分子蒸馏技术及其在食品方面的应用

分子蒸馏技术及其在食品方面的应用
分子蒸馏技术及其在食品方面的应用

分子蒸馏技术及其在食品方面的应用

摘要:分子蒸馏技术是一种新型、高效的分离技术,现已在许多领域得到广泛应用。本文介绍下分子蒸馏的概念、原理、特点以及影响分子蒸馏速度的因素;其中举以例子,介绍下分子蒸馏技术目前在食品工业中的应用。最后本文对其发展状况及应用前景进行了分析和展望。

关键词:分子蒸馏技术;食品;应用;前景

蒸馏是实现分离的一种最基本的方法,可实现固体和液体或液体和液体混合物的分离。常规蒸馏的过程中,经常采用减压的方法,能够有效降低蒸馏所需要的温度,从而可以避免有些物质在蒸馏过程中因受热分解而造成的损失。但是,对于沸点高、热不稳定、粘度高或容易爆炸的物质,并不适宜使用普通减压蒸馏法。为了分离和纯化这些特殊性质的物质,一种新的分离技术——分子蒸馏技术也相应产生。

分子蒸馏是一种以液相中逸出的气相分子依靠气体扩散为主体的分离过程,是在高真空度下进行分离操作的连续蒸馏过程,实质上是一种特殊的液-液蒸馏分离技术。分子蒸馏过程中,待分离物质组分可在远低于常压沸点的温度下挥发,并且各组分的受热过程很短,因此成为目前分离目的产物最温和的蒸馏方法,特别适合于分离高沸点、粘度大、热敏性的天然物料[1]。目前,分子蒸馏技术已成功地应用于食品、医药、化妆品、精细化工、香料工业等行业。

1 基本原理

分子蒸馏技术的原理,在于突破了常规蒸馏依靠沸点差分离物质的原理,而是依靠不同物质分子逸出后的运动平均自由程的差别来实现物质的分离。普通蒸馏过程中,当形成的蒸汽分子离开溶液液面后,在运动中相互碰撞,一部分进入冷凝器中,另一部分则返回溶液内。分子蒸馏技术的特点,在于溶液液面与冷凝器的冷凝面间距离十分靠近,蒸汽分子离开液面后,在它们的分子自由程内未经过相互碰撞就可到达冷凝面,不再返回溶液内[2]。

对液体混合物的分离,首先要加热提供能量,接受到足能量的分子就会逸出液面成为气相分子。不同质量的分,由于分子有效直径不同,一般轻分子的平均自由程较大,分子的平均自由程较小。若在离液面小于轻分子平均自由而大于重分子平均自由程处设置一个冷凝面,当轻分子到冷凝面后就被冷凝,从而使轻分子不断逸出;而重分子达不到冷凝面就会发生碰撞而返回溶液中,很快与液相中重分子趋于动态平衡,表观上不再从液相中逸出。通过这种方法,就可以将轻分子和重分子进行分离[3]。

分子平均自由程是一个分子在相邻的两次分子碰撞之间所经过的路程,它的长短与分子有效直径、压力和温度有关[4]。当压力不变时,物质的分子平均自由程随温度的增加而增加;当温度不变时,物质的分子平均自由程随压力的降低而增加。例如,当系统中的压力为13.3Pa 时,空气分子的平均自由程只有0.056cm,而当系统

中的压力为 0.133Pa时,空气分子的平均自由程可以达到 5.62cm。通常液面与冷凝面之间应该保持一定的温度差,通过降低冷凝面的温度,破坏体系中蒸汽分子的动态平衡,提高分子蒸馏的速度。

分子蒸馏速度的理论值,可由Langmuir和Knudsen理论公式来计算

W=PS(5M/πRT)?

式中:W——每秒钟蒸馏出的蒸馏液重量,kg

P——蒸发面上的压力,Pa

S——蒸发面的有效面积,cm

M——分子量

R——气体常数8.32J/mol?k

T——绝对温度,K

(1)混合物液相在加热板表面受热后,分子逃逸扩散。

(2)分子从蒸发面向冷凝面飞射,轻分子由于平均自由程大于蒸发面与冷凝面的距离,轻分子碰撞到冷凝板表面,温度降低后被捕获冷凝,冷凝液体沿冷凝板流出蒸馏器。

(3)重分子由于平均自由程小于蒸发面与冷凝面的距离,所以不能碰撞到冷凝板表面,不能被捕获冷凝。重分子大部分返回到混合物液相被带出蒸馏器。

(4)轻重分子从蒸发面向冷凝面飞射过程中,可能与残存的空气分子碰撞,也可能相互碰撞。必须保持合适的真空度,使蒸发分子的平均自由程大于或等于蒸发面与冷凝面的距离。

2 基本特征

对于高沸点、热敏性产品的分离,分子蒸馏技术优于常规蒸馏。采用传统的蒸馏法生产,难以克服操作温度高、受热时间长的缺点,导致了有效成分的聚合及分解等变化。而分子蒸馏技术恰恰克服了这一难题,可以解决常规蒸馏无法解决的问题,尤其是高沸点与热敏性产品的分离问题

2.1 分子蒸馏与传统蒸馏

(1)普通蒸馏是在沸点温度下进行分离,而分子蒸馏只要冷热两面之间达到足够的温度差,就可在任何温度下进行分离。

(2)普通蒸馏的蒸发与冷凝式可逆过程,液相和气相之间达到了动态平衡;分子蒸馏中,从加热而逸出的分子飞射到冷凝面上,理论上没有返回到加热面的可能性,所以分子蒸馏是不可逆过程。

(3)普通蒸馏有鼓泡、沸腾等现象;而分子蒸馏实在液膜表面上的自由蒸发,由于液体中无溶解的空气,因此在蒸馏过程中不会使整个液体沸腾,没有鼓泡现象。即分子蒸馏是不沸腾下的蒸发过程。

