化工工艺设计原则和PID介绍

化工工艺设计原则和PID介绍
化工工艺设计原则和PID介绍

本文由huyuzhu2010贡献

doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。

化工工艺设计--总图的布置原则一、装置布置设计必须采取三重安全措施首先预防一次危险引起的次生危险,其次是一旦发生危险,则尽可能限制其危害程度和范围,第三次是次生危险发生以后,能为及时抢救和安全疏散提供方便条件。二、装置布置设计应满足工艺设计的要求(1)满足生产和运输的要求:(2)满足安全和卫生要求:(3)满足有关的标准和规范:三、装置布置设计应满足操作、检修和施工的要求 1、可操作和管理。 2、一个装置能够长期运转,需要对设备仪表和管道进行经常性的维护和检修。 3、可施工。 4、在装置布置设计时应将上述操作、检修、施工所需要的通道、场地、空间结合起来综合考虑。在竖向布置和管线布置的要求:(1)竖向布置主要满足生产工艺布置和运输,装卸对高程的要求。(2)管线布置,工程技术管网的布置及敷设方式等的合理对生产过程中的动力消耗以及投资具有重要意义。四、装置布置设计应满足全厂总体规划的要求,考虑工厂发展,留有余地。五、装置布置设计应适应所在地区的自然条件 1、结合所在地区的气温、降雨量、风沙等气候条件和生产过程特点以及某些设备的特殊要求。 2、结合所在地区的地形特点。

3、装置布置设计应结合地质条件。

4、装置布置设计考虑风向的影响,主要为了尽可能避免因风向而引起的火灾和尽量减少因风向而造成的污染。六、装置布置设计应力求经济合理1 、节约占地减少能耗 2、经济合理的典型布置七、装置布置设计应满足用户要求八、装置布置设计应注意外观美和绿化环境绿化,美化环境,可减少粉尘等危害,应与平面布置一起设计。 PID 介绍管道和仪表流程图又称为 P&ID, PIPING AND INSTRUMENTATION DIAGRAM 的缩写。是 P&ID 的设计是在 PFD 的基础上完成的。它是化工厂的工程设计中从工艺流程到工程施工设计的重要工序,是工厂安装设计的依据。化工工程的设计,从工艺包、基础设计到详细设计中的大部分阶段,P&ID 都是化工工艺及工艺系统专业的设计中心,其他专业(设备、机泵、仪表、电气、管道、土建、安全等)都在为实现 P&ID 里的设计要求而工作。广义的 P&ID 可分为工艺管道和仪表流程图(即通常意义的 P&ID)和公用工程管道和仪表流程图(即 UID)两大类。由于 P&ID 的设计千变万化,对同一工艺流程的装置,也可以因为外界因素的影响(如用户要求、地理环境的差异、以及操作人员的经验不同等),需要在设计 P&ID 时作出相应对策,

再加上设计者不同的处理方法,因而同一工艺流程在不同的工程项目中,其 P&ID 不可能完全相同,但也不会有太大的差异。P&ID 通常有 6~8 版,视工程需要而定。一套完整的 P&ID 及 UID 清楚地标出工艺流程对工厂安装设计中的所有要求,包括所有的设备、配管、仪表等方面的内容和数据。下面,对 P&ID 及 UID 的设计进行简单介绍。一. P&ID 的设计 1.P&ID 的设计内容 P&ID 的设计应包括下列内容。 1.1 设备 (1)设备的名称和位号。每台设备包括备用设备,都必须标示出来。对于扩建、改建项目,已有设备要用细实线表示,并用文字注明。(2)成套设备对成套供应的设备(如快装锅炉、冷冻机组、压缩机组等),要用点划线画出成套供应范围的框线,并加标注。通常在此范围内的所有附属设备位号后都要带后缀“X”以示这部分设备随主机供应,不需另外订货。(3)设备位号和设备规格 P&ID 上应注明设备位号和设备的主要规格和设计参数,如泵应注明流量 Q 和扬程 H;容器应注明直径 D 和长度 L;换热器要注出换热面积及设计数据;储罐要注出容积及有关的数据。和 PFD 不同的是,P&ID 中标注的设备规格和参数是设计值,而 PFD 标注的是操作数据。(4)接管与联接方式管口尺寸、法兰面形式和法兰压力等级均应详细注明。一般而言,若设备管口的尺寸、法兰面形式和压力等级与相接管道尺寸、管道等级规定的法兰面形式和压力等级一致,则不需特殊标出;若不一致,须在管口附近加注说明,以免在安装设计时配错法兰。(5)零部件为便于理解工艺流程,零部件如与管口相邻的塔盘、塔盘号和塔的其他内件(如挡板、堰、内分离器、加热/冷却盘)都要在 P&ID 中表示

出来。(6)标高对安装高度有要求的设备必须标出设备要求的最低标高。塔和立式容器须标明自地面到塔、容器下切线的实际距离或标高;卧式容器应标明容器内底部标高或到地面的实际距离。(7)驱动装置泵、风机和压缩机的驱动装置要注明驱动机类型,有时还要标出驱动机功率。(8)排放要求 P&ID 应注明容器、塔、换热器等设备和管道的放空、放净去向,如排放到大气、泄压系统、干气系统或湿气系统。若排往下水道,要分别注明排往生活污水、雨水或含油污水系统。 1.2 配管(1)管道规格在 P&ID 中要表示出全部在正常生产、开车、停车、事故维修、取样、备用、再生各种工况下所需要的工艺物料管线和公用工程管线。所有的管道都要注明管径、管道号、管道等级和介质流向。管径一般用公称直径(DN)表示,根据工程的要求,也可采用英制(”,英寸)。若同一根管道上使用了不同等级的材料,应在图上注明管道等级的分界点。

一般在 P&ID 上管道改变方向处标明介质流向。(2)间断使用的管道对间断使用的管道要注明“开车”、“停车”、“正常无流量(NNF)”等字样。(3)阀件正常操作时常闭的阀件或需要保证开启或关闭的阀门要注明“常闭(N.C)”、“铅封开(C.S.O)”、“铅封闭(C.S.C)”、“锁开(L.O)”、“锁闭(L.C)”等字样。所有的阀门(仪表阀门除外)在 P&ID 上都要示出,并按图例表示出阀门的形式;若阀门尺寸与管道尺寸不一致时,要注明。阀门的压力等级与管道的压力等级不一致时,要标注清楚;如果压力等级相同,但法兰面的形式不同,也要标明,以免安装设计时配错法兰,导致无法安装。(4)管道的衔接管道进出 P&ID 中,图面的箭头接到哪一张图及相接设备的名称和位号要交待清楚。以便查找相接的图纸和设备。(5)两相流管道两相流管道由于容易产生“塞流”而造成管道振动,因此应在 P&ID 上注明“两相流”。(6)管口开车、停车、试车用的放空口、放净口、蒸汽吹扫口、冲洗口和灭火蒸汽口等,在 P&ID 上都要清楚地标示出来。(7)伴热管蒸汽伴热管、电伴热管、夹套管及保温管等,在 P&ID 中要清楚地标示出来,但保温厚度和保温材料类别不必示出(可以在管道数据表上查到)。(8)埋地管道所有埋地管道应用虚线标示,并标出始末点的位置。(9)管件各种管路附件,如补偿器、软管、永久过滤器、临时过滤器、异径管、盲板、疏水器、可拆卸短管、非标准的管件等都要在图上标示出来。有时还要注明尺寸,工艺要求的管件要标上编号。(10)取样点取样点的位置和是否有取样冷却器等都要标出,并注明接管尺寸、编号。(11)特殊要求管道坡度、对称布置和液封高度要求等均必须注明。(12)成套设备接管 P&ID 中应标示出和成套供应的设备相接的连结点,并注明设备随带的管道和阀门与工程设计管道的分界点。工程设计部分必须在 P&ID 上标示,并与设备供货的图纸一致。(13)扩建管道与原有管道扩建管道与已有设备或管道连接时,要注明其分界点。已有管道用细实线表示。(14)装置内、外管道装置内管道与装置外管道连接时,要画“管道连接图”。并列表标出:管道号、管径、介质名称;装置内接往某张图、与哪个设备相接;装置外与装置边界的某根管道相接,这根管道从何处来或去何处。(15)特殊阀件双阀、旁通阀在 P&ID 上都要标示清楚。(16)清焦管道在反应器的催化剂再生时;须除焦的管道应标注清楚。

