几何旋转综合题练习

几何旋转综合题练习
几何旋转综合题练习

几何旋转综合题练习

1、如图,已知ABC ?是等边三角形.

(1)如图(1),点E 在线段AB 上,点D 在射线CB 上,且ED=EC.将BCE ?绕点C 顺时针旋转60°至ACF ?,连接EF.猜想线段AB,DB,AF 之间的数量关系;

(2)点E 在线段BA 的延长线上,其它条件与(1)中一致,请在图(2)的基础上将图形补充完整,并猜想线段AB,DB,AF 之间的数量关系;

(3)请选择(1)或(2)中的一个猜想进行证明.

2、如图1,△ACB 、△AED 都为等腰直角三角形,∠AED =∠ACB =90°,点D 在AB 上,连CE ,M 、N 分别为BD 、CE 的中点(1)求证:MN ⊥CE

(2)如图2将△AED 绕A 点逆时针旋转30°,求证:CE =

2MN

第1题图(1)第1题图(2)

3、在等腰Rt△ABC 和等腰Rt△A 1B 1C 1中,斜边B 1C 1中点O 也是BC 的中点。(1)如图1,则AA 1与CC 1的数量关系是;位置关系是。

(2)如图2,将△A 1B 1C 1绕点O 顺时针旋转一定角度,上述结论是否仍然成立,请证明你的结论。(3)如图3,在(2)的基础上,直线AA 1、CC 1交于点P ,设AB=4,则PB 长的最小值是。

4、已知,正方形ABCD 的边长为4,点E 是对角线BD 延长线上一点,AE =BD .将△ABE 绕点A 顺时针旋转α度(0°<α<360°)得到△AB ′E ′,点B 、E 的对应点分别为B ′、E ′(1)如图1,当α=30°时,求证:B ′C =DE

(2)连接B ′E 、DE ′,当B ′E =DE ′时,请用图2求α的值

(3)如图3,点P 为AB 的中点,点Q 为线段B ′E ′上任意一点,试探究,在此旋转过程中,线段PQ 长度的取值范围为

_______________

1

A

1

A 1

A

1

图1

D

D

5、如图P 为等边△ABC 外一点,AH 垂直平分PC 于点H ,∠BAP 的平分线交PC 于点D (1)求证:DP =DB

(2)求证:DA +DB =DC

(3)若等边△ABC

边长为14,连接BH ,当△BDH 为等边三角形时,请直接写出CP 的长度为_________

6、如图,四边形ABCD 为正方形,△BEF 为等腰直角三角形(∠BFE=900

,点B、E、F,按逆时针排列),点P 为DE 的中点,连PC,PF

(1)如图①,点E 在BC 上,则线段PC、PF 有何数量关系和位置关系?请写出你的结论,并证明.

(2)如图②,将△BEF 绕点B 顺时针旋转a(O

),则线段PC,PF 有何数量关系和位置关系?请写出你的结论,并证明.

(3)如图③,若AB=1,△AEF 为等腰直角三角形,且∠A EF=90°,△AEF 绕点A 逆时针旋转过程中,能使点F 落在BC 上,且AB 平分EF,直接写出AE 的值是________.

图①图②图③

7、已知等腰Rt △ABC 和等腰Rt △EDF ,其中D 、G 分别为斜边AB 、EF 的中点,连CE ,又M 为BC 中点,N 为CE 的中点,连MN 、MG

(1)如图1,当DE 恰好过M 点时,求证:∠NMG =45°,且MG =2MN

(2)如图2,当等腰Rt △EDF 绕D 点旋转一定的度数时,第(1)问中的结论是否仍成立,并证明(3)如图3,连BF ,已知P 为BF 的中点,连CF 与PN ,直接写出

CF

PN

=______

8、已知:如图,在Rt △ABC 中,AC=BC ,CD ⊥AB 于D ,AB=10,将CD 绕着D 点顺时针旋转a (0°

(1)如图1,在PD 旋转的过程中,线段IC 与IP 之间是否存在某种确定不变的关系?请证明你的猜想。(2)如图2:连IA ,当AI ⊥DP 时,求DQ 的长。

(3)如图3,若取BC 的中点M ,连IM ,当PD 旋转过程中,线段IM 的长度变不变?若不变请求出其值;若变化,求出其变化范围。

参考答案

1.答案:

