础重力;

'G G N =+=1305.82 kN

式中: '

G :总竖向力;

''2

GN a

M G =?=3264.55k N ·m

式中:'

GN M :竖向力产生的转动力矩;

3M =F*H=49.875*2.1=119.7k N ·m

式中: M3:风荷载水平力产生的转动力矩k N ·m ;

'

123GN M M

M M M =+--∑ =3647.549 k N ·m

因为:12

GN M M M M =+-∑/M ≥4.26614 所以:罐体不会发生倾覆破坏 2)基底抗滑移检算

=

s f N

F F

?=0.45*1305.82/57=10.30911 (实际此时水平力不足以引起基础滑动,基础侧面土体的抵抗作用尚未发挥,故抗滑稳定性满足要求,有比较大的安全储备)

式中:s F :基底滑动安全系数,可根据建筑物等级,查有关设计规范,一般1.2-1.4

N :作用在基底的竖向力的总和,kN ;

F :作用于基底的水平力的总和,kN ;

f :基础与地基土的摩擦系数,经查表取0.45

综上所述,基础在11级风荷载+罐体空载作用下安全可靠。 3.2 风级13结构性能抗风验算

风级13时的风荷载和罐体满载时的恒荷载(包括自重)组合进行立柱的强度、稳定性验算。同时对风级13时的风荷载和罐体空载时的恒荷载组合进行了基础的稳定性验算。

(1)罐体满载状态下立柱的强度及稳定性验算

在13级风荷载作用下,按照风荷载+罐体满载时计算得到的立柱应力见图6。

图6 风荷载+罐体满载时立柱应力图(单位:kpa)

从图6可知,在立柱底截面的应力最大,最大压应力为124Mpa< 168 MPa,故在风级13+罐体满载状态下,立柱的强度满足规范要求。

从杆件的局部稳定性来看:立柱的稳定容许应力为0.88x168=148 Mpa, 立柱的实际应力小于立柱的稳定容许应力,所以立柱的稳定性满足规范要求。

(2)罐体满载状态下支撑构件的整体稳定性验算

为了进一步研究罐体满载状态下支撑构件的整体稳定性,本报告采用有限元软件进行了屈曲特征值分析,输入自重(不变)和风荷载(可变)后进行屈曲分析。分析结果输出的特征值变成屈曲荷载系数,屈曲荷载系数乘以风荷载(可变)加上自重等于屈曲荷载值,分析结果见表4。

表4 支撑构件的整体稳定性

模态特征值

1 12.26

2 21.16

3 35.63

从表4可知,罐体满载状态下支撑构件的整体稳定性屈曲荷载系数最小为

水泥罐基础计算书

水泥罐及粉煤灰罐基础计算书 1、千灯湖站地层情况 自上而下分布如下:杂填土:0~;粉细砂层:0~;粉砂岩:0~。 该地层经过了φ550@400 深约14m的深层搅拌桩加固。 2、荷载分析 静荷载:支架;水泥罐装水泥60t; 粉煤灰可装40T。 动荷载:施工不考虑; 风荷载:根据气象资料,按10级台风计算。 3、水泥罐及粉煤灰罐基础设计 承台砼为C30,承台尺寸为:8900mm×4400mm×600mm。 4、受力及变形验算 (1)基础竖向承载力验算 静荷载: V=405+1000=1405kN G =×××25= 式中 V—为水泥罐自重 水泥罐空壳及支架自重,水泥罐可装60T水泥,粉煤灰可装40T; G—为基础重量; 深层搅拌桩复合地基承载力: f——复合地基承载力特征值(kPa) spk m——面积置换率,桩的截面积除以设计要求每一根桩所承担的处理面积;

a R ——单桩竖向承载力特征值(KN ) p A ——桩的截面积(2m ) β——桩间土承载力折减系数,当桩端土未经修正的承载力特征值大于桩周土的承载力特征值的平均值时,可取~,差值大时取低值;当桩端土未经修正的承载力特征值小于或等于桩周土的承载力特征值的平均值时,可取~,差值大时或设置褥垫层时均取高值; 桩竖向承载力特征值a R 可按下列二式进行估算,由水泥强度确定的a R 宜大于地基抗力所提供的a R 。 1P n a p si i p i R u q l q A α==+∑ ① a cu P R f A η= ② 式中: p u ——桩的周长(m ); n ——桩长范围内的土层数; si q ——桩周第i 层土的侧阻力特征值,淤泥可取4~7kpa ;淤泥质土可取6~ 12kpa ;软塑状的黏性土可取10~15kpa ;对可塑状的黏性土、稍密 中粗砂可取12~18kpa ;对稍密粉土和稍密的粉细砂可取8~15kpa ; p q ——桩端地基土未经修正的承载力特征值(kpa ),可按现行广东省标准《建 筑地基基础设计规范》DBJ-15-31有关规定取值; i l ——第i 层土层的厚度(m ); α——桩端天然地基土的承载力折减系数,可取~;承载力高时取低值; η——桩身水泥土强度折减系数; cu f ——桩身水泥标准抗压强度;

拌合楼基础验算修终(DOC)

