电磁感应单棒问题

电磁感应单棒问题
电磁感应单棒问题

单棒问题

阻尼式

a 逐渐减小的减速运动 静止 I=0

电动式 a 逐渐减小的加速运动 匀速I=0 (或恒定) 发电式

a 逐渐减小的加速运动

匀速 I 恒定

含容式单棒问题

放电式

a 逐渐减小的加速运动 匀速运动 I =0

无外力充电式 a 逐渐减小的减速运动 匀速运动 I =0

有外力充电式 匀加速运动 匀加速运动 I 恒定

1.(阻尼杆)AB 杆受一冲量作用后以初速度 v0=4m/s ,沿水平

面内的固定轨道运动,经一段时间后而停止。AB 的质量为m=5g ,导轨宽为L=0.4m ,电阻为R=2Ω,其余的电阻不计,磁感强度B=0.5T ,棒和导轨间的动摩擦因数为μ=0.4,测得杆从运动到停止的过程中通过导线的电量q=10-2C ,求:上述过程中 (g 取10m/s2)

(1)AB 杆运动的距离;(2)AB 杆运动的时间; (3)当杆速度为2m/s 时其加速度为多大?

2.如图所示,U 型金属导轨PQMN 水平固定在竖直向上的匀强磁场中,磁感应强度为B ,导轨宽度为L 。QM 之间接有阻值为R 的电阻,其余部分电阻不计。一质量为m 、电阻也为R 的金属棒ab 放在导轨上,给棒一个水平向右的初速度

v o 使之开始滑行,导体棒经过时间t 停止运动,导体棒与导轨间的动摩擦因数为μ,重力加速度为g ,下列说法正确的是( )

A .由题目条件可计算出导体棒ab 运动过程中通过的电荷量

B .由题目条件可计算出导体棒ab 发生的总位移

C .若导轨光滑(其他条仵不变)与导轨粗糙时该装置产生的总热量相等

D .若导轨光滑(其他条件不变)与导轨粗糙时安培力对导体棒ab 所做的功相等

3.(发电杆)如图所示,粗糙的平行金属导轨与水平面的夹角为θ,宽为L ,匀强磁场垂直于导轨平面,磁感应强度为B ,导轨上、下两边分别连接电阻R 1和R 2,质量为m 的导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g 。则导体棒ab 沿着导轨下滑的过程中( ) A .R 1和R 2发热功率之比P 1:P 2=R 2:R 1

B .导体棒匀速运动时的速度

)

(sin 212221R R L B R mgR v +=

θ

C .安培力对导体棒做的功等于导体棒机械能的减少量

v0

F v0 F A

B

R

v 0

B

D .重力和安培力对导体棒做功之和大于导体棒动能的增量

4.如图所示,平行金属导轨ab 、cd 与水平面成θ角,间距为L ,导轨与固定电阻R1和R2相连,磁感应强度为B 的匀强磁场垂直穿过导轨平面。有一导体棒MN ,质量为m ,与导轨之间的动摩擦因数为μ,导体棒的电阻与固定电阻R1和R2的阻值均为R ,导体棒以速度v 沿导轨匀速下滑,忽略感应电流之间的作用及导轨的电阻,则

A .导体棒两端电压为3(sin cos )

2mgR BL θμθ-

B .电阻R1消耗的热功率为)cos (sin 41

θμθ-mgv C .t 时间内通过导体棒的电荷量为BL mgt )

cos (sin θμθ-

D .导体棒所受重力与安培力的合力方向与竖直方向夹角小于θ

5.(电动式)如图所示,水平放置的足够长平行导轨MN 、PQ 的间距为L=0.1m ,电源的电动势E =10V ,内阻r=0.1Ω,金属杆EF 的质量为m=1kg ,其有效电阻为R=0.4Ω,其与导轨间的动摩擦因素为μ=0.1,整个装置处于竖直向上的匀强磁场中,磁感应强度B =1T ,现在闭合开关,求:(1)闭合开关瞬间,金属杆的加速度;(2)金属杆所能达到的最大速度;(3)当其速度为v=20m/s 时杆的加速度为多大?(忽略其它一切电阻,g=10m/s2)

6.(电容有外力充电式)如图所示,水平放置的金属导轨宽为L ,质量为m 的金属杆ab 垂直放置在导轨上,导轨上接有阻值为R 的电阻和电容为C 的电容器以及电流表。竖直向下的匀强磁场的磁感应强度为B 。现用水平向右的拉力使ab 杆从静止开始以恒定的加速度向右做匀加速直