1.3 仪表与仪表配管(1)在线仪表流量计、调节阀等在线仪表的接口尺寸如与管道尺寸不一致时,要注明尺寸。(2)调节阀调节阀及其旁通阀要注明尺寸,并标明事故开(FO)或事故关(FC)、是否可以手动等。我国钢制调节阀阀体的最低压力等级是 4 x 106Pa,而管道的压力等级往往低于 4 x 106Pa,此点在 P&ID 上要注明,以免法兰配不上。(3)安全阀/呼吸阀(压力真空释放阀)要注明连接尺寸和设定压力值。(4)设备附带仪表设备上的仪表如果是作为设备附件供应,不须另外订货时,要加标注,该仪表编号可加后缀“X”。(5)仪表编号仪表编号和电动、气动讯号的联接不可遗漏,按图例符号规定(lead sheet)编制。(6)联锁及讯号联锁及声、光讯号在 P&ID 上亦要表示清楚。(7)冲洗、吹扫仪表的冲洗、吹扫要示出。(8)成套设备成套供应设备的供货范围要标明。对由制造厂成套

供货范围内的仪表,要加标注,可在编号后加后缀“X”。 1.4 其他在 P&ID 中要将特殊的设计及安装要求标示出来,亦可作为注释单独列出,如开/停车联锁、再生要求、仪表与有关的管道阀的安装要求、特殊的专用管件等。

一、车间布置设计的目的和重要性车间布置设计是工艺设计中的重要组成部分。它是在确定生产流程与设备的型号、规格、数量的基础上进行的。车间布置设计的目的是确定各车间、工段每台设备及构筑物的具体位置,决定车间、工段的长度、宽度、高度、建筑结构形式,以及各工段乃至车间之间的相互联系。车间布置是否合理,不仅影响建设的投资,而且对工厂建成后的生产和管理效率、生产的经济性、操作和维修条件、车间内的运输、卫生和安全等均有重要的影响。因此车间布置设计是一项涉及面广、复杂而细致、重要的设计内容。它不仅要求工艺设计人员要了解生产操作、设备维修和具有一定的安装知识,而且要具备一定的土建、电力、自控仪表等其他专业的基本知识。同时,在设计中还必须考虑各个方面的因素,提出不同方案进行比较,征求有关人员,特别应听取生产工人的意见,并与非工艺设计人员协作,这样才能获得良好的设计效果。二,车间布置设计所需资料车间布置设计必须在充分调查的基础上,掌握必要的资料作为设计的依据和参考,这些资料包括如下内容。

(1)生产工艺流程图。

(2)物料衡算资料:包括原料、半成品、成品、副产品、废水与废料等的性质与数量。 (3)设备资料:包括设备图及其操作条件、设备一览表及动力消耗情况等。 (4)有关工艺设计的说明书。 (5)各种构筑物的结构和尺寸。 (6)对车间内的供电、供汽、给排水、通风换气、自控仪表、采光及车间内运输等要求。 (7)劳动安全、防火、防爆等资料。 (8)车间组织及定员资料等。了解和掌握上述资料是重要的,更主要的是工艺设计人员应随时与各辅助专业的设计人员沟通和协商,使车间布置设计能满足各专业的要求。三、车间布置设计的成果车间布置设计的最终成果,是车间设备布置图。它包括车间各楼层的平面图和车间布置第 270 页

的剖面图。在图中设有标题栏和设备一览表,也可附加一定的文字说明。第二节车间布置设计的要求与原则考虑到制浆造纸生产中所用原材物料的性质、生产过程的连续性、加工工艺和设备的特点等,车间布置应尽量按如下的要求进行。—、车间布置设计的要求 (1)生产设备要按工艺流程的顺序配置。在保证生产要求、安全及环境卫生的前提下,尽量节省厂房面积与空间,减小各种管、线的长度。 (2)保证车间能充分利用自然采光与通风的条件,使各个工作地点有良好的劳动条件。 (3)保证车间内交通运输及管理的方便。万一发生事故,人员能迅速安全地疏散。 (4)厂房结构要紧凑简单,并为生产的发展及技术革新等创造有利条件。二、车间布置设计应遵循的原则为使车间布置设计能符合上述提出的基本要求,设计时应遵循以下原则。 (1)各个工序的设备布置要与主要流程(原料或半成品流程)顺序相一致,使生产线路呈链状排列而无交叉迂回现象,并尽可能利用自流输送,力求管线最短。在实际设计中,对于由多工序和多设备组成的流水作业线,可有多种不同的布置方案(图 6—1)。对制浆造纸车间来说,由于以水为工作介质,为了节约输送的能量和管路,通常采用图6—l 中左边的两种形式,即将设备排在一条或两条链状轴线上,且按工序分区要明确。但由于生产工艺的特点和物料输送的需要,某些地段可以有高低起伏或曲折。

(2)注意改善操作条件,对劳动条件差的工段(如备料、制药、蒸煮工段等)要充分考虑朝向、风向、门窗、排汽、除尘及通风设施的安装位置。设备的操作面应迎着光线,使操作工人背窗(背光)操作,免受外界光线的影响。 (3)辅料制备车间应与使用设备靠近,但如液氯气化、制漂液、熬制松香胶及化明矾等有污染和粉尘的部分,应有墙与车间隔开,而这些工段本身,应有通风等必要的防护设施。 (4)冬天无严重冰冻地区的工厂,可以考虑把白水塔、木片仓、喷放锅、漂白塔、黑液槽、热水槽、蒸发站、碱回收炉、白泥转窑等露天或半露天布置。高压容器等有爆炸危险的设备,应布置在室外,或单独间壁放置,并要有安全报

警和事故排空等安全措施。 (5)设备布置在楼面还是布置在底层,要视楼面荷重及是否利用位差输送等因素而定。一般洗浆设备宜布置在楼面,黑液槽布置在底层:打浆设备布置在楼面,浆池布置在底层,