(1)AB=AF+BD;…………2分

(2)如图(2)中的实线图AB=AF-BD…………4分

(3)如图(1),过点E 作EG∥BC 交AC 于点G,得△AEG 为

等边三角形

∵DE=CE,∴∠CDE=∠ECD,

又∵∠CDE+∠BED=∠ABC=∠ACD=∠ECD+∠GCE,∴∠BED=∠GCE…………6分又∵BE=CG,DE=CE

∴△BDE≌△GEC∴BD=EG=AE 又∵AF=BE ∴AB=BE+AE=AF+BD…………8分如图(2),过点E 作EG∥BC 交AC 于点G,得△AEG 为等边三角形

∵DE=CE,∴∠CDE=∠ECD,

又∵∠CDE-∠BED=∠ABC=∠ACD=∠ECD-∠GCE,∴∠BED=∠GCE…………6分

又∵BE=CG,DE=CE∴△BDE≌△GEC∴BD=EG=AE 又∵AF=BE 所以AB=BE-AE=AF-BD………8分2.答案:(1)连EM 并延长,使MF=EM ,连BF ,易证△EDM ≌△FBM

从而易证等腰Rt △EAC ≌Rt △FBC 易得Rt △ECF ∴MN ⊥CE

(2)同样,证△EDM ≌△FB M ,∴∠EAC+∠EDB+∠DBC=360°,∠MBF+∠FBC+∠DBC=360°,而∠EDB=∠MBF,∴∠EAC=∠FBC,易证△EAC≌△FBC,易得等腰Rt△ECF,CE=2MN

3、答案:(2)中点连顶点,易证△1AOA ≌△1COC (3)易得PC⊥1AA ,∴以AC 为斜边的Rt△,斜边不变,取AC 中点,BP 最小=PM-1

2

AC=25-24、答案:

证明:(1)连接EC

由正方形的对称性可知,EA =EC 连接AC 、B ′C ∴EA =AC ∴△ACE 为等边三角形

∴∠DAE =60°-45°=15°由旋转可知,∠BAB ′=30°

∴∠B ′AC =15°

∴△ADE ≌△AB ′C (SAS )∴B ′C =DE (2)由旋转可知,AB ′=AD =AB ,AE =AE ′∴△AB ′E ≌△ADE ′(SSS )∴∠B ′AE =∠DAE ′∴∠EAE ′=∠DAB ′

由旋转可知:∠BAB ′=∠EAE ′∴∠ADB ′=∠BAB ′=45°即α=45°

(3)过点A 作AM ⊥B ′E ′

由(1)可知:∠B ′=45°,∠E =30°∴AM =22,AE ′=24∴22-2≤PQ ≤24+2

5、答案:证明:(1)∵AH 是PC 的垂直平分线∴PA =PC =AB ∵AD 平分∠PAB ∴∠PAD =∠BAD

∴△PAD ≌△BAD (SAS )∴DP =DB

(2)在CP 上截取CQ =PD ,连接AQ ∵AP =AC

∴∠APD =∠ACQ

∴△APD ≌△ACQ (SAS )∴AD =AQ ,∠CAQ =∠PAD

∴∠BAC =∠CAQ +∠BAQ =∠PAD +∠BAQ =∠BAD +∠BAQ =∠DAQ =60°∴△ADQ 为等边三角形∴AD =DQ

∴CD =DQ +CQ =AD +DB

(3)24(提示:设DP =DB =DH =x ,则CH =2x ,CD =3x ,AD =CD -DB =2x )6、答案:(1)FP=PC,FP⊥PC(用Rt△的中线及换角得出)

(2)方法一:(中点+中点构造中位线)如图,构造以B 点为直角的等腰Rt△BEG 和Rt△BHD 易证△BDG≌△BEH,FP

12GD,PC 1

2

EH,∵GD⊥EH,∴FP=PC,FP⊥PC 方法二:(中线倍长,构造全等)

延长CP 至H,使PH=PC,连

第1题图

第1题图

HE,HF,FC 易证△HEP≌△CDP,∴HE CD,由“X”型易得∠FBC=∠FEH,∴△FBC≌△FBH,∴FH=FC,∠BFC=∠EFH,

∠BFC-∠EFC=∠EFH-∠EFC=90°,∴Rt△HFC 中FP⊥PC (3)面积法5x=3x ?5

7、答案:(1)连DG,由对称性可知(中垂线上的点)D、C、G 三点共线,Rt△CME 中,MN=

12EC,NG=1

2

EC,∠MNG=2∠MEG=90°,∴△MNG 为等腰Rt△,即证.