线运动,电流表读数恒为I ,不计其它电阻和阻力。求: (1)ab 杆的加速度。 (2)t 时刻拉力的大小。

7.如图.两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。导轨上端接有一平行板电容器,电容为c 。导轨处于匀强磁场中,磁感应强度大小为B .方向垂直于导轨平面。在导轨上放置质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度

大小为g 。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求(1)电容器极扳上积累的电荷量与金属棒速度大小的关系:(2)金属转的速度大小随时间变化的关系。

8.如图所示,有一匀强磁场B=1.0×10-

3T ,在垂直磁场的平面内,有金

属棒AO ,绕平行于磁场的O 轴顺时针转动,已知棒长L=0.20 m ,角速度ω=20 rad / s ,求:棒产生的感应电动势多大?

9.如图所示,在磁感应强度为B 的匀强磁场中,有一边长为a 的正方形线框在磁场中做速度为v 的匀速运动,不计线框的内阻。在线框的AD 边串一个内阻为R 的伏特表,则AD 两点间的电势差和伏特表的读数分别为 A .Bav ,Bav B .Bav ,0 C .0,Bav D .0,0

M

P

N

Q

E

F

B

(完整word)高考电磁感应中“单、双棒”问题归类经典例析

电磁感应中“单、双棒”问题归类例析 一、单棒问题: 1.单棒与电阻连接构成回路: 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。 (2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。 2、杆与电容器连接组成回路 例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大? 3、杆与电源连接组成回路 例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析: (1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、双杆问题: 1、双杆所在轨道宽度相同——常用动量守恒求稳定速度 例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根 导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少? 例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导 B v 0 L a d b

电磁感应中的导轨问题

电磁感应中的导轨问题 一、单棒问题:基本模型 阻尼式 电动式 发电式 二、含容式单棒问题:基本模型 放电式 无外力充电式 有外力充电式 三、无外力双棒问题:基本模型 无外力等距式 无外力不等距式 四、有外力双棒问题:基本模型 有外力等距式 有外力不等距式 ·阻尼式单棒: 1.电路特点:导体棒相当于电源。 2.安培力的特点:安培力为阻力,并随速度减小而减小。 3.加速度特点:加速度随速度减小而减小。 4.运动特点:a 减小的减速运动 5.最终状态:静止 6.三个规律 (1)能量关系: (2)动量关系: (3)瞬时加速度: 7.变化:(1)有摩擦(2)磁场方向不沿竖直方向 2 22 B B l v F B Il R r == +2 2 () B F B l v a m m R r = = +2 0102 m v Q -=0m v q B l =R r Q R Q r =00B Il t m v -??=-22 ()B F B l v a m m R r ==+1

·发电式单棒 1.电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv 2.安培力的特点:安培力为阻力,并随速度增大而增大 3.加速度特点:加速度随速度增大而减小 4.运动特点:a 减小的加速运动 5.最终特征:匀速运动 6.两个极值: (1) v=0时,有最大加速度: (2) a=0时,有最大速度: 7.稳定后的能量转化规律: 8.起动过程中的三个规律 (1)动量关系: m F t B L q m g t m v μ--=- (2)能量关系: 2 12 E m F s Q m g S m v μ=++ (3)瞬时加速度: B F F m g a m μ--= 9.几种变化 (1) 电路变化(并联式)(2)磁场方向变化 (3)拉力变化(若匀加速拉杆则F 大小恒定吗?) (4) 导轨面变化(竖直或倾斜)加沿斜面恒力、通过定滑轮挂一重物、加一开关 ·电容放电式: 1.电路特点:电容器放电,相当于电源;导体棒受安培力而运动。 2 电动势,导致电流减小,直至电流为零,此时UC=Blv 3.运动特点:a 渐小的加速运动,最终做匀速运动。 4.最终特征:匀速运动,但此时电容器带电量不为零。 5.最大速度vm μ μ m F m g a m μ-=μ μ 2 2 -+= ()() m F m g R r v B l μ2 () m m m B L v F v m g v R r μ=++

高考物理二轮专题复习电磁感应中单双棒问题归类例析修订版

高考物理二轮专题复习电磁感应中单双棒问题归类例析修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析 一、单棒问题: 1.单棒与电阻连接构成回路: 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直 导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良 好、阻值为R/2的金属导线ab垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以 及ab发生的位移x。 2、杆与电容器连接组成回路 例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧 贴导轨自由滑动. 现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自 感作用. 问金属棒的做什么运动?棒落地时的速度为多大? 3、杆与电源连接组成回路 例3、如图所示,长平行导轨PQ、MN光滑,相距5.0 l m,处在同一水平面中,磁感应强 度B=0.8T的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V、内电阻r =0.2Ω的电池接在M、P两端,试计算分