拌和楼、水泥罐基础验算 一、基础布置 1、搅拌主楼 主楼和水泥罐基础基坑共用一个,采用一体开挖成:29x18.5x2.8m基坑。其中主楼两处基础顶受力600KN,柱高0.43m,横截面尺寸1.1m×0.8m,预埋钢板H20mm×600mm×900mm;四处基础顶受力300KN,柱高0.43m,横截面尺寸0.8m×0.8m,预埋钢板H20mm×600mm×600mm。 2、水泥罐基础 水泥罐三十二处基础受力20KN,柱高1.2m,横截面尺寸0.8m×0.8m,预埋钢板H20mm×600mm ×600mm。 3、配料机基础 配料机基础(共20个)单墩受力P2=200KN; 预埋钢板12mm×400mm×400mm;墩柱高0.80m,设横截面尺寸0.8m× 0.8m。 4、传送带机基础 斜皮带机基础(共28个)单墩受力P3=50KN; 预埋钢板12mm×400mm×400mm; 12个设横截面尺寸1.65m×0.5m,设基础高0.50m的条形基础,4个横截面尺寸0.8m×0.8m,预埋钢板12mm×400mm×400mm。 5、控制室 控制室八处基础受20KN,柱高0.60m,横截面尺寸0.4m×0.5m,预埋钢板H12mm×400mm×400mm;

二、验算资料 1、抗风等级: 风力10级左右,最大风速达34m/s。 2、扩大基础尺寸: 扩大基础尺寸:长29 m、宽18.5 m、高2.8m,缺口为4.5x4m的基础,厚度0.8m,采用0.2m 砂垫层,基底采用Φ165mmx6mm钢管桩加固,钢管桩深入扩大基础里0.2m,下层基础1.5x1.5x1.3m。(详见上示意图) 3、设计荷载: ⑴水泥罐自重装满水泥180Tx8=1440T; ⑵拌和楼主楼自重30Tx4+60Tx2=240T; ⑶控制室自重2Tx8=16T; ⑷C25钢筋混凝土扩大基础自重 ((29x18.5)-(4x4.5))x0.8x2.6T/m3=1078.5T; ⑸下层基础墩一共38个自重1.5x1.5x1.8x2.6x38(水泥罐32个、拌和楼6个)=400T; ⑹砼基础与水泥罐、主楼、控制室全部自重=14400+2400+160+10785+4000=31745KN。

软弱下卧层问题

软弱下卧层问题

————————————————————————————————作者:————————————————————————————————日期: ?

当地基受力层范围内有软弱下卧层时, 应按下式验算: ?pz+pcz≤faz(1)?式中:f az为软弱下卧层顶面处经深度修正后地基承载力特征?值;pz 、pcz分别为软弱下卧层顶面处的附加应力和自重应 力, 对于条形和矩形基础, pz 值可按应力扩散角法计算。 第一:筏板基础宽度和长度怎么确定。是不是按照建筑周边轮廓长宽度外加各1.0m考虑吗??还有:若按照上述取宽度,比如宽度20m,那么按照规范GB50007-2002表5.2.7z/b=0.25内那么在深度5米以内,地基压力扩散角都取0度,是不是太保守了,请大家参言 GB50007-2002规范中说,“宜将基础面以上范围内的荷载,按基础两侧的超载考虑,当超载宽度大于基础宽度两倍时,可将超载折合成土层厚度作为基础埋深,基础两侧超载不等时,取小值。”我有以下理解,不知正确否,请各位斧正。? ?1.主楼宽度和车庫的宽度比,如果小于2倍主楼基础宽度,则不考虑车庫影响,按主楼基础埋深(如10米)进行深度修正; ?2.主楼宽度和车庫的宽度比,如果大于2倍主楼基础宽度,则应考虑车庫影响,将车庫的建筑荷载折合成土层厚度,如车庫基础荷载为60KN/m2上部土层平均重度为18KN/m3,则埋深d=60/18=3.33米,以此深度修正; 3.如果主楼基础埋深为10米,车庫基础埋深为7米,两者不一致,则埋深d=3.33+(10-7)=6.33米,以此深度修正。 关于深度修正问题的讨论. 其实,规范的这一解释是少有的清楚。举数字也仅是具体化而已,如基础宽度10m,超载宽度25m,超载40kPa,则可以折算为2m的土层。如果超载宽度15m,则不能折算,怎么办?规范没有说。其实2倍是人为定的,19m就不行了?我的意思是应该进行地基极限承载力的数值分析,分析超载宽度不够所引起的效应究竟如何?但是怎么进行数值分析还请高手指点。 3. 结构人员的所谓“400mm”厚度,实际上是筏板基础与地下室底板的区别。如果是筏板基础,传递上部结构荷载,厚度大于400mm。 如果荷载由独立基础或条形基础传递上部结构荷载,底板只传递地下室地坪荷载及平衡浮力,则厚度一般小于400mm;?另外,请注意设计图纸上所标明的是设计值还是标准值,相差25%,所谓“地基承载力特征值”实际上是容许承载力,与荷载标准值相对应。请问设计值对应什么荷载效应? 有一个项目,为17层建筑,拟采用筏板基础,平均基底压力380kPa,地基为CFG复合地基,复合地基承载力经深度修正后为406kPa,基底压力小于复合地基承载力,可满足要求。可有同事指出,基底压力呈马鞍形分布,边缘的压力应该是平均压力的1.3倍,应为494kPa,这样一来,复合地基承载力就不足了,需要考虑其它方法。请问这种说法正确吗? 退步想想,按基底压力呈马鞍形分布,当建筑物荷载均匀时,边缘的压力是平均压力的1.3倍,复合地基承载力是不足,会如何?边缘土挤出、建筑物失稳?那么是四周挤出、建筑物四周失稳,而中间稳定,这是不可能的,建筑物重心产生的反力距可使建筑物稳定,再说还有个2倍。例子到处都是。?我们现在的设计思路与土力学中研究问题的思路是两个不同层次的问题,前一个思路是以后一个思路为基础的,但前者是实用的最低的下限,安全度的下限,实际可能发生的状态应当