(2)连DC、CF、BE、NG,易证△DBE≌△DCF,BE=CF,CF⊥BE(垂直交叉“X”型得),∴MN

1

2

BE,NG CF,MN=NG,MN⊥NG,∴△MNG 为等腰Rt△

(3)取BC 的中点M,连PM、MN、DC,同样证△DBE≌△DCF,易得△PMN 为等腰Rt△,PM=

1

2

CF,2

22PN PN CF PM ==8、答案:(1)垂直且相等

连DI ,易证△DIC ≌△DIP ,∴IP=IC.过I 作IE ⊥QP 于E ,IF ⊥CD 于F ,∵IE=IF ,∴Rt △CIF ≌Rt△PIE,易证CI⊥PI

(2)由等腰得AD=AI=5,设IH=x ,则AH=5-x ,

DH=AD+2x-AH=3x ,∴()2

3x +()2

5-x =25,

∴x=0(舍去),x=1,∴AH=4,∴DQ=4(3)

52

2

互补,三点一线

小学数学常用解题技巧(解几何题技巧)

小学数学常用解题技巧:解几何题技巧 解几何题技巧 1.等分图形 【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。 例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。已知左图(图4.11)中正方形面积为72平方厘米,求右图( 4.12)中正方形的面积。 由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角 形有什么样的关系。等分后的情况见图 4.13和图 4.14。 积是 图4.12的正方形面积是 【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整 体上去观察,往往也能使问题获得解决。 例如图 4.15,在正方形ABCD中,画有甲、乙、丙三个小正方形。问:乙、丙面积之和与甲相比,哪一个大些? 大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。如图 4.16,经过等分,正方形甲的面积等于△ABC面积的一半;正方形丙的面积等于△EDF的一半,正方形乙的面积等于梯形ACFE面积的一半。这样,一个大正方形ABCD,就划分成了三个局部:等腰直角△ABC;等腰梯形ACFE;等腰直角△EDF。其中甲、乙、丙的面积分别为各自所在图形的一半,而△EDF的面积加梯形ACFE的面积等于△ADC的面积,即等于△ABC的面积。所以,乙、丙面积之和等于甲的面积。

2.平移变换 【平移线段】有些几何问题,通过线段的上、下、左、右平移以后,能使问题很快地得到正确的解答。 例如,下面的两个图形(图 4.17和图4.18)的周长是否相等? 单凭眼睛观察,似乎图 4.18的周长比图 4.17的要长一些。但把有关线段平移以后,图 4.18就变成了图 4.19,其中的线段,有的上移,有的左移,有的右移,它可移成一个正方形。于是,不难发现两图周长是相等的。 【平移空白或阴影部分】有些求阴影部分或空白部分面积的几何题,采用平移空白部分或平移阴影部分的办法, 往往能化难为易,很快使问题求得解答。例如,计算图 4.20中阴影部分的面积。 圆面积”,然后相加,得整个阴影部分的面积。这显然是很费时费力的。但认真观察一下就会发现,图 4.20左半左上部的空白部分,与右半左上部的阴影部分大小一样,只需将右半左上部的阴影部分,平移到左半左上部的空白部分,所 有的阴影部分便构成一个正方形了(如图 4.21)。所以,阴影部分的面积很快就可求得为5×5=25。 又如,一块长30米,宽24米的草地,中间有两条宽2米的走道,把草地分为四块,求草地的面积(如图 4.22)。 这只要把丙向甲平移靠拢,把丁向乙平移靠拢,题目也就很快能解答出来了。(具体解法略) 3.旋转变换 【旋转成定角】例如下面的题目: “在图 4.23中,半径为8厘米的圆的内外各有一个正方形,圆内正方形顶点都在圆周上,圆外正方形四条边与圆 都只有一个接触点。问:“大正方形的面积比小正方形的面积大多少?”