设计规范》洁净厂房设计规范》《GMP 设计规范》与《洁净厂房设计规范》的比较

GMP 设计规范, 厂房

《GMP 设计规范》即《医药工业洁净厂房设计规范》,它结合国内外 GMP 的进展情况以及我国医药行业洁净厂房建设,使用的实践经验,从我国国民经济发展的实际水平和我国医药行业的生产现状出发,提出了我国医药工业洁净厂房设计的基本要求.与《洁净厂房设计规范》比较《GMP 设计规范》突出了医药行业药品生产的自身特点和特殊要求,并结合医药行业GMP 的具体情况,对药厂厂址选择及总平面布置,工艺设计,设备,建筑,空气净化,给排水,电气等作了具体详细的规定和说明,可操作性较强. 以下就《GMP 设计规范》与《洁净厂房设计规范》做一比较. 1.适用范围《GMP 设计规范》与《洁净厂房设计规范》的适用范围不同.《GMP 设计规范》适用于"新建,改建和扩建的医药制剂,原料药和药用包装材料,无菌医疗器械等医药工业洁净厂房"的设计,其中包括生物制药洁净厂房的设计,而《洁净厂房设计规范》不适用于"以细菌为控制对象

的生物洁净室". 2.洁净区环境参数 2.1 主要控制对象和空气洁净度因《GMP 设计规范》适用于生物洁净室而《洁净厂房设计规范》不适用,所以两规范针对的控制对象也就不同.《洁净厂房设计规范》适用于洁净区只控制微粒,而《GMP 设计规范》不仅要控制微粒,还要控制微生物.因此,《GMP 设计规范》不仅给出了每一洁净度等级下的不同粒径的尘埃数目,而且给出了每一洁净度等级下的沉降菌和浮游菌的含菌浓度指标.《洁净厂房设计规范》只给出了每一洁净度等级下的不同粒径的尘埃数目. 从两规范的空气洁净度等级划分以及相应的控制指标来看:两规范的空气洁净度等级划分以及对大于 5μm 尘粒的控制数目也不同.《GMP 设计规范》把空气洁净度划分为 100 级,10000 级,100000 级,大于 100000 级(相当于 300000 级).《洁净厂房设计规范》的洁净度划分为 100 级,1000 级,10000 级, 100000 级.对大于 5μm 尘粒的控制数目也不同. 2.2 温湿度《GMP 设计规范》按洁净度等级规定了温湿度的范围.100 级,10000 级区域一般控制温度为 20~24℃,相对湿度为 45%~60%,100000 级区域一般控制温度为 18~28℃,相对湿度为 50%~65%.生产工艺有特殊要求时,应根据工艺要求确定. 《洁净厂房设计规范》对温湿度的规定是在"空气净化"一章中给出的,生产工艺无温湿度要求时,控制温度为 20~26℃,相对湿度低于 70%;人员净化用室和生活用室温度为 16~28℃.有特殊要求时,应根据工艺要求确定. 2.3 噪声级《GMP 设计规范》与《洁净厂房设计规范》在噪声级上也有很大区别. 3.厂址选择和总平面布置医药企业受环境的影响较大,对环境的影响也较大,因此,厂址选择极为重要.尤其是周围环境的大气含尘,含菌浓度要低,水质要好.对于某些特殊药品的厂房,如青霉素类等,其总平面布置应考虑防止与其他产品的交叉污染;原药和制剂产品兼有的药厂,原料药生产区应置于制剂生产区的下风侧;三废处理,锅炉房等有严重污染的区域应置于厂房的最大频率风向下风侧; 危险品库应设于厂区安全位置,并相应的保护措施;厂区主要道路应贯彻人流与物流分流的原则. 对于厂区绿化《GMP 设计规范》明确指出"不宜种花",因为花粉是造成污染的原因之一. 4.工艺设计 4.1 工艺布局药品生产的工艺流程日益复杂,使用的原材料品种规格繁多,加上生产员工较多以及操作频繁,很容易造成人为差错和产品的交叉污染.因此,医药工业洁净厂房的工艺布局是极为重要的.为防止人流,物流之间的混杂和交叉污染,《GMP 设计规范》提出四个基本要求: a.分别设置人员和物料的进出口通道; b.人员和物料进入洁净生产区应有各自的净化用室和设施;

c.生产操作区内应只设置必要的工艺设备和设施;

d.输送人员和物料的电梯宜分开.电

梯不宜设在洁净区内; 对洁净房间布置,生产辅助用室的布置和洁净度等级《GMP 设计规范》也作了规定. 4.2 人员净化医药工业洁净厂房能否达到 GMP 要求,人员净化是关键的一环.在众多的污染源中,人是最大的污染源.人进入洁净区,如果不进行净化或净化效果不佳,会带入大量的微粒和微生物,严重影响到洁净区的空气洁净度.针对不同药物不同剂型对微粒和微生物的控制程度, GMP 设计《规范》做出了两组不同的人员净化程序.一组用于非无菌产品和可灭菌产品生产区,另一组用于不可灭菌产品生产区. 5.设备由于设备本身及其安装质量关系到洁净厂房的洁净效果,《GMP 设计规范》要求洁净室内应采用防尘,防微生物污染的设备和设施,对设备的结构,零部件,内外表面,传动部件,过滤装置等的材料,性能,附件及其安装等等都作了明确规定. 当设备安装在跨越不同洁净度等级的房间或墙面时,除考虑固定外,还应采用可靠的密封隔断装置,以保证达到不同等级的洁净要求.不同空气洁净度区域之间的物料传递如采用传送带时,为防止交叉污染,传送带不宜穿越隔断,宜在隔断两侧分段传送.在不可灭菌产品生产区中,不同空气洁净度区域之间的物料传递,则必须分段传送,除非该传送装置采用连续消毒方式.另外,青霉素等药物,高活性,有毒害药物的生产设备,必须专用. 6.工艺管道及给排水管道医药工业洁净厂房的工艺管道,其种类,材质,输送的介质,介质特性,安全保证措施等等与其他行业的洁净厂房要多得多,也复杂得多.《GMP 设计规范》对工艺管道的材料,安装,保温以及安全等方面的规定比较具体. 同时由于医药工业生产用水量大,用水种类多,水质要求严.《GMP 设计规范》除对给水,排水系统的管材,管道安装等作了说明外,对工艺用水尤其是对与生产紧密相关的纯水,注射用水的水质及其管道系统作了详细的规定.另外,洁净室内的地漏一直是洁净厂房设计的难点, 《GMP 设计规范》和《洁净厂房设计规范》中对洁净地漏的要求也不同. 7.空气净化药品生产尤其是制剂药品的生产,经常是不同药物不同剂型同时存在于同一洁净厂房中.为防止发生交叉污染,《GMP 设计规范》规定下列情况的空气净化系统,如经处理仍不能避免交叉污染时,则不应采用回风: a.固体物料的粉碎,称量,配料,混合,制粒,压片,包衣,灌装等工序; b.固体口服制剂的颗粒,成品干燥设备所使用的净化空气; c.用有机溶媒精制的原料药精制,干燥工序; d.凡工艺过程中产生大量有害物质,挥发性气体的生产工序. 洁净室的气流组织是洁净空调的核心内容.洁净效果能否达到要求,洁净室的气流组织是否合理和满足要求是关键.《GMP 设计规范》给出了不同洁净度等级的气流组织型式,气流流经

室内的断面风速或换气次数.《洁净厂房设计规范》不仅给出了不同洁净度等级的气流组织型式,气流流经室内的断面风速或换气次数,而且给出了送,回风口的风速. 青霉素类药物,高活性,有毒害药物的生产,有着特殊要求,《GMP 设计规范》作了特殊规定.这些药物的精制,干燥室和分装室,室内要保持正压,与相邻房间或区域之间要保持相对负压.生产或分装这些药物的房间的送风口和排风口均应安装高效过滤器,使这些药物引起的污染危险降低到最低限度;其空调净化系统应于其他药物的空调净化系统完全分开,防止交叉污染; 其排风口与其他药物空调净化系统的新风口之间应相隔一定的距离. 除以上几点外,两规范在"建筑,电气"的具体要求上也有一定的区别.从总体来看《GMP 设计规范》秉承了《洁净厂房设计规范》的编制思想,吸收了其优点,又结合当前国内外洁净厂房设计的进展情况及我国医药行业推行 GMP 的实践经验,补充了新内容,对不适合医药工业实际情况的部分进行了删改,可操作性更强了.