水泥罐基础验算

水泥罐基础验算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

集料拌和站基础及立柱设计计算书 汉十铁路客运专线HSSG-6标段一工区砼拌和站设置两台HZS-180型拌合机,每台拌合机配备6个罐,共4个水泥罐,每个拌和站的两个水泥罐基础联体设置。 一、设计资料 (1)每个水泥罐自重8t,装满水泥重100t,合计108t;水泥罐直径。水泥罐基础采用C25钢筋砼条形承台基础满足两个水泥罐同时安装。6个罐放置在圆环形基础上,圆环内径7米,外径米,基础高,外露。基础采用φ18@300mm×300mm上下两层钢筋网片,架立筋采用φ18@450mm×450mm钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。 (2)水泥罐总高米,罐高米,罐径米,柱高5m,柱子为4根正方形布置,柱子间距为米,柱子材料为厚度8mm的钢管柱。 施工前先对地基进行处理,处理后现场检测,测得地基承载力超过350kpa。 二、水泥罐基础计算书 1、计算基本参数 水泥罐自重8t,装满水泥共重108t。 水泥罐总高米,罐高米,柱高5m。 2、地基承载力计算 水泥罐基础要求的承载力

1)砼基础面积:S=; 砼体积:V=×=; 底座自重:Gd=×2500×=(砼自重按2500kg/m3); 2)装满水泥的水泥罐自重:Gsz=6×108×=; 3)总自重为:Gz=Gd+Gsz=+=; 4)基底承载力:P=Gz/S==102kpa; 5) 基底经处理后检测的承载力P’≥140kpa; 6) P≤P’ 经验算,地基承载力满足要求。 水泥罐基础满足地基承载力要求,则主机也同时满足承载力要求。 3、抗倾覆计算 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 由于水泥搅拌机属于受风敏感且筒体高度较大,为确保筒体和施工人员的安全,根据《高耸结构设计规范》(GBJ135-2006以下简称高规),应考虑风荷载对结构的影响。 1)风荷载强度计算:跟全国风压表,枣阳地区最大风荷载取值为㎡。 2)风力计算: 平均作用高度为:H=2+5=; 单根水泥罐的风力大小为F=A×W=××=; 1个水泥罐的叠加倾覆力矩

水泥罐安装方案

水泥罐安装方案
中国建筑一局(集团)有限公司 东莞轨道交通 R2 线 2311 标项目经理部

一、编制依据 1、《水泥机械设备安装工程施工及验收规范》(JCJ03-90); 2、《建筑机械使用安全技术规程》(JGJ33-2001); 3、《现场设备、工业管道焊接工程施工规范》(GB50236-2011); 4、R2 线施工图设计展览中心站~虎门火车站区间第一册隧道平纵断面及特殊地段处
理措施 CAD(中铁二院) 5、广州市祥达金属制品有限公司提供的水泥罐参数资料。
二、编制范围 本方案适用于东莞轨道交通 R2 线 2311 标展~虎区间盾构到达端虎门火车站北端头地
层加固水泥罐安装施工。 三、施工部署
(一)施工流程
施工准备
基础施工
罐体安装
图 3-1 水泥罐安装施工流程图
检验验收
(二)水泥罐规格
基础槽开挖
根据本工程结构狭长、工点多的特点,采用 30 吨水泥罐,水泥罐形式见投下入图使。水用泥 埋件加工
罐基础采用 C30 混凝土,基础中央安装 14mm 厚预埋钢板,基础大样图详见下图。
四、基础承载力及抗风验算 混凝土浇筑
1、地基基础现场情况
地质报告标明反映持力层地养基护承载力为 120Kpa,无回填土。 2、水泥罐基础尺寸
根据罐体确定为 4 个 1000*1000*1000 钢筋混凝土基础,按照此尺寸检验承载力。
(1)竖向荷载计算
作用在基础顶面的荷载有竖向力、水平剪力、弯矩,统一按照中心受压基础检算。
荷载计算:
Fk=G 罐+G 水泥 =2t+30t=32t=320KN G 罐—罐体重量,
G 水泥—罐储存水泥重量
最大应力:320/4=80Kpa
GK =基础自重=4*=10t=100KN

结构计算书统一格式

结构计算书统一格式 一、工程概况 建筑层数:地上层,地下层 建筑高度: 结构类型:钢筋砼框架剪力墙结构 基础类型: 0.00m标高: 抗浮设计水位: 二、设计要求 结构的设计使用年限:年建筑结构的安全等级:二级地基基础设计等级:级结构的重要性系数:1.0 三、结构设计计算信息 1、抗震信息 建筑抗震设防类别:类基本地震烈度: 场地土类别:地震加速度: 设计地震分组:抗震设防烈度: 水平地震影响系数最大值:аm a x= 抗震等级:框架级剪力墙级 设计振型数:周期折减系数: 特征周期值: 2、风荷载信息 基本风压:地面粗糙度:

