傅里叶变换基础知识

傅里叶变换基础知识
傅里叶变换基础知识

傅里叶变换基础知识

1. 傅里叶级数展开

最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。

1.1 周期信号的傅里叶级数

在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。

1.1.1 狄利克雷(dirichlet )条件

狄利克雷(dirichlet )条件为:

(1)信号()x t 在一个周期内只有有限个第一类间断点(当t 从左或右趋向于这个间断点时,函数有左极限值和右极限值);

(2)信号()x t 在一周期内只有有限个极大值和极小值;

(3)信号在一个周期内是绝对可积分的,即00

/2

/2()dt T T x t -?应为有限值。

1.1.2 间断点

在非连续函数()y f x =中某点处0x 处有中断现象,那么,0x 就称为函数的不连续点。 (1)第一类间断点(有限型间断点):

a. 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(0x 令分母为零时等情况);

b. 跳跃间断点:函数在该点左极限、右极限存在,但不相等(0/y x x =在点0x =处等情况)。

(2)第二类间断点:除第一类间断点的间断点。 1.1.3 傅里叶级数三角函数表达式

傅里叶级数三角函数表达式为

0001()(cos sin )n n n x t a a n t b n t ωω∞

==++∑

式中:0a 为信号的常值分量;n a 为信号的余弦信号幅值;n b 为信号的正弦信号幅值。

0a 、n a 、n b 分别表示为: 000000

/20/20/20/20/2

0/201()2()cos 2()sin T T T n T T n T a x t dt T a x t n tdt T b x t n tdt

T ωω---===?????????

??? 式中:0T 为信号的周期;0ω为信号的基频,即角频率,002/T ωπ=,1,2,3...n =。

合并同频项也可表示为

001

()cos()n n n x t a A n t ωθ∞

==++∑

式中:信号的幅值n A 和初相位n θ分别为

arctan(/)

n n n n A b a θ==-

1.1.4 频谱的相关概念

(1)信号的频谱(三角频谱):构成信号的各频率分量的集合,表征信号的幅值和相位随频率的变化关系,即信号的结构,是n A ω-(或n A f -)和n θω-(或n f θ-)的统称;

(2)信号的幅频谱:周期信号幅值n A 随ω(或f )的变化关系,用n A ω-(或n A f -)表示;

(3)信号的相频谱:周期信号相位n θ随ω(或f )的变化关系,用n θω-(或n f θ-)表示;

(4)信号的频谱分析:对信号进行数学变换,获得频谱的过程; (5)基频:0ω或0f ,各频率成分都是0ω或0f 的整数倍; (6)基波:0ω或0f 对应的信号;

(7)n 次谐波: 0(n 2,3,...)n ω=或0(n 2,3,...)nf =的倍频成分0c o s ()n n A n t ω?+或

0cos(2)n n A nf t πθ+;

1.1.5 周期信号的傅里叶级数的复指数函数展开

根据欧拉公式cos sin (j t

e t j t j ωωω±=±,则

1

cos ()

2

1sin j()

2

j t j t j t

j t t e e t e e ωωωωωω--=+=- 因此,傅里叶级数三角函数表达式()0001

()cos sin n n n x t a a n t b n t ωω∞==++∑可改写成

0001()22jn t jn t n n n n n a jb a jb x t a e e ωω∞

-=-+??

=++???

?∑ 令

()()001

21

2

n n n n

n n C a C a jb C a jb -==-=+ 则

00000011

1

1

()jn t

jn t

jn t

jn t

jn t

n n n n n

n n n n n x t C C e

C e

C e

C e

C e

ωωωωω∞

-∞

--=====-=++=++

∑∑∑∑∑

0() 0,1,2,jn t

n

n x t C e

n ω∞

=-∞

=

=±±???∑

这就是周期信号的傅里叶复指数形式的表达式。

将0000/20/20/20/202()cos 2()sin T n T T n T a x t n tdt T b x t n tdt

T ωω--?=????=??

??代入()12n n n C a jb =-,则000/2

/2

01()T jn t n T C x t e dt T ω--=

?