1

PID 通俗解释

PID控制原理 3个故事:看完您就明白了。 1、:PID的故事小明接到这样一个任务:有一个水缸点漏水(而且漏 水的速度还不一定固定不变),要求水面高度维持在某个位置,一旦发 现水面高度低于要求位置,就要往水缸里加水。 小明接到任务后就一直守在水缸旁边,时间长就觉得无聊,就跑到房 里看小说了,每30分钟来检查一次水面高度。水漏得太快,每次小明 来检查时,水都快漏完了,离要求的高度相差很远,小明改为每3分 钟来检查一次,结果每次来水都没怎么漏,不需要加水,来得太频繁 做的是无用功。几次试验后,确定每10分钟来检查一次。这个检查时 间就称为采样周期 开始小明用瓢加水,水龙头离水缸有十几米的距离,经常要跑好几趟 才加够水,于是小明又改为用桶加,一加就是一桶,跑的次数少了, 加水的速度也快了,但好几次将缸给加溢出了,不小心弄湿了几次鞋,小明又动脑筋,我不用瓢也不用桶,老子用盆,几次下来,发现刚刚好,不用跑太多次,也不会让水溢出。这个加水工具的大小就称为比 例系数 小明又发现水虽然不会加过量溢出了,有时会高过要求位置比较多, 还是有打湿鞋的危险。他又想了个办法,在水缸上装一个漏斗,每次 加水不直接倒进水缸,而是倒进漏斗让它慢慢加。这样溢出的问题解 决了,但加水的速度又慢了,有时还赶不上漏水的速度。于是他试着 变换不同大小口径的漏斗来控制加水的速度,最后终于找到了满意的 漏斗。漏斗的时间就称为积分时间 小明终于喘了一口,但任务的要求突然严了,水位控制的及时性要求 大大提高,一旦水位过低,必须立即将水加到要求位置,而且不能高 出太多,否则不给工钱。小明又为难了!于是他又开努脑筋,终于让 它想到一个办法,常放一盆备用水在旁边,一发现水位低了,不经过 漏斗就是一盆水下去,这样及时性是保证了,但水位有时会高多了。 他又在要求水面位置上面一点将水凿一孔,再接一根管子到下面的备 用桶里这样多出的水会从上面的孔里漏出来。这个水漏出的快慢就称 为微分时间 看到几个问采样周期的帖子,临时想了这么个故事。微分的比喻一点 牵强,不过能帮助理解就行了,呵呵,入门级的,如能帮助新手理解 下PID,于愿足矣。故事中小明的试验是一步步独立做,但实际加水 工具、漏斗口径、溢水孔的大小同时都会影响加水的速度,水位超调 量的大小,做了后面的实验后,往往还要修改改前面实验的结果。 2、控制模型:人以PID控制的方式用水壶往水杯里倒印有刻度的半杯 水后停下; 设定值:水杯的半杯刻度;

精心编制的 S7-300 PID 使用说明

定时中断组织块OB35 西门子S7-300/400有9个定时中断组织块:OB30、OB31、OB32、OB33、OB34、OB35、OB36、OB37、OB38 。 CPU可以定时中断去执行这些模块中的程序,即:每隔一段时间就停止当前的程序,转去执行定时中断组织块中的程序,执行结速后再返回。相当于单片机的定时中断。 这9个组织块功能相同,你可以选择其中之一使用,区别是它们的中断优先级不同,如果程序中用到了多个定时中断组织块,应设好它们的执行优先级。 S7-300CPU 可用的定时中断组织模块是OB35,在300站点的硬件组态中,打开CPU 属性设置可以看到其它的中断组织块为灰色。OB35默认的调用时间间隔为100ms 我们可以根据需要更改,定时范围是1-60000毫秒(ms) 设置中断时间间隔如下图所示 注意:设置的时间必须大于OB35中程序执行所花费的时间。 例如:如果中断时间间隔为50ms而OB35中的程序花费的时间是70ms,那么OB35中的程序还没执行完毕就产生第二次中断,程序就会出错,这显然是我们不想看到的结果。 以现在的技术,让你间隔一小时去月球拿一块石头你能做到吗??? 去月球所用的时间大于去月球的时间间隔,你做不到吧??? 正确设置:中断时间间隔大于OB35中程序执行完毕一次所需的时间

使用FB41实现PID控制 在自动化领域中常常要用到PID控制,而常规仪表里一个控制器就只能实现一路的PID 控制,如果要现实多路的PID控制成本就会变得非常高,而且不便于我们集中控制与管理。 经过学习西门子S7-300PLC,我们可以使用模块FB41来实现PID控制,FB41就相当于我们常规仪表里的控制器,既然是PID控制器就应该能够设定P、I、D参数。即:比例度、积分时间、微分时间。常规仪表的面板上可以更改PID参数,又有手动/自动切换按钮等。 今天我们要做的就是使用S7-300PLC 的FB41来代替常规仪表,如何使用FB41来实现PID控制的呢?? FB41是一个功能块,它所能实现的功能(PID)已经由专业人员设计好,我们只要调用它,并根据我们的需要来更改相应的参数即可使用。所以我们不用理会FB41是如何实现比例运算、积分运算、微分运算等等这些问题,只需要会调用就可以了。 现在我们已经知道FB41就相当于常规仪表里的一个控制器了,那么我们是如何使用FB41并给它设置相应的参数呢?? FB41相当于一个子程序,它是用来实现PID运算的,我们只需要每隔一段时间去调用这一“子程序”就可以实现PID控制。所以我们在OB35里调用FB41就可以了,调用的频率可以在属性里面设置。 我们是在OB35里调用FB41的所以在OB35里可以看到FB41的端口。因此可以直接在这些端口上直接设参数。 如下图所示