体型系数: 3、调整信息 中梁刚度增大系数:梁端负弯矩调幅系数:梁弯矩放大系数:梁刚度折减系数: 梁扭矩折减系数: 4、活荷载信息: 柱、墙设计时活荷载折减:不折减 传给基础的活荷载折减:折减 梁活荷载不利布置计算层数: 5、配筋信息 梁、柱主筋强度(N/mm2):360 梁、柱箍筋强度(N/mm2):210 梁箍筋间距:100 mm 柱箍筋间距:100 mm 柱配筋计算原则:按单偏压计算 四、结构整体计算:采用软件版本:SATWE(2007.08) 1、恒载计算: 1.1梁间恒载(梁上荷载扣除梁高,外墙有窗按八折算) 墙体材料 墙厚 (mm) 容重 KN/㎡ 线荷载备注 外墙 楼电梯墙 内隔墙 分户墙 1.2楼面恒载:楼板自重+1.5 KN/㎡1.3屋面恒载:楼板自重+3.5 KN/㎡

1.4其它恒载按实计算 2、活荷载取值(KN/㎡) 车库:2.5(4.0) 卫生间:4.0 KN/㎡楼梯间:3.5 KN/㎡ 阳台:2.5(3.5) ...... 3.附电算结果如下: (1)建筑结构总信息(WMASS.OUT); (2)周期、地震力与振型输出文件(WZQ.OUT); (3)位移输出文件(WDISP.OUT); (4)框架柱及短肢墙地震倾覆弯矩百分比(WV02Q.OUT); (5)超配筋信息(WGCPJ.OUT) (6)各主要标准层层墙柱轴压比简图(Wpjc*. DWG); (7)各主要标准层平面简图(Flr*.DWG); (8)各主要标准层楼面荷载(*.DWG); (9)底层柱、墙最大组合内力简图(Wdcn.DWG); (10)各主要标准层混凝土构件配筋简图(Wpj*.DWG); 各主要标准层现浇板计算配筋图(板计算结果.DWG)。 4.计算结果分析: 4.1结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比为,满足规范要求,其余各参数均满足规范要求; 4.2超配筋信息处理如下: 五、基础计算 1、计算原则: 本工程地基基础设计等级为级,基础型式采用基础。本工程地下室抗浮设计水位为m,采用抗浮。

水泥罐稳定性计算书.docx

水泥罐稳定性计算书 一、编制说明 本验算编制是根据施工现场土质情况及水泥罐特点而进行的,为确保有足够的水泥储藏量,保证工程顺利进行,工程计划投入50t,100t两种水泥罐进行施工作业。 二、编制依据 1、施工现场平面布置; 2、水泥罐平面示意图及基础参数(华新水泥鄂州分厂提供); 3、工程周边建筑情况。 三、水泥罐定位 水泥罐定位布置见下图: 四、水泥罐基础及承台设计 1、本水泥罐基础根据现场实际情况,采用强夯处理过后地基,且经静力触探检测承载力大于150Kpa; 2、基础承载设计为:承载砼为C25等级,承台尺寸为4500*4500*500mm,承台采取开挖半米浇筑混凝土布置。 五、水泥罐基础,承载验算,抗倾覆验算: 1、基础竖向承载力验算,根据现场地基处理后土体检测,该层土的承载力特征值为150KN/㎡。 水泥罐自重根据水泥厂提供数据,50t罐取10t计算,100t罐取15t计算; 分两种情况进行验算 (1)50t水泥罐 V=600KN G=4.5*4.5*0.5*25=254KN =(G+V)/A=(600+254)/(4.5*4.5)=42.12KN/㎡<〔〕=150KN/㎡ (2)100t水泥罐 V=1150KN

G=4.5*4.5*0.5*25=254KN =(G+V)/A=(1150+254)/(4.5*4.5)=69.33KN/㎡<〔〕=150KN/㎡ 即承载能力满足要求; 其中式中: V——为水泥罐满载时总重量,取水泥罐说明书; G——为基础承载重量; A——为基础承载接触面积。 2、基础抗倾覆验算: 分两种情况进行验算 按照抗倾覆验算公式 0.95-S>0即满足要求 其中式中: ——自重及压重产生的稳定力矩KNm; ——风荷载标准值,此处为平原地带,根据设计图纸总说明,历史最大风速17m/s,根据风速与风压通用公式取=/1600,计算得0.18; H ——风荷载计算力矩高度; S ——水泥罐侧面受力面积。 (1)50t水泥罐 空罐: 0.95-SH=0.95*(4.5*4.5*0.5*25+100)*(4.5/2)-0.18*3*4.35*(3.714+4.35/2)=742.84KNm>0 满罐: 0.95-SH=0.95*(4.5*4.5*0.5*25+600)*(4.5/2)-0.18*3*4.35*(3.714+4.35/2)=1811.59KNm>0 (2)100t水泥罐 空罐: 0.95-SH=0.95*(4.5*4.5*0.5*25+150)*(4.5/2)-0.18*3*8.7*(3.714+8.7/2)=2963.16KNm>0 满罐: 0.95-SH=0.95*(4.5*4.5*0.5*25+1150)*(4.5/2)-0.18*3*8.7*(3.714+8.7/2)=825.66KNm>0 抗倾覆均能满足要求,现场为防止突发情况,在罐体四周沿三个方向拉设缆风绳,保证稳定,且在罐体周围布置护栏防撞。知识改变命运