在一般情况下n C 是复数,可以写成n j n nR nI n C C jC C e ?=+= 式中

n C arctan nI n nR

C

C ?=

由n j n nR nI n C C jC C e ?=+=,()12n n n C a jb =-,()1

2

n n n C a jb -=+可表示为

()1

2n j n n n n C a jb C e ?=

-=? ()1

2n j n n n n C a jb C e ?--=+=?

则0() 0,1,2,jn t

n

n x t C e

n ω∞

=-∞

=

=±±???∑ 变为

()()

000000001

1

1

()n n j n t j n t jn t

jn t

n n n n n x t C C e

C e

C C e C e ω?ω?ωω∞

+----===??=++=++??

∑∑∑ 由此可见,周期信号用复指数形式展开,相当于在复平面内用一系列旋转矢量

()

00n j n t C e

ω?±来描述,但是,负频率的出现,仅仅是数学推导的结果,并无实际物理意义。

1.1.6 傅里叶级数的复指数与三角函数展开关系

由()1

2

n n n C a jb =-,n j n nR nI n C C jC C e ?=+

=可知:

/2nR n C a = /2nI n C b =-

综合n A

n C /2n n C A =

即双边频谱的幅值n C 是单边频谱幅值n A 的一半。

由arctan

nI

n nR

C C ?=,/2nR n C a =,/2nI n C b =-可知: ()arctan /

b a ?=

2 傅里叶变换

出准周期函数之外的非周期信号称为一般周期信号,也就是瞬态信号。瞬态信号具有瞬变性,例如锤子敲击力的变化、承载缆绳断裂的应力变化、热电偶插入加热的液体中温度的变化过程等信号均属于瞬态信号。瞬态信号是非周期信号,可以看作一个周期的周期信号,即周期T →∞。因此,可以把瞬态信号看作周期趋于无穷大的周期信号。

2.1 傅里叶变换

设有一周期信号()x t ,则其在[]/2,/2T T -区间内的傅里叶级数的复指数形式的表达式为

0()jn t

n

n x t C e

ω∞

=-∞

=

∑,

式中

000/2

/2

01()T jn t n T C x t e dt T ω--=

?

当0T →∞时,积分区间[][]/2,/2,T T -→-∞∞;谱线间隔002/T d ωωπω?==→, 0n ωω→离散率连续变量频,所以000/2

/2

1()T jn t n T C x t e dt T ω--=

?

变为

00lim ()j t n T C T x t e dt ω∞

--∞

→∞

?=?

该式积分后将是ω的函数,且一般为复数,用()X j ω或()X ω表示为

()()j t X j x t e dt ωω∞

--∞=?

式中:()X j ω称为信号()x t 的傅里叶积分变换或简称傅里叶变换(Fouier Transform ,FT ),是把非周期信号看成周期趋于无穷大的周期信号来处理的,显然

()000lim lim n n T f C

X j C T f

ω→∞→=?=

即()X j ω为单位频宽上的谐波幅值,具有“密度”的含义,故把()X j ω称为瞬态信号的“频谱密度函数”,或简称“频谱函数”。

由()000lim lim n n T f C

X j C T f

ω→∞→=?=得

()()0000lim

lim 2n T X j C X j T ωωω

ωπ

→∞

→∞== 代入0()jn t

n

n x t C e

ω∞

=-∞

=

∑得

()()000

lim 2jn t

n x t X j e

ωωωωπ∞

→∞

=-∞

=

当0T →∞时,002/T d ωπω==, 0n ωω→离散率连续变量频,→∑求和积分。则

()()12j t x t X j e d ωωωπ∞

-∞

=

? ()x t 称为()X j ω的傅里叶逆变换或反变换(Inverse Fourier Transform ,IFT )

。()()j t X j x t e dt ωω∞

--∞=?和()()1

2j t x t X j e d ωωωπ

-∞

=

?

构成了傅立叶变换对

()()FT

IFT

x t X j ω?

一般地,使用FT

IFT

?或?表示信号之间的傅立叶变换及其逆变换之间的关系。由于

2f ωπ=,所以()()j t X j x t e dt ωω∞

--∞

=?和()()12j t x t X j e d ωωωπ

-∞

=

?