(4)普通蒸馏分离能力只与组分的蒸汽压之比有关;而分子蒸馏的分离能力与被分离混合物的蒸汽压和相对分子质量也有关。因此,可以分离蒸汽压十分相近而相对分子质量有所差别的混合物。

(5)普通蒸馏中物料受热温度高,受热时间长。分离蒸馏蒸发过程中,因分子蒸馏装置加热面与冷凝面的距离小于轻分子的平均自由程。从液面逸出的轻分子几乎未经碰撞就达到冷凝面,所以受热时间很短,在蒸馏温度下停留时间一般在几秒至几十秒之间。由于分子蒸馏温度低,受热时间短,从而避免了因受热时间长而造成某些组分分解或聚合的可能。因此,它特别适合对高沸点、热敏性物料进行有效的分离。

2.2 分子蒸馏特点

(1)真空度高由于分子蒸馏的蒸发面与冷凝面的间距小于轻分子平均自由程,轻分子几乎没有压力降能达到冷凝面,使蒸发面的实际操作真空度比传统操作真空度高出几个数量级,一般最低蒸馏压力必须低于0.5Pa,通常为0.1333Pa。

(2)操作温度低分子蒸馏是依靠分子运动平均自由程的差别来实现分离的,并不需要达到物料的沸点(远低于其沸点),因此,其操作温度是较低的,这也是分子蒸馏与普通蒸馏的本质区别。

(3)受热时间短分子蒸馏在蒸发过程中,物料被强制形成很薄的液膜,并被定向推动,使得液体在分离器中停留时间很短。特别是轻分子,一经逸出就马上冷凝,受热时间更短。另外,混合液体呈薄膜状,液面与加热面的面积几乎相等,物料在蒸馏过程中受热时间很短。对普通真空蒸馏而言,受热时间为数小时,而分子蒸馏仅为数十秒。

(4)分离程度高蒸馏能分离常规蒸馏不易分开的物质。常规蒸馏的分离能力与组分的蒸汽压相关,而分子蒸馏的分离能力与组分的蒸汽压与其相对分子质量之比相关。因此,分子蒸馏的分离程度更高,特别适合于不同组分分子平均自由程相差较大的混合物的分离。

(5)生产成本低由于分子蒸馏整个分离过程损失少,且由于分子蒸馏装置独特的结构形式,其内部压强较低,内部阻力远比常规蒸馏小,因而可以节省能耗,降低了生产成本。

3 分子蒸馏技术的设备及注意事项

3.1 分子蒸馏器的基本类型

分子蒸馏器装置主要包括:分子蒸发器(包括加热器、冷凝器、捕集器等)、加热系统(包括导热油泵、导热油炉、温控仪表、油路等)、冷却系统(包括冷凝器、恒温水泵、冷却水管路等)、真空系统(包括真空泵、扩散泵)、脱气系统、进料系统和控制系统。

3.1.1 刮膜式分子蒸馏器

进料以恒定的速率进入到旋转分布板上,在一定离心力的作用下被抛向加热蒸发面,在重力作用下沿蒸发面向下流动的同时在刮膜器的作用下得到均匀分布,低沸点组分首先从薄膜表面挥发,径自飞向中间冷凝面,并冷凝成液相,冷凝液流向蒸发器的底部,经馏出口流出;不挥发成飞从残留口流出;不凝性气体从真空口排出。因此,目的产物既可以是易挥发组分,又可以是难挥发组分。

3.1.2 离心式分子蒸馏器

料液从进料管进入离心蒸发器。离心蒸发器是一个旋转体。其产生的离心力使进来的料液在蒸发器表面形成薄膜,一面向外运动,一面蒸发气化。蒸发器下面装有加热器。产生的蒸汽在穹顶冷凝器表面冷却成蒸馏液。蒸发器剩下的残留液经收集后由残夜出口排出。不凝性气体由真空接口抽走,由于蒸发器的离心作用,料液很容易形成薄膜,同时料液紧贴着蒸发面产生气泡的可能性较少。在离心力的作用下,料液薄膜会沿着蒸发面自由向外移动,因而传质速率较高,料液在蒸发面停留的时间较短。

3.2 分子蒸馏器的选用原则

(1)选择合适的真空泵组及密封结构,以保证足够快地达到所需的真空度。

(2)选择合适的脱气设备。由于任何液体都含有或多或少的气体,未经充分脱气的液体如直接加入蒸馏釜,会影响系统的真空度,而且可能从液体中剧烈析出的气体,产生飞沫,影响分子蒸馏器的正常运转。

(3)正确选择蒸发面与冷凝面的形状、距离及相对位置,以保证从设备的蒸馏空间内顺利地排出残余气体。

(4)对于热敏性物质的分离,由于要求被加工物料在蒸馏温度下停留较短的时间,可采用离心式分子蒸馏器。

(5)根据实际需要,综合考虑被分离物料的纯度要求和生产成本,选择单级式或多级式分子蒸馏器。

3.3分子蒸馏器的注意事项

(1)根据不同物料的黏度,采用合理的物料分布结构,使液体分布均匀,有效地避免返混。

(2)采用离心方法强化成膜装置,减小液膜厚度,降低液膜的传质阻力。

(3)保证预先脱气的要求,控制操作温度和真空度,避免液体飞溅。

(4)加强密封结构的维护,解决高温、高真空度下密封变形问题,保证设备在高真空度下能长期稳定运行的性能等。

(5)优化加热方式、物料输送等工艺条件。

4 分子蒸馏技术在食品工业中的应用

分子蒸馏技术在食品工业中已有许多成功的实例,如分子蒸馏生产单甘脂、从鱼油中提取DHA和EPA、小麦胚芽油的制取、天然维生素E提取、α-亚麻酸提取等。随着食品工业的发展,用特别是天然保健食品的发展,用分子蒸馏技术生产的产品必将有更广阔的市场前景。