PID参数设置参考说明

FB41称为连续控制的PID用于控制连续变化的模拟量,与FB42的差别在于后者是离散型的,用于控制开关量,其他二者的使用方法和许多参数都相同或相似。 PID的初始化可以通过在OB100中调用一次,将参数COM-RST置位,当然也可在别的地方初始化它,关键的是要控制COM-RST; PID的调用可以在OB35中完成,一般设置时间为200MS, 一定要结合帮助文档中的PID框图研究以下的参数,可以起到事半功倍的效果 以下将重要参数用黑体标明.如果你比较懒一点,只需重点关注黑体字的参数就可以了。其他的可以使用默认参数。 A:所有的输入参数: COM_RST:BOOL: 重新启动PID:当该位TURE时:PID执行重启动功能,复位PID内部参数到默认值;通常在系统重启动时执行一个扫描周期,或在PID进入饱和状态需要退出时用这个位; MAN_ON:BOOL:手动值ON;当该位为TURE时,PID功能块直接将MAN的值输出到LMN,这可以在PID框图中看到;也就是说,这个位是PID的手动/自动切换位;(默认为1) PEPER_ON:BOOL:过程变量外围值ON:过程变量即反馈量,此PID可直接使用过程变量PIW(不推荐),也可使用PIW规格化后的值(常用),因此,这个位为FALSE; P_SEL:BOOL:比例选择位:该位ON时,选择P(比例)控制有效;一般选择有效; I_SEL:BOOL:积分选择位;该位ON时,选择I(积分)控制有效;一般选择有效; INT_HOLD BOOL:积分保持,不去设置它; I_ITL_ON BOOL:积分初值有效,I-ITLVAL(积分初值)变量和这个位对应,当此位ON 时,则使用I-ITLVAL变量积分初值。一般当发现PID功能的积分值增长比较慢或系统反应不够时可以考虑使用积分初值; D_SEL :BOOL:微分选择位,该位ON时,选择D(微分)控制有效;一般的控制系统不用; CYCLE :TIME:PID采样周期,一般设为200MS; SP_INT:REAL:PID的给定值; PV_IN :REAL:PID的反馈值(也称过程变量); PV_PER:WORD:未经规格化的反馈值,由PEPER-ON选择有效;(不推荐) MAN :REAL:手动值,由MAN-ON选择有效; GAIN :REAL:比例增益; TI :TIME:积分时间; TD :TIME:微分时间; TM_LAG:TIME:我也不知道,没用过它,和微分有关; DEADB_W:REAL:死区宽度;如果输出在平衡点附近微小幅度振荡,可以考虑用死区来降低灵敏度; LMN_HLM:REAL:PID上极限,一般是100%; LMN_LLM:REAL:PID下极限;一般为0%,如果需要双极性调节,则需设置为-100%;(正负10V输出就是典型的双极性输出,此时需要设置-100%); PV_FAC:REAL:过程变量比例因子 PV_OFF:REAL:过程变量偏置值(OFFSET) LMN_FAC:REAL:PID输出值比例因子; LMN_OFF:REAL:PID输出值偏置值(OFFSET); I_ITLVAL:REAL:PID的积分初值;有I-ITL-ON选择有效;

PID白话式理解说明及智能车闭环控制详解

PID白话式理解说明及智能车闭环控制详解 By jiahangsonic 编码器专卖https://www.360docs.net/doc/605129145.html, 本文只是技术交流,仅仅是鄙人对一些知识的看法和认识,由于鄙人学疏才浅,必然会在本文中出现定义理解不深刻,原理叙述有误等错误,敬请各位高人理解,如有错误之处,请大家指出,我将积极学习改进。 其实很早就应该写这么一个东西,由于学习和工作太忙,一直没有时间去写,春节放假,偶尔有了时间,决心一定要写好,本文只是针对初学者,对于那些老鸟和大神们,基本上没有看的必要,所以再您看这篇文章之前,还要对我多多的理解和宽容,写不好,我改进学习,写的好,希望对您有帮助。 (一) PID的背景和一些原理上理解 PID控制技术,是最简单的闭环控制技术之一,一般都是利用单反馈或者多反馈来实现对控制对象的调节,实现被控对象的可控性和可预知性的控制。使得设备运行的更加的可靠,合理且平稳。 PID的全称为比例积分微分控制,P即为比例,I即为积分,D即为微分。PID往往都是应用于惰性系统,所谓惰性系统就是变化较慢且无法精确控制和调节的对象,其中最最重要的特点就是变化速度慢,调节速度慢,控制周期较长,最经典的控制对象就为温度的温控。 下面就举一个简单的例子进行说明: 比如我们要对一个水箱里面的水进行加热,我们的目标加热温度为100℃,首先我们不用闭环对水温进行加热,也就是说我们只是靠人为观察温度计的温度值来对加热器进行人工的干预。

当温度加热到100℃以后,我们就停止加热,这个时候,虽然水温已经到达100且加热器已经不再通电加热,但是由于加热器的预热和水本身传递温度的惰性,导致水温会继续上升,经过一段时间后,水温会继续升高,并且超过100℃,那么该系统就无法达到我们所预期的要求。 这个时候您谁想,停止加热后本身会继续散热继续升温,那等到温度到90摄氏度左右以后,我们停止加热,然后利用水的惰性和加热器的散热,让水温继续升温,正好达到100℃,这样不就解决问题了吗?这么想是对的,但是水温要达到90几度的时候我们停止加热呢?还有就是从停止加热到100℃的时间是多少?经过一段时间后,温度没有达到100℃,而是小于100摄氏度以后温度就达到了顶峰,这样怎么办? 上述所有的办法,可能能够解决水温到达100℃的要求,但是其中很多环节很多结果都是无法预测和无法控制的,即便经历了很麻烦的人为干预同时经过了一个较长的时间达到了我们对水温加热到100℃的要求,也要经历一个相当复杂和相当漫长的时间才能达到,并且整个过程一直要有人为的干预,实在是属于劳民伤财。 不只是对温度的控制,还有其他很多领域的过程控制,都遇到了这些让人很困惑问题,所以科学家就针对此类问题发明了闭环控制原理,其中最经典最简单最实用的就是PID闭环控制。该控制原理简单可靠,参数调整简便,实用性强,广泛的受到人们的支持。 利用PID控制原理对水温进行加热控制,我现在进行举例说明:目标温度

PID使用说明

PID调节器又称回路调节器,本调节器提供的具体功能有:手动、自动、串级、及跟踪运行方式的切换,设定值、手动输出值的调整,PID参数的整定等。 PID调节有三种画面:回路操作画面、趋势显示画面和参数调整画面。下面介绍每种画面显示的信息及用途。 1.回路操作画面 在预先设置的PID热点上,单击鼠标左键,屏幕上将弹出如图3.11-1所示回路操作画面,由回路操作画面可分别进入其它两种画面。 (1)显示信息说明 在回路调节画面中显示的有设定值、过程值和输出值的棒图及数值显示,运行方式显示,报警状态显示等。 ?棒图显示 画面左边的三个棒图分别代表设定值、过程值和输出值,棒的颜色依次为蓝、天蓝、粉色。 设定值棒的高度为当前值相对量程的百分数。如果PID运行于串级状态,则设定棒显示串级外给定值,在其它运行状态下显示内给定值。 过程值棒的高度表示过程输入值。 输出棒的高度表示输出值。 ?数值显示 画面右下区域的三个方框中显示的内容依次为设定量、过程量及输出量的当前值,各数值颜色与棒颜色相对应。 当PID调节器运行于手动、自动或跟踪状态时,设定值为内部给定值;当运行于串级状态时,显示为串级输入值。 当PID调节器运行于手动状态时,输出值由手动给出;运行于自动和串级状态时,由算法结果给出;运行于跟踪状态时,为跟踪量点值。 ?报警状态显示 当偏差报警到来时,左上角灯置亮(呈红色);报警消失时,恢复正常颜色。 ?运行方式显示 PID调节器的运行方式包括手动、自动、串级及跟踪四种,当某个运行方式下的状态灯呈绿色时,表示调节器处于某方式。 ?其它 PID调节器画面静态显示的内容有点名、点描述(说明)等。