可变为

()()()()22j ft j ft

X jf x t e dt

x t X jf e

df

ππ∞

--∞

-∞

==???

这就避免了在傅里叶变换中出现1/2π的常数因子,使公式形式简化。

由式()()2j ft X jf x t e dt π∞

--∞

=?可知,非周期信号能够用傅里叶函数来表示,。而周期信号

可由傅里叶级数0()jn t

n

n x t C e

ω∞

=-∞

=∑来表示。()()2j ft X jf x t e dt π∞

--∞

=?是一般复数形式,可表示

()()()()()

Re Im j f X jf X jf j X jf X jf e

??=+=?

式中:()Re X jf 为()X jf 的实部;()Im X jf 为()X jf 的虚部;()X jf 为信号()x t 的连续

幅频谱;()jf ?为信号()x t 的连续相频谱。

()

()()()arctan Im /Re X jf f X jf X jf ?=????

比较周期信号和非周期信号的频谱可知:首先,非周期信号幅值()X jf 随f 变化时连续的,即为连续频谱,而周期信号的幅值n C 随f 变化时离散的,即为离散频谱。其次,n C 的量纲和信号幅值的量纲一致,而()X jf 的量纲相当于/n C f ,为单位频宽上的幅值,即为“频谱密度函数”。

2.2 傅里叶变换的主要性质

一个信号可以进行时域描述和频域描述。两种描述通过傅里叶变换来确立彼此一一对应

2.3 几种典型信号

(1)举行窗函数

(2)单位脉冲函数(δ函数) (3)正、余弦信号

(4)一般周期信号(5)周期单位脉冲序列

傅里叶变换性质证明

傅里叶变换性质证明 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。

由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 ? 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。

(1)反褶 f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 ? 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t)为实函数对比式(2-33)与(2-34),由FT的唯一性可得 ()f(t)是实的偶函数,即f(t)=f(-t)

X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ()f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R()=0,于是 可见,若f(t)是实奇函数,则F()是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。 2.6.4对称性

傅里叶变换_百度文库.

傅里叶变换,拉普拉斯变换和Z 变换的意义来源:于理扬的日志 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中, 傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数或者它们的积分的线性组合。在不同的研究领域, 傅里叶变换具有多种不同的变体形式, 如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加, 从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割, 每一部分只是一个时间点对应一个信号值, 一个信号是一组这样的分量的叠加。傅里叶变换后, 其实还是个叠加问题, 只不过是从频率的角度去叠加, 只不过每个小信号是一个时间域上覆盖整个区间的信号, 但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值,我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小, 那么相位呢, 它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域与后一段的相位的变化是否与信号的频率成正比关系。

傅里叶变换性质证明

傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。 由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即

叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。 (1)反褶 f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭

本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质 2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。

(1) f(t)为实函数 对比式(2-33)与(2-34),由FT的唯一性可得 ()f(t)是实的偶函数,即f(t)=f(-t) X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ()f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R()=0,于是 可见,若f(t)是实奇函数,则F()是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。 2.6.4对称性 傅里叶变换与傅里叶反变换之间存在着对称关系,称为傅里叶变换的对称性质。若已知