4.1 单脂肪甘油酸酯

单脂肪酸甘油酯,简称单甘脂,是重要的食品乳化剂。单甘脂的用量占食品乳化剂总量的2/3,。在食品中它可起到乳化、起酥、蓬松、保险的作用,可作为饼干、面包、糕点、糖果、人造奶油、起酥油、涂抹油、冰激凌、巧克力等的乳化剂。此

外,它在医药、化妆品等方面也有广泛应用。

单甘脂可采用脂肪酸与甘油的酯化反应和油脂与甘油的酶解反应两种工艺制取,其原料为各种油脂、脂肪酸和甘油。采用酯化反应或酶解反应合成的单甘脂,通常都含有一定数量的双甘酯(二脂肪酸甘油酯)和甘油三酯(三甘酯),单甘脂的质量分数仅为40%-50%。由于油脂的沸点很高,为了得到高纯度的单甘脂,现在多采用分子蒸馏技术来生产。

其工艺过程为:氢化动植物油脂与甘油进行酯化反应,反应混合物经过滤后被送入三级分子蒸馏装置。第一级是在140℃、500Pa真空的条件下进行脱水、脱气,出去部分甘油;第二级是在175℃、75Pa真空的条件下出去剩余甘油和游离脂肪酸;第三极是在200~210℃、0.5Pa真空的条件下蒸馏出单甘脂,同时除去双甘酯和三甘酯;最后将液态单甘脂进行喷雾干燥。利用分子蒸馏技术,可以从粗产品中分离出纯度高达95%以上的单甘脂。

4.2 不饱和脂肪酸

深海鱼油中的EPA和DHA是人类不可缺少的物质,且人类不能自身合成,必须从外界摄取。鱼油中含有质量分数为2%~16%的EPA和质量分数为5%~36%的DHA,是EPA和DHA的最佳来源。DHA和EPA是天然的营养物质,可提高青少年的记忆力,并有预防老年性痴呆、预防心血管疾病、降低胆固醇浓度、提高人眼视敏度等作用。

用分子蒸馏法从鱼油中提取不饱和脂肪酸时,饱和脂肪酸和不饱和脂肪酸首先蒸出,而双键较多的不饱和最后蒸出,产品中EPA和DHA总量可以达70%以上。虽然分子蒸馏法与尿素沉淀法相比,最终纯度较低,但其工序简单、效率高、可以连续化生产。采用分子蒸馏技术及工业化装置,从鱼粉生产的副产品鱼油中提取和精制DHA、EPA超浓缩液,有两个显著特点:首先,能保证DHA、EPA的天然品质,避免其氧化、降解及聚合;其次,可彻底去除原料鱼油中的有害物质及易使产品变质的诱发因子,从而保证了产品质量的稳定。用分子蒸馏技术,还可以从紫苏油、亚麻籽油等植物油中提取高纯度的α-亚麻酸,纯度可达70%。

4.3 天然维生素

利用离心式分子蒸馏器,以大豆脱臭馏出物(维生素E质量分数为8%~20%)为原料,先用甲醇对馏出物进行甲酯化,分离出甾醇结晶后,于蒸馏压力在

0.133~1.33Pa的高真空度下进行分子蒸馏,可以得到浓缩的脂肪酸甲酯和维生素E。采用多级蒸馏的方法,可以得到纯度在70%以上的维生素E浓缩物,回收率达50~60%。利用分子蒸馏进行反复操作,可进一步提高产品纯度,维生素E的纯度最高可达98%。

4.4 天然色素

辣椒红色素是从辣椒果皮中提取出的一种优良的天然色素,因其具有良好的乳化分散性、耐光、耐碱、耐热和耐氧化性而广泛用于食品、医药及化妆品等产品中,辣椒红素对人体安全、无毒、且有一定的营养价值。传统的辣椒红色素提取方法是化学溶剂法或油溶法,其主要缺点是产品中存在各种杂质,尤其是焦油味、辣味等。

利用分子蒸馏技术提取辣椒红色素,不但使产品色泽鲜艳、热稳定性好,而且脱辣味效果极好,且同时还能得到辣椒素副产品。用分子蒸馏技术对辣椒红色素进行处理后,产品中基本无残留溶剂,符合产品质量要求。

4.5 高碳脂肪醇

高碳脂肪醇是指二十碳以上的直链饱和脂肪醇,它们一般常与高级脂肪酸结合成酯存在于虫蜡或植物蜡中,是米糠油深加工的产品,具有很强的生理活性。精制高级脂肪醇,其工艺十分复杂,需要经过醇相皂化、多种及多次溶剂浸提。然后用柱层析分离,而为了提高其纯度,往往需要反复进行层析,最后,还要采用溶剂结晶才能得到一定纯度的制品,即使这样,得到的也仅是混合醇产品。采用分子蒸馏技术进行高碳醇的精制,不但能避免有机溶剂对环境的污染和对操作人员健康的损害,而且可能对残留溶剂进行有效脱除。

国内对米糠油中二十八碳醇进行研究,并运用分子蒸馏技术得到质量分数在30%左右的二十八碳醇产品,若经多级分子蒸馏,最终可得到质量分数为80%的产品。利用分子蒸馏技术精制高碳脂肪醇,其工艺过程简单,操作安全可靠,自动化程度高,产品质量能达到相应的食品或药品的要求。

4.6 食用植物油

化学法由于油脂酸价高,工艺中为保证精炼效果所添加的碱用量大,碱在与游离脂肪酸的中和过程中,也皂化大量中性油,使炼耗量增大;水蒸气汽提脱酸,油脂需要在较长时间高温处理,影响油脂品质,降低保健营养价值。