100t水泥罐基础设计计算

3.8m*3.8m*120k n/m 2 =1732.8kn J01 地面标高3.5m ① 素填土 0.88m J02 地面标高3.5m ① 素填土 0.44m J03 地面标高3.5m ① 素填土 0.41m ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 -5.79m 粉土 loot 水泥罐基础设计计算 1、 水泥罐自重 G1: 200kn (20t)估 2、 水泥自重 G2: 1000kn (100t) 3、 基础承台自重 G3: 3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2 (分项系数)=1981.2kn 、受力分析 1、承台地基承载力:按12t/m 2估算,承台地基承载力为 2、桩承载力需达到 1981.2k n-1732.8k n=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 -1.72m -4.76m ④ 粉土 粉土 根据上述柱状图,打入桩范围内平均层厚:素填土 2.92m 、淤泥质粉质粘土 4.67m 、 荷载

粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范围内(9m) 土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30) /9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*( U* a *H* T)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U ----- 桩周长, a——震动沉桩影响系数,锤击沉桩取1.0 H——桩入土深度,9.0m T -----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径 273钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T) =1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61 根,取3 根, 布置如图: 3.8m ②如采用直径 630钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T)

120吨水泥粉罐抗风强度计算书

青岛市红岛—胶南城际(井冈山路—大珠山段) 轨道交通工程 朝两区间1号竖井水泥罐抗风强度计算 编制: 审核: 批准: 中国交建青岛轨道交通R3线工程五工区项目经理部 二○一四年十二月十六日

1、校核依据 《建筑结构荷载规范》 GB50009-2012 《钢结构设计规范》 GB50017-2003 2、主要参数 2.1 设计参数 粉罐直径:φ2900mm; 粉罐高度:13500mm(不含底锥); 底部支腿高度:7230mm; 上栏杆高度:1000mm; 罐体板材材料:δ6钢板; 支腿材料:φ219mm×6焊接管; 支腿横、斜撑材料:10#槽钢。 2.2 环境参数 风速:70m/s(十二级风) 3、基本载荷 =9200 Kg=92000N 3.1 粉罐自重: G 1 水泥重量: G =120000 Kg=1200000N 2 3.2 风载荷P W P CK qA h W P ---- 作用在水泥罐上的风载荷,N; W C ---- 风力系数, C=1.3; υ---- 风速,υ=70m/s K ---- 风压高度变化系数, h

q ---- 计算风压2 /m N, q=0.613υ2 A---- 水泥罐垂直于风向的迎风面积,2m P 1 W =CK h qA=0.613 CK h υ2A C=1.3 K h =1.39 υ=70 A=1㎡,代入上式得: P 1 W =5428N P 2 W =CK h qA=0.613 CK h υ2A C=1.3 K h =1.23 υ=70 A=60㎡,代入上式得: P 2 W =288175N P 3 W =CK h qA=0.613 CK h υ2A C=1.3 K h =1 υ=70 A=4㎡,代入上式得: P 3 W =15620N 4、强度计算 水泥罐受力部分主要为罐体底部支腿,支腿竖向承受水泥粉罐自重和散装水泥的重量,同时横向承受罐体受风的侧压力而对支腿产生的拉力。检算过程依据《起重机设计手册》第三章中风载荷计算的相关内容。 4.1 支腿强度计算 支腿强度计算分两种情况进行,第一种风正面吹向水泥粉罐,即方向垂直与支腿连接线;第二种风斜面吹向水泥粉罐,即支腿对角线方向。 4.1.1 风向垂直于支腿连接线

150吨水泥罐基础设计计算书(20200908125122)

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距 2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距 2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双 排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。 具体布置见下图: . 二、水泥罐基础计算书 1、计算基本参数水泥罐自重约20t ,水泥满装150t ,共重170t 。 水泥罐支腿高3m ,罐身高18m ,共高21m 。 单支基础4m ×4m ×0.8m 钢筋砼。2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1=21700+0.825106.3+20126.3k /m 0.1344N MPa 根据资料可知:原设计路面按汽一超 20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为: 460mm ×200mm ,通过受力计算,其地基承载力为: 2050?320罐支脚 800040002200600600 ?3300 3700 水泥罐平面位置示意图

δ2=1301000 1.413 MPa 460200 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 风荷载(500N/m2) 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M(18)?M 水泥罐空罐自重20t,则基础及水泥罐总重为: 抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

水泥罐抗风验算计算书

京新高速公路临河至白疙瘩段三标一分部(K532+150~K565+000段) 水泥罐抗风验算计算书 中国交通建设股份有限公司 京新高速公路LBAMSG-3项目总承包管理部第一项目部 二〇一五年四月