傅里叶变换推导

2.3 快速傅立叶变换问题 1) 问题背景 在数值电路的传输中,为了避免信号干扰,需要把一个连续信号 x(t)先通过取样离散化为一列数值脉冲信号x(0), x(1), …… ,然后再通过编码送到传输电路中。如果取样间隔很小,而连续信号的时间段又很长,则所得到的数值脉冲序列将非常庞大。因此,传输这个编码信号就需要长时间的占用传输电路,相应地也需要付出昂贵的电路费用。 那么能否经过适当处理是使上述的数值脉冲序列变短,而同时又不会丧失有用的信息?的经过研究,人们发现,如果对上述数值脉冲序列作如下的变换处理: ∑-=--=-==1 0/21 ,1,...,1,0,)()(N k N nki i N n e k x n X π (1) 则所得到的新序列X(0), X(1) , ……将非常有序,其值比较大的点往往集中在某一很狭窄的序列段内,这将非常有利于编码和存储,从而达到压缩信息的目的。 公式(1)就是所谓的离散傅立叶变换,简称DFT 。现在我们来分析一下计算DFT 所需要的工作量。如果我们不考虑公式(7.1)中指数项的运算,那么计算其每一个点X (n) 需要N 次复数乘法和N-1次的复数加法。显然当N 很大时,这个工作量也非常巨大。正是由于这个原因,使得DFT 的应用范围在过去很长的时间里受到了严格的限制。注意到公式(1)是非常有规律性的,那么能否利用这种规律性来降低DFT 的计算时间? 1965年,凯莱和塔柯的提出了一种用于计算DFT 的数学方法,大大减少了DFT 的计算时间,同时又特别适用于硬件处理,这就是所谓的快速傅里叶变换,简称FFT 。鉴于DFT 的数据结构可以通过傅立叶变换的离散化获得,亦可通过三角插值得到,而本质上又同连续傅里叶分析有着极为密切的关系。下面我们从傅立叶级数级数和傅立叶积分入手,导出DFT 结构的来源和FFT 的工作原理。 2) 傅立叶变换 如果x(t)是定义在整个实轴上的实值或复值函数,则其傅立叶变换可由下式给出: ?∞ ∞ ---==1 ,)()(/2i dt e t x f X T nift (2)

傅立叶变换

一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得 非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: https://www.360docs.net/doc/646903137.html,/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的 名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热 传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来 描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶 的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角 波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。 三、傅立叶变换分类 根据原信号的不同类型,我们可以把傅立叶变换分为四种类别:

傅里叶变换的对称性证明

一. 序列的傅里叶变换(DTFT )的对称性 已知: [()]()j DTFT x n X e ω= **[()]()j DTFT x n X e ω-= **[()]()j DTFT x n X e ω-=(由Z 变换的性质可推出) 共轭对称序列:()()*e e x n x n =-实部是偶对称序列,虚部是奇对称序列 共轭反对称序列: ()()*o o x n x n =--实部是奇对称序列,虚部是偶对称序列 任一序列总可以表示成共轭对称序列和共轭反对称序列之和: ()()()()()()()()() **12 12e e o o x n x n x n x n x n x n x n x n x n ???=+-????=+? ???=--? ??? ()()()()()()()()()**1212j j j e j j j e o j j j o X e X e X e X e X e X e X e X e X e ω ωωωωωωωω--???=+?? ??=+? ???=-? ??? 求证: [Re(())]() [Im(())]()j e j o DTFT x n X e DTFT j x n X e ωω ?=?=? or [()]Re(()) [()]Im(())j e j o IDTFT X e x n IDTFT X e j x n ωω ?=?=? [()]Re(()) [()]Im(())j e j o DTFT x n X e DTFT x n j X e ωω ?=?=? or [Re(())]() [Im(())]()j e j o IDTFT X e x n IDTFT j X e x n ωω ?=?=? 证明: ()()()[][] ** 1 21()()21 2Re(())2 Re(())j j j e X e X e X e DTFT x n x n DTFT x n DTFT x n ωωω-?? = +? ???= +??== ()()( )[][]* * 121()()2 1 2I m (())2 I m (())j j j o X e X e X e D T F T x n x n D T F T j x n D T F T j x n ωω ω- ??= -? ? ??= -??==

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常 需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。 因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若-'1 ' 一 1 一八 餐丄I 则 嗽(0 +罰⑷ G 迅(j 由)+ 碍(Jtu ) (3-55) 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数 ,; 「" 由式(3-55)得 =侔7(/)}=-屛1} + - (sgn( /)}=丄 K 刼罠珂 + 丄用2 二足飢也)+ — 2 2 2 2 JtD J QJ 、对称性 (3-56) 则」 将上式中变量少换为x ,积分结果不变,即 证明因为 fC )二丄「EQ 讣叫田 N J 2^(i) = f F(J 噪叫 a 2^(-1)=「F(j 嫌小咕 J —TO