利用分子蒸馏对高酸价花椒籽油进行脱酸实验,结果显示当花椒籽油酸价(以

KOH计)高达41.2mg/g时,一次分子蒸馏所得到油脂酸价为3.8mg/g,达到国标二级油酸价标准;对酸价为21.7mg/g的花椒籽油进行脱酸实验,可使其酸价降低至0.28mg/g,达到国标高级烹调油酸价标准,同时还得到色泽良好的高浓度浓缩脂肪酸产品,可用于油脂化工和制皂业。因此,分子蒸馏技术在高酸价油脂脱酸过程中有广阔的应用前景。

5 分子蒸馏技术的发展现状与展望

5.1 存在的问题

分子蒸馏技术已引起人们广泛关注,但就其工业化发展水平而言,国外已处于工业化推广应用阶段,国内则刚起步,虽然市场前景十分诱人,但在工业化应用方面还存在理论与应用等实际问题。

(1)由于分子蒸馏技术属于近几十年发展起来的新型技术,其理论尚未完全成熟,加上国内对分子蒸馏理论与应用的研究都比较薄弱,限制了分子蒸馏技术在应用上的突破。

(2)分子蒸馏整套设备一般为高真空设备,一次性投资大。分子蒸馏器耗能大,且对密封条件要求严格,连续化生产能力低。

所以,我们要针对存在的问题逐一进行改进,完善理论,改善蒸馏条件,最大限度的发挥分子蒸馏技术的优势,满足生产的需求。

5.2 分子蒸馏技术的发展前景

综上所述,作为一种特殊的高新分离技术,分子蒸馏技术是常规真空蒸馏的补充,它与真空蒸馏相比,操作温度要低得多,并且在高真空度下基本绝氧,所以收集的产品质量、外观和收率都优于真空蒸馏的产品。分子蒸馏克服了传统分离提取方法的种种缺陷,避免了传统分离提取方法易引起的环境污染问题,而且工艺简便、操作安全可靠,必将对整个食品工业起到巨大的推动作用。

分子整理技术作为一种特殊的新型分离技术,具有无毒、无污染、无溶剂残留,产品纯度高,且操作工艺简单、设备少等特点。分子蒸馏技术能分离常规蒸馏不易分离的物质,特别适宜于高沸点、高黏度、热敏性物质的分离。因此,它不仅为食品工业,同时也为工业生产各个领域中高纯物质的提取开辟了广阔的发展前景。

参考文献

[1] 冯武文,杨村,刘炜,于宏奇.精细化工与高新分离技术[J].精细与专用化学品2000,23(1):18-19

[2] 冯武文,杨村,于宏奇.分子蒸馏技术[J].上海化工,1999,(3-4):38-39

[3] Miroslan,Micov,Juraj Lutisan,Jan Cvengros,Balance equation for molecular distillation[J].Separation Science and Technology,1997,32(5):1324-1328

[4] Jan Cvengros,Juraj Lutisan.Effect of inert gas pressure on the molecular distillation process[J].Separation Science and Technology,1995,30(17):3375-3389

[5] 冯武文.一种新型分离技术——分子蒸馏技术[J].化工生产与技术,2000,7(4):6-9

[6] 吴鹏.短程蒸馏原理及工业应用[J].化工进展,2000,30(1):49-52

[7] 赵国志.分子蒸馏技术及油脂精细化工产品的开发[J].中国商办工业,1999,8(10):36-39

[8] 张春娥,张惠,刘楚怡等.亚油酸的研究进展[J].粮油加工,2010,4(5):18-20

[9] 李小陆.亚油酸类脂肪化学品的应用[J].河北农业大学学报,1990,13(4):89

分子蒸馏技术和应用

分子蒸馏技术及其应用 摘要 分子蒸馏又称短程蒸馏,是一种新型的液-液分离技术,与常规蒸馏相比具有许多优点,本文对分子蒸馏的基本原理、设备、特点以及在食品、医药、化工工业中的应用进行了阐述。 关键词:分子蒸馏、食品工业。 分子蒸馏是在高真空度下进行的非平衡蒸馏技术(真空度可达 0.01Pa),是以气体扩散为主要形式、利用不同物质分子运动自由程的差异来实现混合物的分离。由于蒸发面和冷凝面的间距小于或等于被分离物料的蒸气分子的平均自由程,所以也称短程蒸馏。由于分子蒸馏过程中。待分离物质组分可以在远低于常压沸点的温度下挥发,并且各组分的受热过程很短,因此分子蒸馏已成为对高沸点和热敏性物质进行分离的有效手段。目前已广泛应用于食品、医药、油脂加工、石油化工等领域,用于浓缩或纯化低挥发度、高分子量、高沸点、高黏度、热敏性、具有生物活性的物料。 一、分子蒸馏的概念原理和过程 1.1分子蒸馏的基本概念分子有效直径:分子在碰撞过程中,两分子质心的最短距离,即发生斥离的质心距离。分子运动自由程:指一个分子与其他气体分子相邻两次分子碰撞之间所走的路程。分子运动平均自由程:在一定的外界条件下,不同物质中各个分子的自由程各不相同。就某一种分子来说在某时间间隔自由程的平均值称为平均自由程。 1.2分子蒸馏的基本原理分子蒸馏的分离是建立在不同物质挥发度不同的基础上,其操作是在低于物质沸点下进行,当冷凝表面的温度与蒸发物质的表面温度有差别时就能进行分子蒸馏。根据分子运动理论,液体混合物中各个分子受热后会从液面逸出,不同种类的分子,由于其有效直径不同,逸出液面后直线飞行距离是不相同的。轻分子的平均自由程大,重分子的平均自由程小,若在离液面小于轻分子平均自由程而大于重分子平均自由程处设置一冷凝面,使得轻分子落在冷凝面上被冷凝,而重分子则因达不到冷凝面,返回原来液面这样就将混合物分离了,分子平均自由程是分子蒸馏基本理论的核心。 1.3分子蒸馏的基本过程根据分子蒸馏的基本理论,可将蒸馏过程分解为 以下5个步骤:①物料在加热面上形成液膜;②分子在液膜表面上自由蒸发;③分子从加热面向冷凝面的运动;④轻分子在冷凝面上被捕获,重分子返回物料液膜;⑤馏出物和残留物的收集。 二、分子蒸馏的特点