析: (1)在开关S刚闭合的初始时刻,导线ab的加速度多大?随后ab的加速度、速度如何变化? (2)在闭合开关S后,怎样才能使ab以恒定的速度υ=7.5m/s沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、双杆问题: 1、双杆所在轨道宽度相同——常用动量守恒求稳定速度 例4、两根足够长的固定的平行金属导轨位于同一水平面内,两 导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少? 例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离 l=0.20m。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N的恒力F 动。经过t=5.0s,金属杆甲的加速度为a=1.37m/s2 2、双杆所在轨道宽度不同——常用动量定理找速度关系

电磁感应单棒模型教学教材

电磁感应单棒模型

电磁感应单棒模型 一个闭合回路由两部分组成,如图所示,右侧是电阻为r 的圆形导线,置于竖直方向均匀变化的磁场B 1中;左侧是光滑的倾角为θ的平行导轨,宽度为d,其电阻不计。磁感应强度为B 2的匀强磁场垂直导轨 平面向上,且只分布在左侧,一个质量为m 、电阻为R 的导体棒此时恰好能静 止在导轨上,分析下述判断正确的是 ( ) A.圆形导线中的磁场,可以方向向上均匀增强,也可以方向向下均匀减弱 B.导体棒ab 受到的安培力大小为mgsin θ C.回路中的感应电流为 D.圆形导线中的电热功率为(r+R) 1.如图所示,光滑U 型金属导轨PQMN 水平固定在竖直向上的匀强磁场中,磁感应强度为B ,导轨宽度为L 。QM 之间接有阻值为R 的电阻,其余部分电阻不计。一质量 为m ,电阻为R 的金属棒ab 放在导轨上,给棒一个水平向右的初速度 v 0使之开始滑行,最后停在导轨上。由以上条件,在此过程中可求出 的物理量有( ) A .电阻R 上产生的焦耳热 B .通过电阻R 的总电荷量 C .ab 棒运动的位移 D .ab 棒运动的时间 5.(09西城0模)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ。在导轨的最上端M 、P 之间接有电阻R ,不计其它电阻。导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大 高度为h 。在两次运动过程中ab 都与导轨保持垂直, 且初速度都相等。关于上述情景,下列说法正确的是 A .两次上升的最大高度相比较为H < h B .有磁场时导体棒所受合力的功大于无磁场时合力的功 C .有磁场时,电阻R 产生的焦耳热为2021mv D .有磁场时,ab 上升过程的最小加速度为g sin θ θ θ R v 0 a b P N M

电磁感应中的双棒运动问题高中物理专题

第9课时 电磁感应中的双棒运动问题 一、分析要点:1、分析每个棒的受力,棒运动时安培力F :R v L B BIL F 22,F 与速度有关; 2、分析清楚每个棒的运动状态→服从规律(牛顿定律、能量观点、动量观点) ; 3、找出两棒之间的受力关系、速度关系、加速度关系、能量关系等。 二、例题分析: 1、两棒一静一动: 【例1】如图所示,两根足够长的光滑金属导轨MN 、PQ 间距为l=0.5m ,其电阻不计, 两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg ,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为 B=0.2T ,棒ab 在平行于导轨向上的力 F 作用下,沿导轨向上匀速运动,而棒cd 恰 好能保持静止。取g=10m/s 2,问:(1)通过cd 棒的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大? (3)棒cd 每产生Q=0.1J 的热量,力F 做的功W 是多少? 2、两棒不受力都运动:满足动量守恒,分析最终状态: 【例2】如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为 L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。求:(1)开始时,导体棒ab 中电流的大小和方向?(2)cd 最大加速度?(3)棒cd 的最大速度?(4)在运动过程中产生的焦耳热?(5)棒cd 产生的热量?(6)当ab 棒速度变为43 v 0时,cd 棒加速度的大小?(7)两棒距离减小的最大值? 3、一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 【例3】如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀 强磁场与导轨所在平面垂直,导轨电阻忽略不计,导轨间的距离 L=0.20m 。两根质量均为m=0.10kg 的金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的为电阻R=0.50Ω,在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小为 0.20N 的力F 作用于金属杆甲上,使金属杆在导轨上滑动。(1)分析说明金属杆最终的运动 状态?(2)已知当经过 t=5.0s 时,金属杆甲的加速度a=1.37m/s ,求此时两金属杆的速度各为多少?