水泥罐抗风验算计算书 一、验算内容及验算依据 为保证我项目水泥罐安全性对我分部拌合站筒仓的抗风性能进行了验算。主要从拌合站筒仓支撑构件的强度、稳定性及基础的倾覆性进行了验算,并提出相应的抗风加固措施。 验算依据为:《公路桥涵设计通用规范》(JTG D60-2004)及《公路桥梁钢结构设计规范》。 二、风荷载大小的确定 根据现场调研及相关工区提供的资料,检算时取罐体长度为12m ,支腿长度为9.0m 。罐体直径为5.0m, 自重为10 t ,满载时料重300 t 。 根据《公路桥涵设计基本规范》中的4.4.1条确定风荷载的大小。 根据资料显示,我项目部施工范围内混凝土搅拌站在沿线大风区分区范围、风向、最大风速分别为主导风向NW ,最大风速53m/s 。相关抗风的设计计算以此为依据。 表1 风级风速换算表 《公路桥涵设计基本规范》中的4.4.1条规定,作用于结构物上的风荷载强度可按下式计算: 0321W K K K W = (1) 式中 W —风荷载强度(Pa ); 0W —基本风压值(Pa ),2 06 .11ν= W ,系按平坦空旷地面,离地面20m 高,频率1/100的10min 平均最大风速ν(m/s )计算确定;一般情况0W 可按《铁路桥涵设计基本规范》中附录D “全国基本风压分布图”,并通过实地调查核实

后采用; K—风载体形系数,对桥墩可参照《铁路桥涵设计基本规范》中表4.4.1-1,1 其它构件为1.3; K—风压高度变化系数,可参照《铁路桥涵设计基本规范》中表4.4.1-2,2 风压随离地面或常水位的高度而异,除特殊高墩个别计算外,为简化计算,桥梁工程中全桥均取轨顶高度处的风压值; K—地形、地理条件系数,可参照《铁路桥涵设计基本规范》中表4.4.1-3。 3 针对本工程场地实际特点,取k1=1.3,k2=1.0 ,k3=1.3。取风级11下的风速为30m/s,风级13下的风速为39m/s,风级15下的风速为48m/s;风级17下的风速为58m/s。计算得罐体每延米的荷载强度见表2。 表2 风级与风荷载强度大小 三、不同工况下立柱强度、稳定性及整体倾覆检算 为了考虑罐体支架的内力,检算过程采用有限元数值计算方法。根据工程的实际使用情况及受力最不利原则,验算时重点对罐体满载的情况进行了立柱的强度及稳定性验算。罐体立柱采用φ330mm(壁厚8mm),立柱间横撑采用槽钢120x40 x4.5mm。有限元模型见图1及图2。 3.1 风级11结构性能抗风验算 风级11时的风荷载和罐体满载时的恒荷载(包括自重)组合进行立柱的强度、稳定性验算。同时对风级11时的风荷载和罐体空载时的恒荷载组合进行了基础的稳定性验算。 (1)罐体满载状态下立柱的强度及稳定性验算 在11级风荷载作用下,按照风荷载+罐体满载时计算得到的立柱应力见图3。

料仓隔墙设计计算书原版

料仓隔墙设计计算书 一、工程概况 根据本标段混凝土使用地为乐平互通式立体交叉、龙眼园高架桥、三花路高架桥、太院高架桥、芦泡涌大桥、卫东高架桥及涵洞和附属工程,为满足混凝土质量和施工需求,结和现场实际施工情况现于西二环MK62+50位置的线路右侧建立混凝土拌和站,共占地约11000m2。料仓8个约2800m2,拟设置两座拌和楼,HZS120型,每座拌和楼每小时理论产量可达120m3。 按拌合站配料要求,不同粒径、不同品种分仓存放,不得混堆或交叉堆放,分料仓应采用50cm砼砌筑,2.5m高,采用水泥砂浆抹面,料仓内硬化C20砼浇筑20cm。隔墙底部采用与之同宽的砼条形基础。 二、设计参数 挡墙高度H=2.5m,挡墙厚度B=50cm,墙身采用C25砼浇筑成。基础采用C25浇筑成的条形基础。C25混凝土抗压强度设计值fc=11.9N/mm2,混凝土抗拉强度设计值ft=1.27 (N/mm2),混凝土弹性模量Ec=28000 (N/mm2), 砼强度系数 βc=1.00。 初步设计:条形基础采用500mm×400mm的C25砼浇筑,即b=500mm。取挡墙钢筋混凝土:25~26KN/M3;每米挡墙荷载N=2.5×0.5×25=31.25KN/m。初步考虑条形基础底部承载力为200KPa。 即:b=500mm,h=400mm,考虑保护层ca=35mm,得h0=h-ca=365mm。 三、条形基础计算 1、配筋计算 (1)、主筋验算 取受弯钢筋为4@φ16,得As=804mm2,N=4,φ=16mm; ρ=As/(b*h0)=804/(500*365)=0.44% 受拉钢筋为4@φ12,得Asy=452mm2,Ny=4,φy=12mm; ρy=Asy/(b*h0)=452/(500*365)=0.25% 得ξ=ρ*fy/(α1*fc)=0.049<ξb=0.55…………………(α1=1.00) 得受压区高度x=ξ*h0=0.049*365=18mm<2ca,满足要求。