S7-300PID控制说明

S7-300的PID控制的方法 1、这是一个典型的PID控制系统。 通过模拟量4--20mA的传感器来监视水池的液位,对应PLC的0-27648的工程值,经这个比例转换成水池的液位。对应的液位是你液位传感器对应的最高量程。这个值就是PID的反馈值。 阀门调节由量模拟量输出控制阀门调节开度,控制你水池的液位。 2、无法与实际水位对应(读的参数不知道表示什么意思)? 在PID调节中有不同的物理量,因此在参数设定中需将其规格化。参数规格化: 1.规格化概念及方法:PID参数中重要的几个变量,给定值, 反馈值和输出值都是用0.0~1.0之间的实数表示,因此,需要将模拟输入转换为0.0~1.0的数据,或将0.0~1.0的数据转换为模拟输出,这个过程称为规格化。规格化的方法:(即变量相对所占整个值域范围内的百分比对应与27648数字量范围内的量)。对于输入和反馈,执行:变量*100/27648,然后将结果传送到PV-IN和SP-INT,对于输出变量,执行:LMN*27648/100,然后将结果取整传送给PQW即可; 2.例: 输入参数: SP_INT(给定值):0--100%的实数。 假定模块的输入变量量程为0-10Mpa,则SP_IN的范围0.0-1.00

对应0-10米.可以根据这一比例关系来设置给定值。例:如给定5.0米 SP_INT(给定值)=5.0/(10.0-0.0)*100.0=50.0(50%) PV_IN(过程值,即反馈值):0--100%的实数。 此值来自与阀门阀位(开度)的相应的压力反馈值。其范围0.0-1.0对应0-100%.即,当模拟量模板输入为数值为27648时则对应100%(量程的上限),数值为0时则对应0%(量程的下限)。 可以根据这一比例关系来换算PV_IN值。例:如输入数值为12000时 PV_IN(过程值,即反馈值)=12000/27648*100.0=43.403(43.403%) 输出参数: 当通过PID控制器(FB41)运算后,即得出调节值LMN_PER,该值已转化范围为0-27648的整型数值。例如经运算为43.403%, LMN_PER=43.403*27648/100,取整后为12000,将LMN_PER 送入模拟量输出模板即可. 3、积分时间不知道该如何设定? (1)对于比例控制来说,将比例度调到比较大的位置,逐步减小以得到满意的曲线。 (2)对于比例积分来说,先将积分时间无限大,按纯比例作用

PID控制详解

PID控制原理和特点 工程实际中,应用最为广泛调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要技术之一。当被控对象结构和参数不能完全掌握,或不到精确数学模型时,控制理论其它技术难以采用时,系统控制器结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能有效测量手段来获系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是系统误差,利用比例、积分、微分计算出控制量进行控制。 1、比例控制(P): 比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数 e(t) = SP – y(t)- u(t) = e(t)*P SP——设定值 e(t)——误差值 y(t)——反馈值 u(t)——输出值 P——比例系数 滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。 也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个系统会稳定在一定的范围内进行振荡。 如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制 2、比例积分控制(PI): 积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。 其公式有很多种,但大多差别不大,标准公式如下: u(t) = Kp*e(t) + Ki∑e(t) +u0

pid控制方法

尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。这几种控制规律可以单独使用,但是更多场合是组合使用。如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。 比例(P)控制 单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。实际应用中,比例度的大小应视具体情况而定,比例度太小,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太大,控制作用太强,容易导致系统的稳定性变差,引发振荡。 对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。 单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。工业生产中比例控制规律使用较为普遍。 比例积分(PI)控制 比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用。但是,不能最终消除余差的缺点限制了它的单独使用。克服余差的办法是在比例控制的基础上加上积分控制作用。 积分控制器的输出与输入偏差对时间的积分成正比。这里的“积分”指的是“积累”的意思。积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。所以,积分控制可以消除余差。积分控制规律又称无差控制规律。 积分时间的大小表征了积分控制作用的强弱。积分时间越小,控制作用越强;反之,控制作用越弱。 积分控制虽然能消除余差,但它存在着控制不及时的缺点。因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。所以,实用中一般不单独使用积分控制,而是和比例控制作用结合起来,构成比例积分控制。这样取二者之长,互相弥补,既有比例控制作用的迅速及时,又有积分控制作用消除余差的能力。因此,比例积分控制可以实现较为理想的过程控制。 比例积分控制器是目前应用最为广泛的一种控制器,多用于工业生产中液位、压力、流量等控制系统。由于引入积分作用能消除余差,弥补了纯比例控制的缺陷,获得较好的控制质量。但是积分作用的引入,会使系统稳定性变差。对于有较大惯性滞后的控制系统,要尽量避免使用。 比例微分(PD)控制

PID控制

1.企业在生产中,往往需要有稳定的压力、温度、流量、液位或转速,以此作为保证产品质量、提高生产效率、满足工艺要求的前提,这就要用到变频器的PI D 控制功能。 所谓PID 控制,就是在一个闭环控制系统中,使被控物理量能够迅速而准确地无限接近于控制目标的一种手段。PID 控制功能是变频器应用技术的重要领域之一,也是变频器发挥其卓越效能的重要技术手段。 变频调速产品的设计、运行、维护人员应该充分熟悉并掌握PID 控制的基本理 论。 一、PID 控制的实现 1 .PID 的反馈逻辑 各种变频器的反馈逻辑称谓各不相同,甚至有类似的称谓而含义相反的情形。系统设计时应以所选用变频器的说明书介绍为准。所谓反馈逻辑,是指被控物理量经传感器检测到的反馈信号对变频器输出频率的控制极性。例如中央空调系统中,用回水温度控制调节变频器的输出频率和水泵电机的转速。冬天制热时,如果回水温度偏低,反馈信号减小,说明房间温度低,要求提高变频器输出频率和电机转速,加大热水的流量;而夏天制冷时,如果回水温度偏低,反馈信号减小,说明房间温度过低,可以降低变频器的输出频率和电机转速.减少冷水的流量。由上可见,同样是温度偏低,反馈信号减小,但要求变频器的频率变化方向却是相反的。这就是引入反馈逻辑的原由。几种变频器反馈逻辑的功能选择见表 1 。 2 .打开PID 功能 要实现闭环的PID 控制功能,首先应将PID 功能预置为有效。具体方法有两种:一是通过变频器的功能参数码预置,例如,康沃CVF-G2 系列变频器,将参数H-48 设为O 时,则无PID 功能;设为 1 时为普通PID 控制;设为 2 时为恒压供水PID 。二是由变频器的外接多功能端子的状态决定。例如安川C IMR-G 7A 系列变频器,如图1 所示,在多功能输入端子Sl-S10 中任选一个,将功能码H1-01 ~H1-10( 与端子S1-S10 相对应) 预置为19 ,则该端子即具有决定PI[) 控制是否有效的功能,该端子与公共端子SC “ ON ”时无效,“ OFF ”时有效。应注意的是.大部分变频器兼有上述两种预置方式,但有少数品 牌的变频器只有其中的一种方式。 在一些控制要求不十分严格的系统中,有时仅使用PI 控制功能、不启动 D 功能就能满足需要,这样的系统调试过程比较简单。 3 .目标信号与反馈信号 欲使变频系统中的某一个物理量稳定在预期的目标值上,变频器的PID 功能电路将反馈信号与目标信号不断地进行比较,并根据比较结果来实时地调整输出频