」一 再将t用夕代之,上述关系依然成立,即 2戒(―型)-[ Jr-CD 最后再将x用t代替,则得—Lm—? ” 所以,fl- —■-'■ ■■* 证毕 若八」是一个偶函数,即-'二丿■,相应有-,:"J,则式(3-56) 尺〔血—2对'(创)C3-57) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数二丁。式中的-兰表示频谱函数坐标轴必须正负对调。例如:/(0 =郭)一S)=l FS)= 1一2才㈣=2斶眄 例3-7若信号;二的傅里叶变换为 < r 72 G3> r <2 试求。 解将中的"换成t,并考虑;-";1为兰的实函数,有 M |r|G 戈 0 |t|>r/2 该信号的傅里叶变换由式(3-54)可知为 頁恥)卜2氓旳(号)

傅里叶变换基础知识

傅里叶变换基础知识 1. 傅里叶级数展开 最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。 1.1 周期信号的傅里叶级数 在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。 1.1.1 狄利克雷(dirichlet )条件 狄利克雷(dirichlet )条件为: (1)信号()x t 在一个周期内只有有限个第一类间断点(当t 从左或右趋向于这个间断点时,函数有左极限值和右极限值); (2)信号()x t 在一周期内只有有限个极大值和极小值; (3)信号在一个周期内是绝对可积分的,即00 /2 /2()dt T T x t -?应为有限值。 1.1.2 间断点 在非连续函数()y f x =中某点处0x 处有中断现象,那么,0x 就称为函数的不连续点。 (1)第一类间断点(有限型间断点): a. 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(0x 令分母为零时等情况); b. 跳跃间断点:函数在该点左极限、右极限存在,但不相等(0/y x x =在点0x =处等情况)。 (2)第二类间断点:除第一类间断点的间断点。 1.1.3 傅里叶级数三角函数表达式 傅里叶级数三角函数表达式为 0001()(cos sin )n n n x t a a n t b n t ωω∞ ==++∑ 式中:0a 为信号的常值分量;n a 为信号的余弦信号幅值;n b 为信号的正弦信号幅值。 0a 、n a 、n b 分别表示为: 000000 /20/20/20/20/2 0/201()2()cos 2()sin T T T n T T n T a x t dt T a x t n tdt T b x t n tdt T ωω---===????????? ??? 式中:0T 为信号的周期;0ω为信号的基频,即角频率,002/T ωπ=,1,2,3...n =。 合并同频项也可表示为 001 ()cos()n n n x t a A n t ωθ∞ ==++∑ 式中:信号的幅值n A 和初相位n θ分别为 arctan(/) n n n n A b a θ==-

傅里叶变换性质证明

2.6 傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。 由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。 (1)反褶

f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质

2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t)为实函数 对比式(2-33)与(2-34),由FT的唯一性可得 (1.1)f(t)是实的偶函数,即f(t)=f(-t) X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ( 1.2)f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故这时R()=0,于是

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

典型信号的地傅里叶变换

例9.1 试将图9.3中所示的非正弦周期信号(称为方波信号)展成傅里叶级数。 解 根据图上所示信号的波形,可知其既对称于纵轴,又具有半波对称性质,所以它是兼有奇谐波函数性质的偶函数。依照上述定理,此信号的傅里叶级数中必定只含有余弦的奇次谐波项,因此只需按公式 ()2 04cos T km A f t k tdt T ω= ? 计算A km 。 对图上的波形图可以写出 ()04 42 T A t f t T T A t ?

图9.3 方波信号 图9.4 三角波信号 例9.2 试求图9.4所示三角波信号的傅里叶级教。 解 视察一下所给的波形可以知道,它既是原点对称又是半波横轴对称。因此,其傅里叶级数仅由正弦奇次谐波分量组成。由于 ()404 4242 A T t t T f t A T T t A t T ???=??-+??≤≤≤≤ 故有 2044444sin 2sin T T km T A A B t k tdt t A k tdt T T T T ωω??= -- ??? ?? 参照积分公式 211 sin sin cos x axdx ax x ax a a = -? 可算出 22 22 81,5,9,83,7,11km A k k B A k k ππ?=??=??-=??L L 于是所欲求的傅里叶级数 ()2222 8111sin sin 3sin 5sin 7357A f t t t t t ωωωωπ?? = -+-+ ??? L 。 例9.3 已知一如图9.5所示的信号波形,试求其傅里叶级数。 图9.5 例9.3用图