分子蒸馏技术

分子蒸馏技术 X Y Zhou 化学工程110427001 摘要分子蒸馏是一种新型的液-液分离技术,与传统的蒸馏技术相比:操作温度远低于液体沸点,蒸馏压力在极高真空度下,受热时间短,能最大限度地保证物系中的有效成分。本文分析了分子蒸馏技术的原理、过程,介绍了目前分子蒸馏技术的特点、分子蒸馏设备及其特点,以及分子蒸馏技术在食品、医药、化工等行业的应用。 关键词分子蒸馏;分离技术;分子蒸馏器 分子蒸馏技术[1]是一种特殊的液-液分离技术,是新型分离技术中的一个重要分支。液体混合物的分离,一般是通过蒸馏或精馏来实现的。在蒸馏或精馏过程中,存在着两股分子流向:一股是被蒸液体的气化,由液相流向气相的蒸气分子流;另一股是由蒸气返回至液相的分子流。当气液两相达到平衡时,表观上蒸气分子不再从液面逸出。若果利用某种措施,使蒸气分子不再返回(或减少返回)液相,就会大大提高分离效率。分子蒸馏技术正是在蒸馏技术的不断改进发展中而产生的一种特殊的蒸馏分离技术。 1 分子蒸馏的原理、过程及其特点 1.1 分子蒸馏的基本原理 根据分子运动理论,液体混合物的分子受热后运动会加剧,当接受到足够能量时,就会成为气体分子而从液面逸出。而随着液面上方气体分子的增加,有一部分气体分子就会返回液体,在外界温度保持恒定的情况下,最终达到分子运动的动态平衡,此外,不同种类的分子,由于其分子有效直径不同,故其平均自由度也不同,从统计学观点看,不同种类的分子逸出液面后不与其他分子碰撞的飞行距离是不同的[2]。 传统的液体混合物的分离,一般都是利用溶液组分间沸点的差异,通过蒸馏或精馏来实现的,其气液处于平衡状态。而分子蒸馏技术却不同于常规蒸馏,它是利用不同物质分子运动平均自由程的差异,实现液体混合物的分离。具体的分离过程是:经过预热处理的待分离料液从进料口沿加热板自上而下流入,受热的液体分子从加热板逸出,并向冷凝板运动。轻分子由于平均自由程较大,能够到达冷凝板并不断在冷凝板凝集,最后进入轻组分接收罐;重分子因平均自由程较小,不能到达冷凝板,从而顺加热板流入重组分接收罐中,这样就实现了轻重组分的分离[3]。 所谓分子运动平均自由程是指在某一时间间隔内分子自由程的平均值。而分子运动自由程则是一个分子在相邻两次分子碰撞之间所经过的路程。根据热力学原理,分子运动平均自由程可用下式表达: 式中:k:波尔兹曼常数;p:运动分子所处的空间压力;T:运动分子所处的空间温度;d:分子有效直径。 由上式可以看出,压力、温度及分子有效直径是影响分子运动平均自由程的3个主要因素。在蒸馏过程中,物系空间的压力和温度相同,系统中不同物质由于分子有效直径不同,其分子平均自由程也必然存在差异。分子蒸馏的分离作用正是依据分子平均自由程不同这一性质来实现的。其基本原理如图1所示[4]

分子标记技术综述

分子标记技术及其在植物药材亲缘关系鉴定中的应用 分子标记技术 分子标记(Molecular Markers)是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA水平遗传多态性的直接反映[1]。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有极大的优越性:大多数分子标记为共显性,对隐性性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速[2]。 技术种类及原理 分子标记技术自诞生起已研究出数十种,尽管方法差异显著,但都具有一个共同点,即用到了分子杂交、聚合酶链式反应(PCR)、电泳等检测手段。应用较为广泛的技术有以下几种: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphisms,RFLP) RFLP是最早开发的分子标记技术,指基因型间限制性内切酶位点上的碱基插入、缺失、重排或突变引起的,是由Grodzicker等于1974年创立的以DNA-DNA杂交为基础的遗传标记。基本原理是利用特定的限制性内切酶识别并切割不同生物个体的基因组DNA,得到大小不等的DNA片段,所产生的DNA数目和各个片段的长度反映了DNA分子上不同酶切位点的分布情况[3]。通过凝胶电泳分析这些片段,就形成不同带,然后与克隆DNA探针进行Southern 杂交和放射显影,即获得反映个体特异性的RFLP图谱。它所代表的是基因组DNA在限制性内切酶消化后产生片段在长度上差异。由于不同个体的等位基因之间碱基的替换、重排、缺失等变化导致限制内切酶识别和酶切发生改变从而造成基因型间限制性片段长度的差异。 RFLP的等位基因其有共显性特点,可靠性高,不受环境、发育阶段或植物器官的影响。RFLP标记位点数量不受限制,通常可检测到的基因座位数为1—4个,标记结果稳定,重复性好。RFLP技术也存在一些缺陷,主要是克隆可表现基因组DNA多态性的探针较为困难;另外,RFLP分析工作量大,成本高,使用DNA量大,使用放射性同位素和核酸杂交技术,不易自动化,尽管结合PCR技术,RFLP仍在应用,但已不再是主流分子标记。 2.随机扩增多态性DNA(Random Amplification Polymorphism,RAPD) RAPD技术是1990年由William和Welsh等人利用PCR技术发展的检测DNA多态性的方法,其基本原理是利用随机引物(一般为8—10bp)通过PCR反应非定点扩增DNA片段,然后用凝胶电泳分析扩增产物DNA片段的多态性。扩增片段多态性便反映了基因组相应区域的DNA多态性。RAPD所使用的引物各不相同,但对任一特定引物,它在基因组DNA序列上有其特定的结合位点,一旦基因组在这些区域发生DNA片段插人、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物数量和大小发生改变,表现出多态性[4]。就单一引物而言,其只能检测基因组特定区域DNA多态性,但利用一系列引物则可使检测区域扩大到整个基因组,因此,RAPD可用于对整个基因组DNA进行多态性检测,也可用于构建基因组指纹图谱。 与RFLP技术相比,RAPD技术操作简便快速,省时省力,DNA用量少,同时无需设计特定的引物,扩增产物具有丰富的多态性。但RAPD也存在一些缺点:(1)RAPD标记是一个显