PID控制简介及PID调节经验方法

PID控制简介及PID调节经验方法 PID就是比例微积分调节,具体你可以参照自动控制课程里有详细介绍!正作用与反作用在温控里就是当正作用时是加热,反作用是制冷控制。 PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 1、开环控制系统 开环控制系统(open-loopcontrolsystem)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 闭环控制系统(closed-loopcontrolsystem)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(NegativeFeedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过

1、PID参数说明

PID系统方块图

PID参数说明 任何闭环控制系统的首要任务是要稳(稳定)、快(快速)、准(准确)的响应命令。PID调整的主要工作就是如何实现这一任务。 P:比例(度)带加快系统的响应,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现,比例度越小,会使系统有比较大的超调,并产生振荡,使稳定性变坏。比例度越大,比例效果越弱,反之越强。 I:积分能在比例的基础上消除余差,它能对稳定后有累积误差的系统进行误差修整,减小稳态误差。积分时间越长,积分效果越弱,反之越强。 D:微分具有超前作用,对于具有容量滞后的控制通道,引入微分参与控制,在微分项设置得当的情况下,对于提高系统的动态性能指标,有着显著效果,它可以使系统超调量减小,稳定性增加,动态误差减小。微分时间越长,微分效果越强,反之越弱。 综上所述, P---比例控制系统的响应快速性,快速作用于输出,好比“现在”(现在就起作用,快); I---积分控制系统的准确性,消除过去的累积误差,好比“过去”(清除过去,回到准确轨道); D---微分控制系统的稳定性,具有超前控制作用,好比“未来”(放眼未来,未雨绸缪,稳定才能发展)。 调整的时候,所要做的任务就是在系统结构允许的情况下,在这三个参数之间权衡调整,达到最佳控制效果,实现稳快准的控制特点。 PID整定口决 参数整定找最佳,从小到大顺序查 先是比例后积分,最后再把微分加 曲线振荡很频繁,比例度盘要放大 曲线漂浮绕大湾,比例度盘往小扳 曲线偏离回复慢,积分时间往下降 曲线波动周期长,积分时间再加长 曲线振荡频率快,先把微分降下来 动差大来波动慢。微分时间应加长 理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低 TRC21101:HSPID:=(PT:=10,TI:=30,SV:=100,KD:=5,TD:=2,DI:=0,OutT:=100,OutB: =0,OutR:=5,DL:=10,MU:=100,MD:=0,PK:=0,OutM:=0,AD:=0,TM:=FALSE,RM:=0, ME:=TRUE,AE:=TRUE,CE:=FALSE,MTE:=TRUE,ATE:=TRUE,PVMU:=5,PVMD: =0,MC:=0,cycle:=0.5); (*沉降器R22101提升管A入口温度*)

PID控制最通俗的解释与PID参数的整定方法要点

PID控制最通俗的解释与PID参数的整定方法 [ 2010/6/18 15:15:45 | Author: 廖老师 ] PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。阅读本文不需要高深的数学知识。 1.比例控制 有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。 下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。假设用热电偶检测炉温,用数字仪表显示温度值。在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。 操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。炉温小于给定值时,误差为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。炉温大于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。 闭环中存在着各种各样的延迟作用。例如调节电位器转角后,到温度上升到新的转角对应的稳态值时有较大的时间延迟。由于延迟因素的存在,调节电位器转角后不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟作用。 比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。比例系数如果过大,即调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高忽低,来回震荡。 增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。但是比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动态性能变坏,比例系数太大甚至会使闭环系统不稳定。 单纯的比例控制很难保证调节得恰到好处,完全消除误差。 2.积分控制 PID控制器中的积分对应于图1中误差曲线与坐标轴包围的面积(图中的灰色部分)。PID控制程序是周期性执行的,执行的周期称为采样周期。计算机的程序用图1中各矩形面积之和来近似精确的积分,图中的TS就是采样周期。

PID控制原理与调整方法

一、前言 在我们燃烧器的自动燃烧控制中,普遍的使用到了PID控制,由于我们对它的了解程度不够深刻,在许多应用现场和用户面前给我们带来了很多尴尬。 为了让大家能深刻的理解并掌握PID,这里我将我搜集到的一些资料结合本人现场调试的一些经验与心得,与大家共同学习探讨。 二、PID控制类型与意义 所谓的PID控制其实是自动控制输出的一种控制类型。它还有P(比例)控制、I(积分)控制、D(微分)控制,组合在一起使用的有PI控制、PD 控制、PID控制。尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。这几种控制规律可以单独使用,但是更多场合是组合使用。如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。 1、比例(P)控制 单独的比例控制也称“有差控制”,控制器输出的变化与输入控制器的偏差(偏差指目标值与实际值之间的差)成比例关系,偏差越大输出越大(或越小根据正反比例有关)。输出=偏差*比例 比如说,一个热风炉出口温度的PID控制的比例是10,它的预定值是500°C。那么它在小于490°C的时候会输出100%,在495°C的时候会输出50%,在499°C的时候输出10%,在偏差是0的时候,控制器的输出也是0。 实际应用中,比例度的大小应视具体情况而定,比例度太小,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太大,控制作用太强,容易导致系统的稳定性变差,引发振荡。 对于反应灵敏、放大能力强的被控对象(例如热风炉的温度控制),为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象(例如蒸汽压力的控制),比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。这里说的比例度的大小不是指P值数字的大小,而是指P值在整个被控对象中所占比例的大小,例如,我们平常的蒸汽压力控制目标为2.0MPa,它的比例取值为1,但它已占最大差值比例的50% ,1/(2-0)*100%=50%。而热风温度控制中,热风目标为500℃,比例取10时,它占最大差值的10%,10/(500-0)*100%=2% 单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。