离散傅里叶变换性质证明

1. [][]()()j j ax n by n aX e bX e ωω+?+ Proof: ([][])[][]()() j n j n j n j j ax n by n e a x n e b y n e aX e bX e ωωωωω∞ --∞ ∞∞ ---∞-∞ +=+=+∑∑∑ 2. (1)[]()d j n j d x n n X e e ωω--? Proof: ()[][].()d d j n d n j n n j n d n j n j x n n e x n n e e X e e ωωωωω∞-=-∞∞---=-∞--=-=∑ ∑ (2) 00()[]()j n j e x n X e ωωω-? Proof: 000()()[][]()j n j n j n j n n e x n e x n e X e ωωωωωω∞∞ ----=-∞=-∞==∑ ∑ 3. []()j x n X e ω--? Proof: ()[][]()j n j n j n n x n e x n e X e ωωω∞∞ ---=-∞=-∞-=-=∑ ∑ if []x n is real ()j X e ω-=*()j X e ω 4. ()[]j dX e nx n j d ωω? Proof: ()[]() ()[]()[]j j n n j j n n j j n n X e x n e dX e jn x n e d dX e j nx n e d ωωωωωωωω∞-=-∞∞-=-∞∞-=-∞=?=-?=∑∑∑

5. (1)22 1|[]||()|2j n x n X e d πωπωπ∞ =-∞-=∑ ? Proof: 2*2221 |()|21 ()()21 [][]21 |[]|21 |[]| 2|[]|j j j j n j n n n n n n X e d X e X e d x n e x n e d x n d x n d x n πωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞=-∞ -∞=-∞ -∞=-∞ =====??∑∑?∑?∑ ?∑ (2) **1[][]()()2j j n x n y n X e Y e d π ωωπωπ∞=-∞-=∑ ? Proof: *****1 ()()21 ()()21 [][]21[][]21 [][] 2[][] j j j j j n j n n n n n n n X e Y e d X e Y e d x n e y n e d x n y n d x n y n d x n y n πωωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞ =-∞-∞ ∞=-∞ =-∞-∞=-∞====??∑∑?∑?∑ ∑?∑ 6. []*[]()()j j x n y n X e Y e ωω? Proof:

快速傅里叶变换(FFT)基础学习知识原理及其源程序

《测试信号分析及处理》课程作业 快速傅里叶变换 一、程序设计思路 快速傅里叶变换的目的是减少运算量,其用到的方法是分级进行运算。全部计算分解为M 级,其中N M 2log =;在输入序列()i x 中是按码位倒序排列的,输出序列()k X 是按顺序排列;每级包含 2N 个蝶形单元,第i 级有i N 2 个群,每个群有12-i 个蝶形单元; 每个蝶形单元都包含乘r N W 和r N W -系数的运算,每个蝶形 单元数据的间隔为12-i ,i 为第i 级; 同一级中各个群的系数W 分布规律完全相同。 将输入序列()i x 按码位倒序排列时,用到的是倒序算法——雷德算法。 自然序排列的二进制数,其下面一个数总比上面的数大1,而倒序二进制数的下面一个数是上面一个数在最高位加1并由高位向低位仅为而得到的。 若已知某数的倒序数是J ,求下一个倒序数,应先判断J 的最高位是否为0, 与2N k =进行比较即可得到结果。如果J k >,说明最高位为0,应把其变成1, 即2N J +,这样就得到倒序数了。如果J k ≤,即J 的最高位为1,将最高位化为 0,即2N J -,再判断次高位;与4N k =进行比较,若为0,将其变位1,即4 N J +, 即得到倒序数,如果次高位为1,将其化为0,再判断下一位……即从高位到低位依次判断其是否为1,为1将其变位0,若这一位为0,将其变位1,即可得到倒序数。若倒序数小于顺序数,进行换位,否则不变,防治重复交换,变回原数。 注:因为0的倒序数为0,所以可从1开始进行求解。 二、程序设计框图 (1)倒序算法——雷德算法流程图