水泥砼系统水泥罐稳定性计算书终稿

水泥砼系统水泥罐稳定性计算书 根据测量结果,一、二、三工区水泥罐顶部中心与底部中心偏离最大的是:一工区贵广120楼的直径为3.25m,高度为23.467m的水泥罐,偏离值为15cm。 因此,以罐体直径为3.25m,高度为23.467m的水泥罐为计算对象,计算条件为:12级台风,风速取36.9m/s,且风向与罐体的倾斜方向一致;水泥重量按满载150t计;考虑测量误差,偏离值按20cm计算。 一、风荷载计算 1.计算罐体下部排架的迎风面积S1 罐体下部排架包括立柱、支撑角钢及焊接肋板等 a.Φ219×8×8258立柱4根 0.219×8.3×4=7.271㎡ b.支撑角钢∠75×8×3283型,共8根;∠75×8×1907型,共4根;∠75×8×2834型,共4根; 0.075×3.283×8+0.075×1.907×4+0.075×2.834 ×4=3.392㎡ C.焊接肋板 ①-8×253×403型共4块;②-8×99×250型共4块; ③-8×235×830型共4块;④-8×250×764型共4块; ⑤-8×250×323型共4块;⑥-8×74×250型共4块; ①:(0.09+0.235)×0.403×1/2×4=0.263㎡;

②:(0.099×0.25)×1/2×4=0.05㎡; ③:0.235×0.83×4=0.78㎡; ④:0.25×0.764×4=0.764㎡; ⑤:(0.25+0.09)×0.323×1/2×4=0.22㎡; ⑥:0.74×0.25×1/2×4=0.37㎡; S1=7.271+3.392+0.263+0.05+0.78+0.764+0.22+0.37 =13.11㎡ 2.上部罐体的迎风面积S2 上部罐体可分为三部分:高度7m~9m圆锥体部分、高度9m~23.25m圆柱罐体部分、高度23.25m以上不规则部分,取罐体最大截面积为迎风面积。 a.高度7m~9m罐体部分的迎风面积 1/2×3.25×2=3.25㎡ b.高度9m~23.25m罐体部分的迎风面积 3.25×(23.25-9)=46.313㎡ c.高度23.25m以上罐体部分的迎风面积 (3.25+0.687)×0.217×1/2+0.03×0.657×2 =0.467㎡ d.上部罐体的迎风面积S2 S2=3.25+46.313+0.467 =50.03㎡

三桩承台计算书

三桩承台计算书 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》 ----------------------------------------------------------------------- 1 设计资料 1.1 已知条件 承台参数(3 桩承台第 1 种) _承台底标高 _: -2.000(m) _承台的混凝土强度等级_: C30 _承台钢筋级别 _: HRB400 _配筋计算a s _: 50(mm) 承台尺寸参数 桩参数 _桩基重要性系数 _: 1.0 _桩类型 _: 混凝土预制桩 _承载力性状 _: 端承摩擦桩 _桩长 _: 15.000(m) _是否方桩 _: 否 _桩直径 _: 400(mm) _桩的混凝土强度等级 _: C35 _单桩极限承载力标准值_: 2400.000(kN) _桩端阻力比 _: 0.400 _均匀分布侧阻力比 _: 0.400 _是否按复合桩基计算 _: 否 _桩基沉降计算经验系数_: 1.000 _压缩层深度应力比 _: 20.00% 柱参数 _柱宽 _: 600(mm) _柱高 _: 600(mm) _柱子转角 _: 0.000(度)

_柱的混凝土强度等级_: C35 柱上荷载设计值 _弯矩M x _: 0.000(kN.m) _弯矩M y _: 0.000(kN.m) _轴力N _: 4400.000(kN) _剪力V x _: 0.000(kN) _剪力V y _: 0.000(kN) _是否为地震荷载组合 _: 否 _基础与覆土的平均容重_: 20.000(kN/m3) _荷载综合分项系数 _: 1.35 土层信息 _地面标高 _: 0.000(m) _地下水标高_: -10.000(m) (m)(kN/m3)(kN/m3)(MPa)征值(kPa)程度(kPa) 1.2 计算内容 (1) 桩基竖向承载力计算 (2) 承台计算(受弯、冲切、剪计算及局部受压计算) (3) 软弱下卧层验算 (4) 桩基沉降计算 2. 计算过程及计算结果 2.1 桩基竖向承载力验算 (1) 桩基竖向承载力特征值R计算 根据《桩基规范》5.2.2及5.2.3 式中: R a——单桩竖向承载力特征值; Q uk——单桩竖向极限承载力标准值; K ——安全系数,取K=2。 单桩竖向极限承载力标准值 Q uk = 2400.000(kN) 单桩竖向承载力特征值 R a = 1200.000(kN) (2) 桩基竖向承载力验算 根据《桩基规范》5.1.1 式5.1.1-1计算轴心荷载作用下桩顶全反力,式5.1.1-2计算偏心荷 载作用下桩顶全反力

吨水泥罐基础设计计算书

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 1 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1=21700+0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超 20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: 水泥罐平面位置示意图

δ2= ()1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =???÷(18)?M 水泥罐空罐自重20t ,则基础及水泥罐总重为: 抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