初二年级30道典型几何综合题

30道典型几何综合题 1、解答:解:(1)如图,作点D关于x轴的对称点D',连接CD'与x轴交于点E,连接DE.若在边OA上任取点E'与点E不重合,连接CE'、DE'、D'E' 由DE'+CE'=D'E'+CE'>CD'=D'E+CE=DE+CE, 可知△CDE的周长最小. ∵在矩形OACB中,OA=3,OB=4,D为OB的中点, ∴BC=3,D'O=DO=2,D'B=6, ∵OE∥BC, ∴Rt△D'OE∽Rt△D'BC,有 ∴ ∴点E的坐标为(1,0); (2)如图,作点D关于x轴的对称点D',在CB边上截取CG=2,连接D'G与x轴交于点E, 在EA上截取EF=2, ∵GC∥EF,GC=EF, ∴四边形GEFC为平行四边形,有GE=CF, 又GC、EF的长为定值, ∴此时得到的点E、F使四边形CDEF的周长最小. ∵OE∥BC, ∴Rt△D'OE∽Rt△D'BG,有. ∴ ∴ ∴点E的坐标为(,0),点F的坐标为(,0)(10分)

2、解答:解:(1)设点B(4,﹣1)关于x轴的对称点是B',其坐标为(4,1), 设直线AB'的解析式为y=kx+b, 把A(2,﹣3),B'(4,1)代入得:, 解得 ∴y=2x﹣7, 令y=0得x=, 即p=. (2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.做点F(1,﹣1),连接A'F.那么A'(2,3). 直线A'F的解析式为,即y=4x﹣5 ∵C点的坐标为(a,0),且在直线A'F上, ∴a=. (3)存在使四边形ABMN周长最短的点M、N, 作A关于y轴的对称点A′,作B关于x轴的对称点B′,连接A′B′,与x轴、y轴的交点即为点M、N, ∴A′(﹣2,﹣3),B′(4,1), ∴直线A′B′的解析式为:y=x﹣, ∴M(,0),N(0,﹣). m=,n=﹣. 3、解答:(1)证明:∵沿对角线BD对折,点C落在点C′的位置, ∴∠A=∠C′,AB=C′D ∴在△GAB与△GC′D中,

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

几何直线型专题

几何直线型专题复习 一、三角形 1、如图,已知点A 在直线l 外,点B 、C 在直线l 上。 (1)点P 是△ABC 内任一点,求证:∠P >∠A ; (2)试判断在△ABC 外,又和点A 在直线l 的同侧,是否存在一点Q ,使∠BQC >∠A ,并证明你的结论。 n m l l 问题一图 C B A C B A 2、如图,已知P 是等边△ABC 的BC 边上任意一点,过P 点分别作AB 、AC 的垂线PE 、PD ,垂足为E 、D 。问:△AED 的周长与四边形EBCD 的周长之间的关系? 二、全等三角形 3、如图,已知AB ⊥BC ,DC ⊥BC ,E 在BC 上,AE =AD ,AB =BC 。求证:CE =CD 。 问题一图 P E 4321C B A 4、如图,已知在△ABC 中,∠C =2∠B , ∠1=∠2,求证:AB =AC +CD 。 例2图 2 1E D C B A 问题二图 E D P C B A

5、如图,在△ABC 中,AC =BC ,∠ACB =900,D 是AC 上一点,AE ⊥BD 的延长线于E ,又AE = 2 1 BD ,求证:BD 是∠ABC 的角平分线。 例2图 F E D C B A 6、如图,在等腰直角△ABC 中,AD 为斜边上的高,以D 为端点任作两条互相垂直的射线与两腰分别相交于E 、F 点,连结EF 与AD 相交于G ,试问:你能确定∠AED 和∠AGF 的大小关系吗? 问题一图 G F E D C B A 7、如图,在四边形ABCD 中,∠A =600,∠B =∠D =900,BC =2,CD =3,则AB =? 例1图 32E D C B A 8、P 为△ABC 边BC 上一点, PC =2PB ,已知∠ABC =450,∠APC =600,求∠ACB 的度数。 例2图 Q P C B A 9、如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =300,点A 处有一所中学,AP =160米,假设汽车行驶时,周围100米以内会受到噪声的影响,那么汽车在公路MN 上沿PN 方向行驶时,学校是否会受到噪声的影响?如果受影响,已知汽车的速度为18千米/小时,那么学校受影响的时间为多少秒? 问题一图 F E D A Q P N M 10、如图,已知在△ABC 中,AB =AC ,∠B =300,AB 的垂直平分线EF 交AB 于点E ,交BC 于点F ,求证:CF =2BF 。 问题一图 F E D A Q P N M