电磁感应导棒-导轨模型

电磁感应“导棒-导轨”问题专题 一、“单棒”模型 【破解策略】单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考: (1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。 (2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用E N t ?Φ =?或E BLv =求感 应动电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。 (3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。 <1> 单棒基本型 00≠v 00=v 示 意 图 (阻尼式) 单杆ab 以一定初速度0v 在光滑水平轨道上滑动,质量为m,电阻不计,杆长为L (电动式) 轨道水平、光滑,单杆ab 质量为m ,电阻不计,杆长为L (发电式) 轨道水平光滑,杆ab 质量为m ,电阻不计,杆长为L,拉力F 恒定 力 学 观 点 导体杆以速度v 切割磁感线产生感应电动势 BLv E =,电流R BLv R E I = =,安培力R v L B BIL F 2 2==,做减速运动:↓↓?a v ,当0=v 时,0=F ,0=a ,杆保持静止 S闭合,ab 杆受安培力 R BLE F = ,此时mR BLE a =,杆a b 速度↑?v 感应电动势↓?↑?I BLv 安培力 ↓?=BIL F 加速度↓a ,当E E =感时,v 最大, 且2222L B BLIR L B FR v m ==BL E = 开始时m F a = ,杆ab 速度↑?v 感应电动势 ↑?↑?=I BLv E 安培力↑=BIL F 安由 a F F m =-安知↓a , 当0=a 时,v 最大, 22L B FR v m = 图 像 观 点 能 量 观 点 动能全部转化为内能: 202 1mv Q = 电能转化为动能 W 电2 12 m mv = F 做的功中的一部分转化为杆的动能,一部分产热:22 1m F mv Q W += 运动 状态 变减速运动,最终静止 变加速运动,最终匀直 变加速运动,最终匀直

电磁感应中的单杆和双杆问题(习题,答案)

电磁感应中“滑轨”问题归类例析 一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值 为R的电阻.一根与导轨接触良好、阻值为R/2的金属 导线ab垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L= m,上、下两端各有一个电阻R0=1 Ω,框架的其他部分 电阻不计,框架足够长.垂直于框平面的方向存在向上的 匀强磁场,磁感应强度B=为金属杆,其长度为L= m,质量m= kg,电阻r=Ω,棒与框架的动摩擦因数μ=.由静止开始下滑,直到速度达到最大的过程中,上端电阻R0产生的热量Q0=(已知sin37°=,cos37°=;g取10m/s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量.关键:在于能量观,通过做功求位移。

2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一 端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应 强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动. 现让ab 从高h处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间问金属棒的做什么运动棒落地时的速度为多大 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m 的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初 速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。 3、杆与电源连接组成回路 例5、如图所示,长平行导轨PQ、MN光滑,相距5.0 l m,处在同一水平面中, 磁感应强度B=的匀强磁场竖直向下穿过导轨 面.横跨在导轨上的直导线ab的质量m =、电阻 R=Ω,导轨电阻不计.导轨间通过开关S将电动 势E =、内电阻r =Ω的电池接在M、P两端,试计算分析: (1)在开关S刚闭合的初始时刻,导线ab的加速度多大随后ab的加速度、速

电磁感应单棒双棒专题

v 电磁感应中单双棒专题 X xB X X X X Tx X 肌 Bl q = n R +r R +r 例题2.如图所示,水平放置的足够长平行导轨 MN 、PQ 的间距为L=0.1m ,电源的电动势 E = 10V ,内阻r=0.1 Q,金属杆EF 的质量为m=1kg ,其有效电阻为 R=0.4Q ,其与导轨间的动摩擦因素为 卩=0.1,整个装置处于 竖直向上的匀强磁场中,磁感应强度 B = 1T ,现在闭合开关,求:(1)闭合开关瞬间,金属杆的加速度; (2) 金属杆所能达到的最大速度; (3)当其速度为v=20m/s 时杆的加速度为多大?(忽略其它一切电阻,g=10m/s2 ) 3?发电式 (1 )运动特点 (2) 最终特征 (3) 最大速度 (4) 电量关系 (5) 能量关系 例3.如图所示,竖直平面内的平行导轨,间距 体ab 的质量 为0.2 g ,电阻为0.4 Q,导轨电阻不 计,水平方向的匀强磁场的磁感应强度为 0.1T ,当金属导体 ab 从静止自由下落0.8s 时,突然接通电键 K 。(设导轨足够长,g 取10m/s2 )求: (1) 电键K 接通前后,金属导体 ab 的运动情况 (2) 金属导体ab 棒的最大速度和最终速度的大小。 一、单棒问题 1.阻尼式练习: (1) 能量关系: (2) 电量关系: (3)瞬时加速度: 例题1.AB 杆受一冲量作用后以初速度 v °=4m/s ,沿水平面内的固定轨道运动,经一段时间后而停止。 AB 的质 量为m=5g ,导轨宽为 L=0.4m ,电阻为 R=2Q ,其余的电阻不计,磁感强度 B=0.5T ,棒和导轨间的动摩擦因数 为卩=0.4,测得杆从运动到停止的过程中通过导线的电量 (1) AB 杆运动的距离; (2) AB 杆运动的时间; (3) 当杆速度为2m/s 时其加速度为多大? q=10 2C,求:上述过程中 X X X X ------- *■ V 0 X B X XX (g 取 10m/s2) 2.电动式: 运动特点 动量关系 能量关系 还成立吗? l=20cm ,金属导体ab 可以在导轨上无摩檫的向 F 滑动,金属导 a b