PID通俗讲解

本文只是技术交流,仅仅是鄙人对一些知识的看法和认识,由于鄙人学疏 才浅,必然会在本文中出现定义理解不深刻,原理叙述有误等错误,敬请各位高人理解,如有错误之处,请大家指出,我将积极学习改进。 其实很早就应该写这么一个东西,由于学习和工作太忙,一直没有时间去 写,春节放假,偶尔有了时间,决心一定要写好,本文只是针对初学者,对于那些老鸟和大神们,基本上没有看的必要,所以再您看这篇文章之前,还要对我多多的理解和宽容,写不好,我改进学习,写的好,希望对您有帮助。(一)PID的背景和一些原理上理解 PID控制技术,是最简单的闭环控制技术之一,一般都是利用单反馈或者 多反馈来实现对控制对象的调节,实现被控对象的可控性和可预知性的控制。使得设备运行的更加的可靠,合理且平稳。 PID的全称为比例积分微分控制,P即为比例,I即为积分,D即为微分。PID往往都是应用于惰性系统,所谓惰性系统就是变化较慢且无法精确控制和调节的对象,其中最最重要的特点就是变化速度慢,调节速度慢,控制周期较长,最经典的控制对象就为温度的温控。 下面就举一个简单的例子进行说明: 比如我们要对一个水箱里面的水进行加热,我们的目标加热温度为100℃, 首先我们不用闭环对水温进行加热,也就是说我们只是靠人为观察温度计的温度值来对加热器进行人工的干预。 当温度加热到100℃以后,我们就停止加热,这个时候,虽然水温已经到 达100且加热器已经不再通电加热,但是由于加热器的预热和水本身传递温度的惰性,导致水温会继续上升,经过一段时间后,水温会继续升高,并且超过100℃,那么该系统就无法达到我们所预期的要求。 这个时候您谁想,停止加热后本身会继续散热继续升温,那等到温度到90 摄氏度左右以后,我们停止加热,然后利用水的惰性和加热器的散热,让水温继续升温,正好达到100℃,这样不就解决问题了吗?这么想是对的,但是 水温要达到90几度的时候我们停止加热呢?还有就是从停止加热到100℃的时间是多少?经过一段时间后,温度没有达到100℃,而是小于100摄氏度以后温度就达到了顶峰,这样怎么办? 上述所有的办法,可能能够解决水温到达100℃的要求,但是其中很多环 节很多结果都是无法预测和无法控制的,即便经历了很麻烦的人为干预同时经过了一个较长的时间达到了我们对水温加热到100℃的要求,也要经历一个相 当复杂和相当漫长的时间才能达到,并且整个过程一直要有人为的干预,实在是属于劳民伤财。 不只是对温度的控制,还有其他很多领域的过程控制,都遇到了这些让人 很困惑问题,所以科学家就针对此类问题发明了闭环控制原理,其中最经典最简单最实用的就是PID闭环控制。该控制原理简单可靠,参数调整简便,实用性强,广泛的受到人们的支持。 利用PID控制原理对水温进行加热控制,我现在进行举例说明:目标温度 还是我们之前设定的100℃,加热前我们首先要把这个温度值输入到加热器控 制器中,此时温度计只是作为我们认为观察温度的一个参考,我们在水中放入一个电子温度计,电子温度计测量的温度可以传送到控制器,以使得我们的PID 控制器知道当前的水温,在刚刚通电加热的时候,水温假定为室温20℃,当前的水温会通过电子温度计测量并传输到PID控制器中,此温度作为当前温度值

PID调节的详细说明

1. PID调试步骤没有一种控制算法比PID调节规律更有效、更方便的了。现在一些时髦点的调节器基本源自PID。甚至可以这样说:PID调节器是其它控制调节算法的吗。为什么PID应用如此广泛、又长久不衰?因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。这就给使用者带来相当的麻烦,特别是对初学者。下面简单介绍一下调试PID参数的一般步骤:1.负反馈自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。2.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。3.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振

荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。比例增益P调试完成。 b.确定积分时间常数Ti 比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。积分时间常数Ti调试完成。 c.确定积分时间常数Td 积分时间常数Td一般不用设定,为0即可。若要设定,与确定P和Ti的方法相同,取不振荡时的30%。 d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。 2.PID控制简介目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校

自适应控制中PID控制方法

自适应控制中P I D控 制方法 -CAL-FENGHAI.-(YICAI)-Company One1

自适应PID 控制方法 1、自适应控制的理论概述 设某被控对象可用以下非线性微分方程来描述: '()((),(),,) ()((),(),,)x t f x t u t t y t h x t u t t θθ== (1-1) 其中x(t),u(t),y(t)分别为n,p,m 维列向量。假设上述方程能线性化、离散化,并可得出在扰动和噪音影响下的方程: (1)(,)()(,)()()()(,)()() X k k X k k U k k Y k H k X k V k θρθωθ+=Φ++=+ (1-2) X(k),X(k),U(k),Y(k),V(k)分别为n ,n ,p ,m ,m 维列向量;(,)k θΦ、(,)k ρθ、(,)H k θ分别为n ×n 系统矩阵、n ×p 控制矩阵、m ×n 输出矩阵。那么自适应控制就是研究:在矩阵(,)k θΦ,(,)k ρθ,(,)H k θ中的参数向量,随机{()k ω},{v(k)}的统计特性及随机向量X(0)的统计特性都未知的条件下的控制问题,也就是说自适应控制的问题可归结为在对象及扰动的数学模型不完全确定的条件下,设计控制序列u(0),u(1),…,u(N- 1),使得指定的性能指标尽可能接近最优和保持最优。 自适应控制是现代控制的重要组成部分,它同一般反馈控制相比有如下突出特点: (l)一般反馈控制主要适用于确定性对象或事先确知的对象,而自适应控制主要研究不确定对象或事先难以确知的对象。

(2)一般反馈控制具有抗干扰作用,即它能够消除状态扰动引起的系统误差,而自适应控制因为有辨识对象和在线修改参数的能力,因而不仅能消除状态扰动引起的系统误差,还能消除系统结构扰动引起的系统误差。 (3)自适应控制是更复杂的反馈控制,它在一般反馈控制的基础上增加了自适应控制机构或辨识器,还附加了一个可调系统" 模型参考自适应控制系统 模型参考自适应控制系统由参考模型、反馈控制器、自适应机构及被控对象组成。此系统的主要特点是具有参考模型,其核心问题可归纳为如何确定自适应调节律及算法。目前设计自适应律所采用的方法主要有两种:局部参数最优法,如梯度算法等,该方法的局限性在于不一定能保证调节过程总是稳定的;基于稳定性理论的设计方法,如Lyapunov稳定性理论和Popov超稳定性理论的设计方法。 自校正调节器 自校正调节器可分为设计机构、估计器、调节器及被控对象4个部分。此控制器的主要特点是具有在线测量及在线辨识环节,其核心问题可归纳为如何把不同参数估计算法与不同控制算法相结合。根据参数估计算法与控制算法相结合的情况把自校正控制分为:最小方差自校正控制,其特点是算法简单、易理解、易实现,但只适用于最小相位系统,对靠近单位圆的零点过于灵敏,而且扰动方差过大时调节过程过于猛烈;广义最小方差自校正控制,可用于非逆稳系统,但难以实现;基于多步预测的自适应控制,适用于不稳定系统等,具有易实现、鲁棒性强的优点;自校正极点配置控制,具有动态性能好、无控制过激现象的特点,但静态干扰特性差;自校正PID控制,具有算法简单、鲁棒性强、待定参数少的特点;增益调度控制,优点是参数适应快,缺点是选择合适的列表需要大量的仿真实验,另外离线的计算量大。

PID调节经验值说明

PID调节参数参数经验值说明 比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。 积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti 大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。 微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。 在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。 PID参数的含义:

比例系数P:增大比例系数P一般将加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。 积分时间Ti:增大积分时间Ti有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。 微分时间Td:增大微分时间Td有利于加快系统的响应速度,使系统超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。 PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作﹔(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期﹔(3)在一定的控制度下通过公式计算得到PID控制器的参数。 一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例

相关主题
相关文档
最新文档