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

直线型几何图形

直线型几何图形 ★★考点定位 (1)等腰三角形(含等边三角形)的性质与判定; (2)直角三角形的性质与判定(勾股定理及逆定理、互逆定理);(3)线段垂直平分线的性质、判定、作法与应用; (4)角平分线的性质、判定、作法与应用; (5)全等三角形的性质、判定、应用; (6)相似三角形的性质、判定、应用; (7)反证法. ★★知识网络{反证法、互逆命题、互逆定理证明{判定:SSS、SAS、ASA、AAS、HL 性质:对应边相等、对应角相等三角形全等应用:证明不同三角形的边或角相等{判定:定义、等角对等边性质:等边对等角、三线合一等腰三角形应用:证明三角形内的边或角相等{判定:定义、三个角相等、一角为600的等腰三角形性质:三边相等、三角相等且等于600等边三角形应用:证明边相等、角相等、找600角直角三角形{含450和300的直角三角形的性质勾股定理{内容:直角三角形两直角边的平方和等于斜边的平方用途{知两边求第三边知一边求另两边的关系证明平方关系作长为n的线段勾股定理的逆定理{内容:若三角形两边的平方和等于第三边的平方,则它是直角三角形用途:判断直角三角形垂直平分线线段的垂直平分线:性质定理、判定定理、尺规作图{三角形的外心:定义、定理角平分线角的平分线:性质定理、判定定理、尺规作图{三角形的内心:定义、定理 {判定:类似“SSS”、“SAS”、AA 性质:对应边成比例、对应角相等 三角形相似 应用:证明不同三角形的边对应成比例或角相等

F E D P C B A ★★考点聚焦 考点一 等积法 ●例1.如图1,在△ABC 中,∠A=∠B=∠C ,点P 是三角形内的任意一点,PD ⊥BC 于D ,PE ⊥AC 于E , PF ⊥AB 于F ,AB=a ,则PD+PE+PF 的值为 . 图1 图2 图3 变式议练 1、如图2,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,若△ABC 的面积为7,DE=2,AB=4,则AC= P O F E D C B A 图5 2、如图3,在△ABC 中,AB=AC=1,∠A=120 ,点P 是BC 上的动点,PN ⊥AC 于N ,PM ⊥AB 于M,则PM+PN= 3、如图4,在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,则DE DF +的长是 4、如图5,在矩形ABCD 中,AB=3,AD=4,P 是AD 上的动点,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 的值为( ) A. 13 5 B. 52 C.2 D. 12 5 考点二 等腰三角形 引入题:在直角坐标系中,已知A(3,4),请在坐标轴寻找一点P ,使得△AOP 为等腰三角形,求P 点的坐标. N M P C B A F E D C B A A 图4 B C D E F

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 Last revision on 21 December 2020

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找出几何元素之间的联系,最后将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的 取值范围。 例1 如图,AB是半圆的直径,O为圆心 AB=6,延长BA到F,使FA=AB,若P为线段 AF上的一个动点(不与A重合),过P点作半 圆的切线,切点为C,过B点作BE⊥PC交PC 的延长线于E,设AC=x,AC+BE=y,求y与x 的函数关系式及x的取值范围。(2003年山东省烟台市中考题)O

中考数学几何型综合题解题技巧及分类训练(一)

中考数学几何型综合题 解题技巧和题型训练(一)几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识。主要研究图形中的数量关系、位置关系、几何计算以及图形的运动和变化等规律。大体可以分为几何综合计算和几何综合论证两类。在近几年的考题中,常以阅读探究性问题、图形变化间题、操作探究问题等形式出现。这类题涉及知识点比较多,题设和结论比较隐蔽、常常需要添加辅助线解答。 解中考几何型综合题技能: 解答几何综合题,关键是要抓住基本图形(相似模型、全等模型等),在复杂的几何图形中辨认、分解岀基本几何图形、或者添加辅助线构造基本图形。需要注意以下几点: 1、注意题目的直观提示,比如我们可以通过测量观察判断线段的数量和位置关系,一些比较隐蔽的数量关系,我们可以通过图形变化的特殊情况寻找关系。 2、注意分析题目的隐含条件,比如看到中点,你就要想想我们初中数学与中点相关的那四种情况,加以分析。简单的说,就是看到什么样的条件要有联想。 解中考几何型综合题类型和技巧: 1、阅读探究型问题 阅读探究型问题一般篇幅较长,解题时要读懂题意,对材料中给出的解题思路提栋解题思维,再理解的基础上分析问题与阅读材料的相关点,用模仿、类比或转化的方法解决问题