分子蒸馏讲义

实验10 脂肪酸的分子蒸馏与分离实验 1 实验目的 1.了解分子蒸馏的原理、装置及基本流程和操作方法; 2.研究进料量、真空度、刮膜速度以及冷却水温度对分离效率的影响。 2 实验原理及要点 分子蒸馏是一种高新分离技术,广泛应用于食品行业、日用化工行业、制药行业以及石油化工行业。对于相对分子质量大的物质的分离、提纯以及传统方法无法进行分离的挥发性小的高沸点、高粘度的热敏性物质的分离具有很好的效果。分子蒸馏是一种不同于一般常规的蒸馏,它是没有达到气—液相平衡的蒸馏,分子蒸馏的分离是建立在不同物质挥发度不同的基础上,分离操作在低于物料正常沸点下进行,首先物料先进行加热,液面的分子受热后接受足够的能量时,就会从液面逸出而成为气体分子。逸出的气体分子在气相中会发生碰撞,碰撞结果是有一部分气体分子返回液面,在外界温度保持恒定的情况下,最终达到动态平衡。气相中一分子相邻两次碰撞之间所走的路线,称为分子运动自由程,任一个分子在运动过程中其自由程都在不断变化, 在某时间间隔内自由程的 平均值称为平均自由程。对 于不同的物质分子,运动平 均自由程大,其挥发度也 大,分子运动平均自由程可 用以下函数表示: (1) 式中: k ——波耳兹曼常 数,1.381×10-23 J/K; d ——分子的有效直径,m; T ——运动分子所处的空间温度,K ; P ——运动分子所处的空间压强,Pa 。 2.1蒸馏速度 所谓分子蒸馏,就是指物料分子在蒸发液面挥发出来,直接在冷凝面冷凝下来所走过的行程小于其分子运动平均自由程的单元操作。一般蒸发面与冷凝面的距离可在1—20cm 之间,最常见的是l 一5cm 。在进行蒸馏操作时,要求蒸发面的真空度低于100Pa 。分子蒸馏的速度完全由物质分子自蒸发面的挥发速度决定,同气—液相平衡无关。Langmuir-Kundsen 从理想气体动力学理论推导出一个描述物质分子理想蒸馏速度: (2) 式中:G ——蒸馏速度,kg/(m 2·h); p T d k l m ?=22πT M p G 15=图1 分子蒸馏原理示意图

DNA分子标记技术及其应用

DNA分子标记技术及其应用 摘要:分子遗传标记是近年来现代遗传学发展较快的领域之一。本文系统阐述了DNA分子标记的概念,以及RFLP、RAPD、ALFP、STS、SSR和SNP为代表的分子标记技术的原理和主要方法,并简单介绍了DNA分子标记技术的应用。最后探讨了其进展以及存在的一些问题。 关键词:分子标记;应用 分子遗传标记技术作为一种新的分子标记技术,在分子生物学特别是在分子遗传学的研究中得到了广泛的应用和发展,其所构建的遗传图谱具有高度的特异性。与其它遗传标记相比较,DNA分子标记具有诸多优点,如:遗传稳定,多态性高,多为共显性,数量丰富,遍及整个基因组,操作简便。这些优点使其广泛地应用于生物基因组研究、进化分类、遗传育种、医学等方面,成为分子遗传学和分子生物学研究与应用的主流之一。 1DNA分子标记的概念 遗传标记是基因型特殊的易于识别的表现形式,在遗传学的建立和发展过程中起着重要作用。从遗传学的建立到现在,遗传标记的发展主要经历了4个阶段,表现出了4种类型:1形态标记(Morphological Markers),指生物的外部特征特性,包括质量性状作遗传标记和数量性状作遗传标记;2细胞标记(Cytological Markers),主要指染色体组型和带型;3生化标记(Biochemical Markers),指生物的生化特征特性,主要包括同工酶和贮藏蛋白两种标记;4DNA分子标记(Molecular Markers)是以生物大分子(主要是遗传物质DNA)的多态性为基础的一种遗传标记。前3种标记是对基因的间接反映,而DNA分子标记是DNA水平遗传变异的直接反映。与其它遗传标记相比较,DNA分子标记具有诸多优点,如:遗传稳定,多态性高,多为共显性,数量丰富,遍及整个基因组,操作简便。这些优点使其广泛地应用于生物基因组研究、进化分类、遗传育种、医学等方面。目前,被广泛应用的DNA分子标记主要有RFLP(限制性片段长度多态性)、RAPD(随机扩增多态性DNA)、ALFP(扩增片段长度多态性)、STS(序列标记位点)、SSR(简单重复序列)和SNP(单核苷酸多态性)等。 2分子遗传标记技术的种类 2.1RFL P标记 RFLP(Restriction Fragment Length Polymorphism,限制性片段长度多态性)标记,是人类遗传学家Botstein等于1980年提出的,是以Southern杂交为核心的第一代分子标记技术。它是用限制性内切酶切割不同个体基因组DNA后,用印迹转移杂交的方法检测同源序列酶切片段在长度上的差异。这种差异是由于变异的产生或是由于单个碱基的突变所导致的限制性位点增加或消失,或是由于DNA序列发生 插入、缺失、倒位、易位等变化所引起的结构重排所致。其差异的检测是利用标记的同源序列DNA片段作探针进行分子杂交,再通过放射自显影(或非同位素技术)实现的。 与传统的遗传标记相比,RFL P标记具有下列优点: (1)RF LP标记无表型效应,其检测不受外界条件、性别及发育阶段的影响;