电磁感应-单棒(长度变化)

电磁感应“切割模型”中导体棒长度变化类试题 1.如图所示,在磁感应强度为B=2T ,方向垂直纸面向里的匀强磁场中,有 一个由两条曲线状的金属导线及两电阻(图中黑点表示)组成的固定导轨,两电阻的阻值分别为 R 1 =3Ω、R 2=6Ω,两电阻的体积大小可忽略不计,两条导线的电阻忽略不计且中间用绝缘材料隔开,导轨平面与磁场垂直(位于纸面内),导轨与磁场边界(图中虚线)相切,切点为A ,现有一根电阻不计、足够长的金属棒MN 与磁场边界重叠,在A 点对金属棒MN 施加一个方向与磁场垂直、位于导轨平面内的并与磁场边界垂直的拉力F ,将金属棒MN 以速度v=5m /s 匀速向右拉,金属棒MN 与导轨接触良好,以切点为坐标原点, 以F 的方向为正方向建立x 轴,两条导线的形状符合曲线方程 x y 4 sin 22π ±= m ,求: (1)推导出感应电动势e 的大小与金属棒的位移x 的关系式. (2)整个过程中力F 所做的功. (3)从A 到导轨中央的过程中通过R 1的电荷量. 2.如图所示,在xoy 平面内存在B=2T 的匀强磁场,OA 与OCA 为置于竖直平面内的光滑金属导轨,其 中OCA 满足曲线方程 ) (5 sin 5.0m y x π =,C 为导轨的最右端,导轨OA 与OCA 相交处的O 点和A 点分别接有体积可忽略的定值电阻R 1=6Ω和R 2=12Ω。现有 一长L=1m 、质量m=0.1kg 的金属棒在竖直向上的外力F 作用下,以v=2m/s 的速度向上匀速运动,设棒与两导轨接触良好,除电阻R 1、R 2外其余电阻不计,求: (1)金属棒在导轨上运动时R 2上消耗的最大功率 (2)外力F 的最大值 (3)金属棒滑过导轨OCA 过程中,整个回路产生的热量。 3.如图所示,在磁感应强度大小为B ,方向垂直纸面向里的匀强磁场中,有一个质量为m 、半径为r 、电阻为R 的均匀圆形导线圈,线圈平面跟磁场垂直(位于纸面内),线圈与磁场边缘(图中虚线)相切,切点为A ,现在A 点对线圈施加一个方向与磁场垂直,位于线圈平面内并跟磁场边界垂直的拉力F ,将线圈以速度v 匀速拉出磁场.以切点为坐标原点,以F 的方向为正方向建立x 轴,设拉出过程中某时刻线圈上的A 点的坐标为x. (1)写出力F 的大小与x 的关系式; (2)在F -x 图中定性画出F -x 关系图线,写出最大值F 0的表达式. 4.如图所示,MN 、PQ 是相互交叉成60°角的光滑金属导轨,O 是它们的交点且接触良好.两导轨处在同一水平面内,并置于有理想边界的匀强磁场中(图中经过O 点的虚线即为磁场的左边界).导体棒ab 与导轨始终保持良好接触,并在弹簧S 的作用下沿导轨以速度v 0向左匀速运动.已知在导体棒运动的过程中,弹簧始终处于弹性限度内.磁感应强度的大小为B ,方向如图.当导体棒运动到O 点时,弹簧恰好处于原长,导轨和导体棒单位长度的电阻均为r ,导体棒ab 的质量为m .求: (1)导体棒ab 第一次经过O 点前,通过它的电流大小; (2)弹簧的劲度系数k ; (3)从导体棒第一次经过O 点开始直到它静止的过程中,导体棒ab 中产生的热量.