2、图形变化问题 图形变化问题的探究往往涉及到作图(这个不难),关键是把我图形运动、变化过程中始终不变的几何量或性质,对于变化的量要分析它的运动状态,注意是否需要分类讨论,分析变化量与不变量之间可能有什么关系,如何建立这种关系。 3、操作探究问题 在操作过程中提炼信息,分析操作步骤与目的,在特例解决的过程中提炼思维,并类比发散解决一般性结论,并借助图形变化帮助我们更有效地找到解题思路。

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

几何综合(习题)

几何综合(习题) ? 例题示范 例:如图,在四边形ABCD 中,AB =2,BC =CD =B =90°, ∠C =120°,则AD 的长为_______. D C B A 解:如图,连接AC . D C B A 在Rt △ABC 中,∵∠B =90°,AB =2,BC =∴tan ∠ACB = 3 AB BC = ∴∠ACB =30° ∴AC =2AB =4 ∵∠BCD =120° ∴∠ACD =∠BCD -∠ACB =90° 在Rt △ADC 中,AC =4,CD =∴AD = ? 巩固练习 C D B A

1. 如图,在△ABC 中,AB =15 m ,AC =12 m ,AD 是∠BAC 的外角平分线,DE ∥ AB 交AC 的延长线于点E ,那么CE =________. 2. 在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所 示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为________. D B A 3. 如图,矩形EFGD 的边EF 在△ABC 的BC 边上,顶点D ,G 分别在边AB ,AC 上.已知AB =AC=5,BC=6,设BE =x ,EFGD S y 矩形,则y 关于x 的函数关系式为________________. (要求写出x 的取值范围) G F E D C B A N M G F E D C B A 第3题图 第4题图 4. 如图,在△ABC 中有一正方形DEFG ,其中D 在AC 上,E ,F 在AB 上,直线 AG 分别交DE ,BC 于M ,N 两点.若∠B =90°,AB =4,BC =3,EF =1,则BN 的长度为( ) A .43 B .32 C .85 D .127 5. 如图,在△ABC 中,AB =BC =10,AC =12,BO ⊥AC ,垂足为O ,过点A 作射线 AE ∥BC ,点P 是边BC 上任意一点,连接PO 并延长与射线AE 相交于点Q ,设B ,P 两点之间的距离为x ,过点Q 作直线BC 的垂线,垂足为R .小明同学思考后给出了下面五条结论:①△AOB ≌△COB ; ②当0<x <10时,△AOQ ≌△COP ;

几何问题解题思路

几何问题解题思路 数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。今天中公教育为考生整理了数量关系答题技巧中的几何问题解题思路,希望对考生有所帮助! 中公教育为考生整理了几何问题考点的解题思路和技巧,望考生注意以下几个方面。 第一个方面,几何基本公式: 三角形的面积=底×高÷2,长方形(正方形)的面积=长×宽,梯形的面积=(上底+下底)×高÷2,圆形的面积=π×半径的平方,长方体(正方体)的面积=长×宽×高,圆柱体的体积=底面积×高,圆锥体的面积=底面积×高÷3。 第二个方面,几何问题的“割补平移”思想。 中公教育提醒考生,当看到一个关于求解面积的问题,不要立刻套用公式去求解,这样做很可能走入误区,最后无法求解或不能快速求解。对于此类问题通常的使用的方法就是“辅助线法”即通过引入新的辅助线将图形分割或者补全为很容易得到的规则图形,从而快速求得面积。 第三个方面,几何极限理论。 平面图形:①周长一定,越趋近于圆,面积越大,②面积一定,越趋近于圆,周长越小; 立体图形:①表面积一定,越趋近于球,体积越大,②体积一定,越趋近于球,表面积越小。 实战例题: 【例题】半径为5厘米的三个圆弧围成如右图所示的区域,其中AB弧与AD弧为四分之一圆弧,而BCD弧是一个半圆弧,则此区域的面积是多少平方米? A.25

B.10+5л C.50 D.55 【中公教育解析】如下图:连接BD,作矩形BDMN,将下面的四分之一圆弧的半径画出来,可见该部分面积分为彩色的两部分。上面部分是半圆,下半部分是矩形面积减去2个四分之一圆,即矩形面积减半个圆形面积二部分之和,正好是矩形面积,即10×5=50平方厘米。故答案为C。 最新招考公告、备考资料就在辽宁事业单位考试网 https://www.360docs.net/doc/645255884.html,/liaoning/