分子蒸馏技术及其应用的研究进展(精)

综述与专论 分子蒸馏技术及其应用的研究进展 陈立军陈焕钦 (华南理工大学化学工程研究所,广州510640 摘要分子蒸馏是一种在高真空下进行的特殊蒸馏技术。分子蒸馏是一项国内外正在工业化开发应用的高新分离技术,尚未实现大规模的工业化。分子蒸馏技术同普通蒸馏技术的差别很大。介绍了分子蒸馏基本原理、技术特点、主要装置和优势。此外还详细介绍了分子蒸馏技术在国内外的应用新进展,并提出了未来分子蒸馏领域的重点研究方向。关键词 平均自由程分子蒸馏应用进展R esearch Progress in the T echnique of Molecular Distillation and its Application Chen Lijun Chen H uanqin (R esearch I nstitute of Chemical E ngineering ,Southern China U niversity of T echnology ,G uangzhou 510640 Abstract The m olecular distillation (short -path distillation or unobstructed distillation is a special separation technique of liquid -liquid and a special distillation technique under the high vacuum.It is an industrializing Hi -tech at home and abroad and not used in

分子标记技术的类型原理及应用

分子标记 1.分子标记技术及其定义 1974年,Grozdicker等人在鉴定温度敏感表型的腺病毒DNA突变体时, 利用限制性内切酶酶解后得到的DNA片段的差异, 首创了DNA分子标记。所谓分子标记是根据基因组DNA存在丰富的多态性而发展起来的可直接反映生物个体在DNA水平上的差异的一类新型的遗传标记,它是继形态学标记、细胞学标记、生化标记之后最为可靠的遗传标记技术。广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质分子。通常所说的分子标记是指以DNA多态性为基础的遗传标记。分子标记技术本质上都是以检测生物个体在基因或基因型上所产生的变异来反映基因组之间差异。 2.分子标记技术的类型 分子标记从它诞生之日起, 就引起了生物科学家极大的兴趣,在经历了短短几十年的迅猛发展后, 分子标记技术日趋成熟, 现已出现的分子标记技术有几十种, 部分分子标记技术所属类型如下。 2.1 建立在Southern杂交基础上的分子标记技术 (1) RFLP ( Rest rict ion Fragment Length Polymorphism)限制性内切酶片段长度多态性标记; (2) CISH ( Chromosome In Situ Hybridization) 染色体原位杂交。 2.2 以重复序列为基础的分子标记技术 (1) ( Satellite DNA ) 卫星DNA; (2) ( Minisatellite DNA ) 小卫星DNA; (3) SSR( Simple Sequence Repeat ) 简单序列重复, 即微卫星DNA。 2.3 以PCR为基础的分子标记技术 (1) RAPD ( Randomly Amplif ied Polymorphic DNA ) 随机扩增多态性DNA; (2) AFLP( Amplif ied Fragment Length Polymorphism) 扩增片段长度多态性; (3) SSCP( Single Strand Conformation Polymorphism) 单链构象多态性; (4) cDNA-AFLP( cDNA- AmplifiedFragment Length Polymorphism) cDNA -扩增片段长度多态性; (5) TRAP( Target Region Amplified Polymorphism) 靶位区域扩增多态性; (6) SCAR ( Sequence Char acterized Amplified Region) 序列特征化扩增区域; (7) SRAP ( Sequencerelated Amplified Polymorphism) 相关序列扩增多态性。 2.4以mRNA为基础的分子标记技术

分子蒸馏技术的原理和应用(精)

分子蒸馏技术的原理和应用 分子蒸馏技术简介 分子蒸馏是一项较新的尚未广泛应用于产业化生产的分离技术,能解决大量常规蒸馏技术所不能解决的题目。分子蒸馏是一种特殊的液-液分离技术,能在极高真空下操纵,它依据分子运动均匀自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物系的分离。由于其具有蒸馏温度低于物料的沸点、蒸馏压强低、受热时间短、分离程度高等特点,因而能大大降低高沸点物料的分离本钱,极好地保护了热敏性物质的特点品质,该项技术用于纯自然保健品的提取,可摆脱化学处理方法的束缚,真正保持了纯自然的特性,使保健产品的质量迈上一个新台阶。 分子蒸馏技术,作为一种对高沸点、热敏性物料进行有效的分离手段,自本世纪三十年代出现以来,得到了世界各国的重视。到本世纪六十年代,为适应浓缩鱼肝油中维生素A的需要,分子蒸馏技术得到了规模化的产业应用。在日、美、英、德、苏相继设计制造了多套分子蒸馏装置,用于浓缩维生素A,但当时由于各种原因,应用面太窄,发展速度很慢。但是,在过往地三十多年中,人们一直在不断地重视着这项新的液-液分离技术的发展,对分离装置精益求精、完善,对应用领域不断探索、扩展,因而一直有新的专利和新的应用出现。特别是从八十年代末以来,随着人们对自然物质的青睐,回回自然潮流的兴起,分子蒸馏技术得到了迅速的发展。 对分子蒸馏的设备,各国研制的形式多种多样。发展至今,大部分已被淘汰,目前应用较广的为离心薄膜式和转子刮膜式。这两种形式的分离装置,也一直在精益求精和完善,特别是针对不同的产品,其装置结构与配套设备要有不同的特