(2)FFT算法流程

傅里叶变换性质证明

2。6 傅里叶变换得性质 2。6.1线性 若信号与得傅里叶变换分别为与,??? 则对于任意得常数a与b,有? ? 将其推广,若,则??? 其中为常数,n为正整数。? 由傅里叶变换得定义式很容易证明线性性质、 ?显然傅里叶变换也就是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性与叠加性。均匀性表明,若信号乘以常数a,则信号得傅里叶变换也乘以相同得常数a,即 ???叠加性表明,几个信号之与得傅里叶变换等于各个信号得傅里叶变换之与?? 2.6.2 反褶与共轭性 设f(t)得傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号得傅里叶变换。 (1)反褶 f(-t)就是f(t)得反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质得证明中,并没有特别指明f(t)就是实函数还就是复函数,因此,无论f(t)为实信号还就是复信号,其傅里叶变换都满足下面三条性质

2。6.3 奇偶虚实性 已知f(t)得傅里叶变换为。在一般情况下,就是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 根据定义,上式还可以写成 下面根据f(t)得虚实性来讨论F()得虚实性、 (1) f(t)为实函数?对比式(2-33)与(2—34),由FT得唯一性可得 (1、1)f(t)就是实得偶函数,即f(t)=f(—t) X()得积分项就是奇函数,而奇函数在对称区间内得积分为零,故 这时X()=0,于就是??可见,若f(t)就是实偶函数,则F()也就是实偶函数,即 左边反褶,右边共轭 (1、2)f(t)就是实得奇函数,即-f(t)=f(-t)?R()得积分项就是奇函数,而奇函数在对称区间内得积分为零,故 这时R()=0,于就是 可见,若f(t)就是实奇函数,则F()就是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来瞧瞧一般实信号(即可能既不就是偶信号,又不就是奇信号,反正不清楚,或者说就是没有必要关心信号得奇偶特性)得FT频谱特点、

傅里叶变换的基本定理

傅里叶变换的基本定理 1.相似性定理 如果)(x f 的傅里叶变幻是)(s F ,则)(ax f 的傅里叶变换是)/(1 a s F a -。 推导: )(1)()(1)()/)((22a s F a ax d e ax f a dx e ax f a s ax i xs i ==--∞ ∞-??ππ 2.加性定理 如果)(x f 和)(x g 的傅里叶变换分别为)(s F 和)(s G ,则相应地)()(x g x f +的傅里叶变换是)()(s G s F +。 推导: []) ()()()()()(222s G s F dx e x g dx e x f dx e x g x f xs i xs i xs i +=+=+???+∞∞-+∞∞-+∞∞----πππ3.移位定理 如果)(x f 的傅里叶变换是)(s F ,则)(a x f -的傅里叶变换是)(2s F e as i π-。 推导: ) ()()()(22)(22s F e a x d e e a x f dx e a x f as i as i s a x i xs i ππππ----∞∞--∞ ∞-=--=-??4.卷积定理 如果)(x f 和)(x g 的傅里叶变换分别是)(s F 和)(s G ,则)(x f *)(x g 的傅里叶变换是)(s F )(s G ,也就是说两个函数的卷积的变换等于它们变换的乘积。 推导: dx e x d x x g x f xs i ??∞ ∞--∞∞-??????''-'π2)()( x d d x e x x g x f xs i '?? ????'-'=-∞∞-∞ ∞-??π2)()( x d s G e x f s x i ''='-?)()(2π )()(s G s F =

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

常用傅里叶变换

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2 的频域对应 4 如果值较大,则 会收缩到原 点附近,而 会扩 散并变得扁平.当 | a | 趋向无穷 时,成为狄拉克δ 函数。 5 傅里叶变换的二元 性性质。通过交换 时域变量和频域 变量得到. 6 傅里叶变换的微分 性质

7 变换6的频域对应8 表示和 的卷积—这就是卷 积定理 9 变换8的频域对应。[编辑]平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 矩形脉冲和归一 化的sinc函数 11 变换10的频域对 应。矩形函数是理 想的低通滤波器, sinc函数是这类 滤波器对反因果 冲击的响应。

12 tri是三角形函数 13 变换12的频域对应 14 高斯函数exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 光学领域应用较多 16 17 18 a>0 19 变换本身就是一个公式

20 J0(t)是0阶第一 类贝塞尔函数。 21 上一个变换的推 广形式; T n(t)是第 一类切比雪夫多 项式。 22 U n (t)是第二类切 比雪夫多项式。[编辑]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表狄拉克δ函数 分布.这个变换展示了狄 拉克δ函数的重要性:该 函数是常函数的傅立叶 变换 24 变换23的频域对应

25 由变换3和24得到. 26 由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e?iat) / 2. 27 由变换1和25得到 28 这里, n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多項式。 29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 30 变换29的推广. 31 变换29的频域对应. 32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到.