水泥罐抗风验算计算书

混凝土搅拌站罐体抗风 验算计算书 (二工区2#搅拌站大罐) 兰州交通大学 土木工程学院岩土与地下工程系 2010.5

一、验算内容及验算依据 受中铁21局兰新指挥部的委托,对兰新铁路第二双线(新疆段)风区的拌合站筒仓的抗风性能进行了验算。主要从拌合站筒仓支撑构件的强度、稳定性及基础的倾覆性进行了验算,并提出相应的抗风加固措施。 验算依据为:《铁路桥涵设计基本规范》(TB 10002.1-2005)及《铁路桥梁钢结构设计规范》(TB 10002.2-2005)。 二、风荷载大小的确定 根据现场调研及相关工区提供的资料,检算时取罐体长度为12m ,支腿长度为9.0m 。罐体直径为5.0m, 自重为10 t ,满载时料重300 t 。 根据《兰新铁路新疆有限公司文件》(新铁安质2010 33号)提供的风级凤速换算表(见表1)及《铁路桥涵设计基本规范》中的4.4.1条确定风荷载的大小。 根据《兰新铁路新疆有限公司文件》(新铁安质2010 47号)附件中兰新铁路第二双线(新疆段)大风区工程分区说明,资料显示,中铁二十一局(7标)项目部施工范围内混凝土搅拌站在沿线大风区分区范围、风向、最大风速分别为:三十里风区:DK1656+000~DK1746+227长86.398km ,主导风向NW ,最大风速53m/s 。相关抗风的设计计算以此为依据。 表1 风级风速换算表 《铁路桥涵设计基本规范》中的4.4.1条规定,作用于结构物上的风荷载强度可按下式计算: 0321W K K K W = (1) 式中 W —风荷载强度(Pa ); 0W —基本风压值(Pa ),2 06 .11ν= W , 系按平坦空旷地面,离地面20m 高,频率1/100的10min 平均最大风速ν(m/s )计算确定;一般情况0W 可按《铁路桥涵设计基本规范》中附录D “全国基本风压分布图”,并通过实地调查核实后采用;

结构设计之软弱下卧层验算

8#楼软弱下卧层验算 工程概况:拟建8#楼基底压力经计算为359Kpa,待验算软弱下卧层⑤-1粉质粘土承载力220Kpa,埋深约在基础底1.0m处。 根据勘察单位提供的⑤-1层粉质粘土孔隙比和液性指数,可取深度宽度修正系 数ηb=0.3,ηd=1.6,根据勘察报告,杂填土容重取18.5KN/m3 中砂取19.5 KN/m3 粗砂取19.5 KN/m3 便于计算,同一取为中粗砂19.5 KN/m3 筏板长度36.2m,宽度15.5m。基础底面标高为-8.0m,⑤-1层顶面距基础底1.0m。 以2号孔结果验算软弱下卧层顶面承载力。 计算简图如下: 计算内容如下: (1)⑤-1层承载力设计值 f az=f ak+ηbγ(b-3)+ηdγm(d-0.5) =220+0.3×9.5×(6-3)+1.6×12.2×(3.2-0.5) =281.25 Kpa 其中:f ak—地基承载力特征值,取220Kpa。

ηb,ηd—地基承载力宽度深度修正系数,取0.3,1.6。 γ—基础底面以下土的加权重度,地下水位以下取浮重度。计算为9.5 γm—基础底面以上土的加权重度,地下水位以下取浮重度。 γm= (3×18+4.55×9.5)/7.55=12.2KN/m3 (2)⑤-1层顶面处土的自重压力Pcz计算 P cz=γZ=9.5×1=9.5 Kpa (3)⑤-1层顶面处顶面处附加压力Pz计算 先计算基础底面处土的自重压力:Pc=γ1d=92.11 Kpa 其中γ1=12.2 Kpa Z/b=1/15.5=0,故地基压力扩散角θ=0。 软弱下卧层顶面处附加应力: P z=lb(P k– P c)/(1+2ztanθ)(b+2ztanθ) =359-92.11=266 Kpa (3)计算结果 按照《建筑地基基础设计规范》(GB-50007-2012)的规定,在地基受力层 范围内计算P z+ Pc z=266+9.5=275.5 Kpa

100t水泥罐基础设计计算

100t水泥罐基础设计计算 一、荷载 1、水泥罐自重G1:200kn(20t)估 2、水泥自重G2:1000kn(100t) 3、基础承台自重G3:3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2(分项系数)=1981.2kn 二、受力分析 1、承台地基承载力:按12t/m2估算,承台地基承载力为3.8m*3.8m*120kn/m2=1732.8kn 2、桩承载力需达到1981.2kn-1732.8kn=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 J01 J02 J03地面标高3.5m 地面标高3.5m 地面标高3.5m ①素填土①素填土①素填土 0.44m 0.41m 0.88m ③淤泥质粉质粘土③淤泥质粉质粘土③淤泥质粉质粘土 -1.72m -4.76m ④粉土-5.79m ④粉土④粉土 根据上述柱状图,打入桩范围内平均层厚:素填土2.92m、淤泥质粉质粘土4.67m、粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范

围内(9m)土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30)/9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U--------桩周长, а-----震动沉桩影响系数,锤击沉桩取1.0 H------桩入土深度,9.0m τ-----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径273钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61根,取3根,布置如图: 3.8m 0.650m 2.5m 0.650m 3.8m ②如采用直径630钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.63*3.14*1.0*9*18.45=218.99kn,需打入的根数为248.4kn/218.99kn=1.1根,取2根。

相关文档
最新文档