电磁感应拓展延伸(各种单双棒模型汇总)

电磁感应中的导体棒专题 掌握基本模型: 1、光滑导轨宽为L ,导体棒受向右的恒力F 从静止开始向右运动,定值电阻为R ,其它电阻不计。磁感应强度为B ,分析导体棒的运动情况并判断最终状态。 : 2、光滑导轨宽为L ,导体棒以初速度v 0向右开始运动,定值电阻为R ,其它电阻不计。磁感应强度为B 。分析导体棒的运动情况并判断最终状态。 · 3、光滑导轨宽为L ,质量为m 的导体棒以初速度v 0向右开始运动,电容为C ,磁感应强度为B 。分析导体棒的运动情况并判断最终状态。 , 4、光滑导轨宽为L ,质量为m 的导体棒受向右的恒力F 从静止开始向右运动,电容为C ,磁感应强度为B ,分析导体棒的运动情况并判断最终状态。 5、光滑导轨宽为L ,质量为m 、电阻为R 的导体棒由静止开始向右开始运动,磁感应强度为B ,电源电动势为E ,内阻为r,分析导体棒的运动情况并判断最终状态。 : 6、导体棒1以初速度v 0向右开始运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。磁感应强度为B 。分析导体棒的运动情况并判断最终状态。 : 7、导体棒1受恒力F 从静止开始向右运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。磁感应强度为B 。分析导体棒的运动情况并判断最终状态。 ; 强化练习: 1、如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边 F R B v 0 B 1 2 , B 1 2 v 0 R

长为a(a

电磁感应单、双棒问题

电磁感应单、双棒问题

————————————————————————————————作者:————————————————————————————————日期:

2012高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析 王佃彬 一、单棒问题: 1.单棒与电阻连接构成回路: 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。 (2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。 2、杆与电容器连接组成回路 例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量 为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大? 3、杆与电源连接组成回路 例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析: (1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、双杆问题: 1、双杆所在轨道宽度相同——常用动量守恒求稳定速度 例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根 导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd B v L a c d b

磁场中的双棒问题研究(修定版)

电磁感应现象中的“双棒”问题研究 黄陂一中试题研究中心:姜付锦 “双棒”是电磁感应现象中的一个很重要的模型,因为这个模型所涉及的物理知识有动量、能量、牛顿运动学等高中力学中的主干知识。笔者试着对这个模型进行了如下的分析与归纳,有不当的地方请各位同仁批评指正。 一、分类 1.按棒的长度可分为两类:等宽与不等宽(即一长一短) 2.按启动方式可分为三类:冲量型、恒定外力型、恒定功率型 3.按棒所处轨道的位置可分为三类:水平类、倾斜类、竖直类 4.按棒稳定后的状态可分为三类:静止类、匀速直线运动类、匀加速直线运动类 二、规律(仅讨论水平导轨,且导棒的材料相同) 1.等长“双棒” 两棒质量均为m ,长度均为L ,电阻均为R , 两间距足够大,所处磁场的磁感应强度为B (1)导轨光滑 ①冲量型:给棒1一个水平向右的速度0v ,则最终稳定后两棒均匀速直线运动,且速度均为 122 v v v ==,系统的动量守恒,动能损失204k mv E Q ==V ,两棒从相对运动到相对静止,相对滑动的距离为0 22 mv s R B L V = 。v t -图象如下: 010203040 5060708090 0.5 1 V1i V2i t i ②恒定外力型:对棒1施加一个恒定外力F ,则最终稳定后,两棒均作匀加速直线运动,且两棒 的加速度相等2F a m =,两棒的速度之差为一定值1222FR v v v B L =-=V ,两棒速度之和与时间成正比12F v v t m += 。v t -图象如下: 2 1

010203040 5060708090 20 40 60 V1i V2i t i ③恒定功率型:以恒定功率作用在棒1上,则最终两棒的速度趋于无穷大,而两棒的速度差将趋 于零,此时对应的外力为无穷小(零),v t -图象如下 0102030 40506070 10 20 30 V1i V2i t i (2)导轨粗糙 ①冲量型:给棒1初速度0v ,则两棒的运动类型有如下三种情况: 10当 220 2B L v mg R μ≤时,则只有棒1运动,最终速度减小为零,棒2始终不动,v t -图象如下: 024681012 50 100 V1i t i 20当 220 2B L v mg R μ>时,两棒一起运动,棒2先不动后加速最后减速,棒1一直减速运动,最后均静止。当 22 12()2B L v v mg R μ-=时,棒2有最大速度,v t -图象如下:

高考物理二轮专题复习电磁感应中“单双棒”问题归类例析

高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析 一、单棒问题: 1.单棒与电阻连接构成回路: 例1、如图所示,MN、PQ是间距为L的平行金属导轨, 置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 2、杆与电容器连接组成回路 例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大? 3、杆与电源连接组成回路 例3、如图所示,长平行导轨PQ、MN光滑,相距5.0 l m,处在同一水平面中, 磁感应强度B=0.8T的匀强磁场竖直向下穿过导轨面.横跨在 导轨上的直导线ab的质量m =0.1kg、电阻R=0.8Ω,导轨 电阻不计.导轨间通过开关S将电动势E =1.5V、内电阻r =0.2Ω的电池接在M、P两端,试计算分析: (1)在开关S刚闭合的初始时刻,导线ab的加速度多大?随后ab的加速

度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、双杆问题: 1、双杆所在轨道宽度相同——常用动量守恒求稳定速度 例4、两根足够长的固定的平行金属导轨位于同一水平 面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少? 例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度 B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨 间的距离l=0.20m 。两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无 t =0用于金属杆甲上,使金属杆在导轨上滑动。经过 t =5.0s ,金属杆甲的加速度为 a =1.37m/s 2,问此时两金属杆的速度各为多少? 2、双杆所在轨道宽度不同——常用动量定理找速度关系 a c

电磁感应单棒问题

单棒问题 阻尼式 a 逐渐减小的减速运动 静止 I=0 电动式 a 逐渐减小的加速运动 匀速I=0 (或恒定) 发电式 a 逐渐减小的加速运动 匀速 I 恒定 含容式单棒问题 放电式 a 逐渐减小的加速运动 匀速运动 I =0 无外力充电式 a 逐渐减小的减速运动 匀速运动 I =0 有外力充电式 匀加速运动 匀加速运动 I 恒定 1.(阻尼杆)AB 杆受一冲量作用后以初速度 v0=4m/s ,沿水平 面内的固定轨道运动,经一段时间后而停止。AB 的质量为m=5g ,导轨宽为L=0.4m ,电阻为R=2Ω,其余的电阻不计,磁感强度B=0.5T ,棒和导轨间的动摩擦因数为μ=0.4,测得杆从运动到停止的过程中通过导线的电量q=10-2C ,求:上述过程中 (g 取10m/s2) (1)AB 杆运动的距离;(2)AB 杆运动的时间; (3)当杆速度为2m/s 时其加速度为多大? 2.如图所示,U 型金属导轨PQMN 水平固定在竖直向上的匀强磁场中,磁感应强度为B ,导轨宽度为L 。QM 之间接有阻值为R 的电阻,其余部分电阻不计。一质量为m 、电阻也为R 的金属棒ab 放在导轨上,给棒一个水平向右的初速度 v o 使之开始滑行,导体棒经过时间t 停止运动,导体棒与导轨间的动摩擦因数为μ,重力加速度为g ,下列说法正确的是( ) A .由题目条件可计算出导体棒ab 运动过程中通过的电荷量 B .由题目条件可计算出导体棒ab 发生的总位移 C .若导轨光滑(其他条仵不变)与导轨粗糙时该装置产生的总热量相等 D .若导轨光滑(其他条件不变)与导轨粗糙时安培力对导体棒ab 所做的功相等 3.(发电杆)如图所示,粗糙的平行金属导轨与水平面的夹角为θ,宽为L ,匀强磁场垂直于导轨平面,磁感应强度为B ,导轨上、下两边分别连接电阻R 1和R 2,质量为m 的导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g 。则导体棒ab 沿着导轨下滑的过程中( ) A .R 1和R 2发热功率之比P 1:P 2=R 2:R 1 B .导体棒匀速运动时的速度 ) (sin 212221R R L B R mgR v += θ C .安培力对导体棒做的功等于导体棒机械能的减少量 v0 F v0 F A B R v 0 B

电磁感应拓展延伸(各种单双棒模型汇总)