傅里叶变换基础知识修订稿

傅里叶变换基础知识 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

傅里叶变换基础知识 1. 傅里叶级数展开 最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。 周期信号的傅里叶级数 在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。 狄利克雷(dirichlet )条件 狄利克雷(dirichlet )条件为: (1)信号()x t 在一个周期内只有有限个第一类间断点(当t 从左或右趋向于这个间断点时,函数有左极限值和右极限值); (2)信号()x t 在一周期内只有有限个极大值和极小值; (3)信号在一个周期内是绝对可积分的,即00 /2 /2()dt T T x t -?应为有限值。 间断点 在非连续函数()y f x =中某点处0x 处有中断现象,那么,0x 就称为函数的不连续点。 (1)第一类间断点(有限型间断点): a. 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(0x 令分母为零时等情况); b. 跳跃间断点:函数在该点左极限、右极限存在,但不相等(0/y x x = 在点 0x =处等情况)。

(2)第二类间断点:除第一类间断点的间断点。 傅里叶级数三角函数表达式 傅里叶级数三角函数表达式为 0001()(cos sin )n n n x t a a n t b n t ωω∞ ==++∑ 式中:0a 为信号的常值分量;n a 为信号的余弦信号幅值;n b 为信号的正弦信号幅值。 0a 、n a 、n b 分别表示为: 000000 /20/20 /2 0/20 /2 0/201()2()cos 2()sin T T T n T T n T a x t dt T a x t n tdt T b x t n tdt T ωω---===????????? ??? 式中:0T 为信号的周期;0ω为信号的基频,即角频率,002/T ωπ=,1,2,3...n =。 合并同频项也可表示为 001()cos()n n n x t a A n t ωθ∞ ==++∑ 式中:信号的幅值n A 和初相位n θ分别为 arctan(/) n n n n A b a θ==- 频谱的相关概念 (1)信号的频谱(三角频谱):构成信号的各频率分量的集合,表征信号的幅值和相位随频率的变化关系,即信号的结构,是n A ω-(或n A f -)和n θω-(或n f θ-)的统称; (2)信号的幅频谱:周期信号幅值n A 随ω(或f )的变化关系,用n A ω-(或n A f -)表示;

常用傅里叶变换

常用傅里叶变换 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2 的频域对应 4 如果值较大, 则会收缩 到原点附近,而 会扩 散并变得扁平.当 |?a?|?趋向无穷 时,成为。 5 傅里叶变换的二元 性性质。通过交换 时域变量和频域 变量得到. 6 傅里叶变换的微分 性质 7 变换6的频域对应

8 表示和 的卷积—这就是9 变换8的频域对 应。 []平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 和归一化的 11 变换10的频域对 应。矩形函数是 理想的低通滤波 器,是这类滤波 器对冲击的响 应。 12 tri?是 13 变换12的频域对 应

14 exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 领域应用较多 16 17 18 a>0 19 变换本身就是一个公式 20 J0(t)?是。 21 上一个变换的推广形式;?T n(t)?是。 22 ???? U n?(t)是。

[]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表分布.这个变换 展示了狄拉克δ函数的 重要性:该函数是常函 数的傅立叶变换 24 变换23的频域对应 25 由变换3和24得到. 26 由变换1和25得到,应 用了:?cos(at) = (e iat?+?e???iat) / 2. 27 由变换1和25得到 28 这里,?n是一个.δ(n)(ω)是 狄拉克δ函数分布的n 阶微分。这个变换是根 据变换7和24得到的。 将此变换与1结合使 用,我们可以变换所 有。

常用函数傅里叶变换

常用函数傅里叶变换 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在 i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数

相关文档
最新文档