最新初中数学几何题解题技巧

最新初中数学几何题解题技巧 初中数学几何题解题技巧一.添辅助线有二种情况 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此"添线"应该叫做"补图"!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整

时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形

几何综合题(题型概述)

几何综合题 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题. 类型一以三角形为背景的综合题

典例1(2014·江苏泰州)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF ∥AC. (1)求证:BE=AF; (2)若∠ABC=60°,BD=6,求四边形ADEF的面积. 【技法梳理】(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论; (2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案. 【解析】(1)∵DE∥AB,EF∥AC, ∴四边形ADEF是平行四边形,∠ABD=∠BDE. ∴AF=DE. ∵BD是△ABC的角平分线, ∴∠ABD=∠DBE. ∴∠DBE=∠BDE. ∴BE=DE. ∴BE=AF. (2)过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,

数学立体几何解题技巧

数学立体几何解题技巧 数学立体几何解题技巧 1平行、垂直位置关系的论证的策略: (2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 (3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。 2空间角的计算方法与技巧: 主要步骤:一作、二证、三算;若用向量,那就是一证、二算。 (1)两条异面直线所成的角: ①平移法:②补形法:③向量法: (2)直线和平面所成的角 ①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。 ②用公式计算. (3)二面角: ①平面角的作法: (i)定义法; (ii)三垂线定理及其逆定理法;(iii)垂面法。 ②平面角的计算法: (i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;

(ii)射影面积法; (iii)向量夹角公式. 3空间距离的计算方法与技巧: (1)求点到直线的距离: 经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。 (2)求两条异面直线间距离: 一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。 (3)求点到平面的距离: 一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以 把点到平面的距离转化为直线到平面的距离,从而“转移”到另一 点上去求“点到平面的距离”。求直线与平面的距离及平面与平面 的距离一般均转化为点到平面的距离来求解。 4熟记一些常用的小结论 诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。 5平面图形的翻折、立体图形的展开等一类问题 要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。 6与球有关的题型 只能应用“老方法”,求出球的半径即可。 7立体几何读题:

初中数学:常用几何题的原理及解题思路

初中数学:常用几何题的原理及解题思路 几何证明题入门难,证明题难做,已经成为许多同学的共识…今天小瑞老师和同学们分享的是几何证明题思路及常用的原理,希望对大家有帮助! 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。 对于证明题,有三种思考方式: 1.正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 2.逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如:

可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去… 这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 3.正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。 给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理 要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键… 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题…

证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

高考数学几何大题解题技巧

高考数学几何大题解题技巧 1、平行、垂直位置关系的论证的策略 1由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 2利用题设条件的性质适当添加辅助线或面是解题的常用方法之一。 3三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。 2、空间角的计算方法与技巧 主要步骤:一作、二证、三算;若用向量,那就是一证、二算。 1两条异面直线所成的角①平移法:②补形法:③向量法: 2直线和平面所成的角 ①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用 向量计算。 ②用公式计算。 3二面角 ①平面角的作法:i定义法;ii三垂线定理及其逆定理法;iii垂面法。 ②平面角的计算法: i找到平面角,然后在三角形中计算解三角形或用向量计算;ii射影面积法;iii向量 夹角公式。 3、空间距离的计算方法与技巧 1求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角 形中求解,也可以借助于面积相等求出点到直线的距离。 2求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直 接作出公垂线的情况下,可转化为线面距离求解这种情况高考不做要求。 3求点到平面的距离:一般找出或作出过此点与已知平面垂直的平面,利用面面垂直 的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有 时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与 平面的距离一般均转化为点到平面的距离来求解。

4、熟记一些常用的小结论 诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。 5、平面图形的翻折、立体图形的展开等一类问题 要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。 6、与球有关的题型 只能应用“老方法”,求出球的半径即可。 7、立体几何读题 1弄清楚图形是什么几何体,规则的、不规则的、组合体等。 2弄清楚几何体结构特征。面面、线面、线线之间有哪些关系平行、垂直、相等。 3重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。 8、解题程序划分为四个过程 ①弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。 ②拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。 ③执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。 ④回顾。对所得的结论进行验证,对解题方法进行总结。 感谢您的阅读,祝您生活愉快。

相关文档
最新文档