掌握基本模型: 1、光滑导轨宽为L ,导体棒受向右的恒力F 从静止开始向右运动,定值电阻为R ,其它电阻不计。磁感应强度为B ,分析导体棒的运动情况并判断最终状态。 2、光滑导轨宽为L ,导体棒以初速度v 0向右开始运动,定值电阻为R ,其它电阻不计。磁感应强度为B 。分析导体棒的运动情况并判断最终状态。 3、光滑导轨宽为L ,质量为m 的导体棒以初速度v 0向右开始运动,电容为C ,磁感应强度为B 。分析导体棒的运动情况并判断最终状态。 4、光滑导轨宽为L ,质量为m 的导体棒受向右的恒力F 从静止开始向右运动,电容为C ,磁感应强度为B ,分析导体棒的运动情况并判断最终状态。 5、光滑导轨宽为L ,质量为m 、电阻为R 的导体棒由静止开始向右开始运动,磁感应强度为B ,电源电动势为E ,内阻为r,分析导体棒的运动情况并判断最终状态。 6、导体棒1以初速度v 0向右开始运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。磁感应强度为B 。分析导体棒的运动情况并判断最终状态。 7、导体棒1受恒力F 从静止开始向右运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。磁感应强度为B 。分析导体棒的运动情况并判断最终状态。 强化练习: 1、如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a

电磁感应单杆模型

第七讲 单杆模型 一、专题引入: 1.如图所示,一对平行光滑轨道放置在水平面上,两轨道相距L ,两轨道之间用电阻R 连接,有一质量为m 、电阻为r 的导体棒静止地放在轨道上与两轨道垂直,轨道的电阻忽略不计,整个装置处于磁感应强度 B 的匀强磁场中,磁场方向垂直轨道平面向上.现用 水平恒力F 沿轨道方向拉导体棒,使导体棒从静止开 始运动。 ⑴.分析导体棒的运动情况; ⑵.求出导体棒的最大速度。 变1. 一沿轨道向上的初速度v 0运动情况,并求出导体棒的最终速度. 变2.原题中,若在轨道平面上一矩形区域内存在匀强磁场,开始时,导体棒静止于磁场区域的右端,当磁场以速度v 1匀速向右移动时,导体棒随之开始运动,同时受到水平向左、大小为f 的恒定阻力,并很快达 到恒定速度,此时导体棒仍处于磁场区域内,求导体棒达到的恒定速度v 2. 变3.原题中若在电阻R 两端接一理想电压表,当导体棒在匀强磁场中运动时,电压表示数随时间均匀增加,即U=kt ,求拉力F 与时间的t 的函数关系. 思考:若原题变成如图所示三各种情况,给导体棒一水

三、专题分析: 【单杆的最终速度】 2.如图所示,两根竖直放置的光滑平行导轨,其一部分处 于方向垂直导轨所在平面且有上下水平边界的匀强磁场 中,一根金属杆MN成水平沿导轨滑下,在与导轨和电阻R 组成的闭合电路中,其他电阻不计。当金属杆MN进入磁场 区后,其运动的速度图像可能是下图中的() 3.(北京)如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为? 的绝缘斜面上,两导轨间距为L。M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下。导轨和金属杆的电阻可忽略。让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计之间的摩擦。 ⑴.由b向a方向看到的装置如图 2所示,请在此图中画出ab杆下滑过程中某 时刻的受力示意图; ⑵.在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其 加速度的大小; ⑶.求在下滑过程中,ab杆可以达到的速度最大值。 4.(2005 上海)如图所示,处于匀强磁场中的两根足够长、电阻不计的平行 金属导轨相距1m,导轨平面与水平面成θ=370角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直,质量为0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25. ⑴.求金属棒沿导轨由静止开始下滑时的加速度大小; ⑵.当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大 小; ⑶.在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的 大小与方向.(g=10m/s2,sin370=0.6,c0s370=0.8) 【单导体棒切割的电路类问题】 5.(天津)两根光滑的长直金属导轨导轨 MN、M'N'平行置于同一水平面内,导轨间 距为l,电阻不计,M、M'处接有如图所示 的电路,电路中各电阻的阻值均为R,电 容器的电容为C。长度也为l、阻值同为R 的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中。ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q。求: ⑴.ab运动速度v的大小; ⑵.电容器所带的电荷量q。 6.(2008 全国II)如图,一直导体棒质量为m、长为 l、电阻为r,其两端放在位于水平面内间距也为l的 光滑平行导轨上,并与之密接;棒左侧两导轨之间连接 一可控制的负载电阻(图中未画出);导轨置于匀强磁 场中,磁场的磁感应强度大小为B,方向垂直于导轨所 在平面。开始时,给导体棒一个平行于导轨的初速度

相关文档
最新文档