点,因此,就分子蒸馏装置本身来说,其开发研究的内容尚十分丰富。 在应用领域方面,国外已在数种产品中进行产业化生产。特别是近几年来在自然物质的提取方面应用较为突出,如:从鱼油中提取EPA与DHA、从植物油中提取自然维生素E等。另外,在精细化工中间体方面的提取和分离,品种也越来越多。 我国对分子蒸馏技术的研究起步较晚,八十年代末期,国内引进了几套分子蒸馏生产线,用于硬脂酸单甘酯的生产。国内的科研职员也曾经作过一些研究,但未见产业化应用的报道。 分子蒸馏成套产业化装置具有设计新奇、结构独特、工艺先进,可明显进步分离效率。从小试到产业化生产又到小试的反复循环实验探索中,特别解决了产业化生产中轻易出现的突出题目。如有效地解决了物料返混题目,明显地进步了产品质量,创造性地设计了有补偿功能的消息密封方式;实现了产业装置高真空下的长期稳定运行。该项技术属国内领先、国际先进。 截止目前为止已经开发的产品有二十余种,如:硬脂酸单甘酯、丙二醇酯、玫瑰油、小麦胚芽油、米糠油、谷维素等。并已确定了应用分子蒸馏技术的有关工艺条件,为进行产业化生产奠定了基础。 分子蒸馏的原理和装置的结构决定其有如下特点: 1、分子蒸馏的操纵温度远低于物料的沸点: 由分子蒸馏原理可知,混合物的分离是由于不同种类的分子溢出液面后的均匀自由程不同的性质来实现的,并不需要沸腾,所以分子蒸馏是在远低于沸点的温度下进行操纵的,这一点与常规蒸馏有本质的区别。 2、蒸馏压强低: 由于分子蒸馏装置独特的结构形式,其内部压强极小,可以获得很高的真空,因此分子蒸馏是在很低的压强下进行操纵,一般为×10-1Pa数目级(×10-3为托数目级)。

分子蒸馏操作规程

一级分子蒸馏操作规程 一、系统概述 本系统特别适用于热敏性、粘滞的或具有高沸点,常规蒸馏无法处理的物料。本系统具有压降小、高真空度、传热系数高、蒸发时间短,可更好地保证物料不被破坏。 二、系统组成 本系统由四个子系统组成:分子蒸馏系统、导热油加热系统、冷冻水系统、循环水系统。下面对子系统逐一介绍。 1、分子蒸馏系统,由进料泵P101、导热油循环泵P10 2、重相出料泵P10 3、 轻相出料泵P104、热水循环泵P106、预热器E101、分子蒸馏E102、冷 井E103、真空缓冲罐V103、一级水环真空泵,三级罗茨泵P105组成。 设计使用温度为170℃、空载真空度10Pa以内。 2、导热油加热系统采用导热油温度自动控制,设计使用温度为170℃。 3、循环水及冷冻水来至公用系统 三、操作规程 在操作本系统前,请仔细阅读设备使用说明书、图纸和本规程,如因不遵循本规程和擅自改造、改变设备用途所造成的不良后果,本公司概不承担任何责任。 1、开机步骤: 1)、在每次开机前,请检查各润滑点是否润滑充分、转动部分是否灵活、冷却水是否接通、阀门是否处在正确位置、有无泄漏、有无安全 隐患,操作人员必须经过培训,并熟知应急处置措施。 2)、保持循环水和冷冻水阀门为打开状态,保证循环水和冷冻水供应正常。开启热水循环泵。检查导热油加热系统所有阀门,打开设备的导热油手动阀门(放空阀和旁通阀除外)。开启温度控制,进料预设温度为160℃,分子蒸馏内导热油温度设定为170℃。当导热油温度升至60℃时,启动真空泵,机组运行应平稳无异常噪音,长期运行需每班监控真空冷却器内液位,每周检测工作液水质,定期更换新工作液。 3)、真空泵启动程序:开启循环水阀门(开度50%,以工作水温度不超过50℃为宜),,开启一级水环真空泵,开启真空泵前进气阀门,当气温低于0℃时,每次停泵后必须将泵内积水排净(包括冷却水)以防冻裂; 观察真空度,当真空度低于-0.08MP时开启罗茨机组。分子蒸馏系统为10Pa以下。 2、分子蒸馏进料步骤: 开启进料阀,启动进料泵,调节泵后调节阀控制进料量1000kg/h,启动分子蒸馏刮板电机,刮板电机频率设定40HZ,产品色度可通过管路视镜观察。。 3、分子蒸馏出料步骤: 设定轻组分罐的出料液位上限为900mm,出料液位下限为300mm,设定重组分罐的出料液位上限为900mm,出料液位下限为300mm,保证 大气腿下端浸没在轻组分中,当出料泵启动时,应根据流量调节泵前阀门

分子蒸馏技术及其在食品方面的应用

分子蒸馏技术及其在食品方面的应用 摘要:分子蒸馏技术是一种新型、高效的分离技术,现已在许多领域得到广泛应用。本文介绍下分子蒸馏的概念、原理、特点以及影响分子蒸馏速度的因素;其中举以例子,介绍下分子蒸馏技术目前在食品工业中的应用。最后本文对其发展状况及应用前景进行了分析和展望。 关键词:分子蒸馏技术;食品;应用;前景

蒸馏是实现分离的一种最基本的方法,可实现固体和液体或液体和液体混合物的分离。常规蒸馏的过程中,经常采用减压的方法,能够有效降低蒸馏所需要的温度,从而可以避免有些物质在蒸馏过程中因受热分解而造成的损失。但是,对于沸点高、热不稳定、粘度高或容易爆炸的物质,并不适宜使用普通减压蒸馏法。为了分离和纯化这些特殊性质的物质,一种新的分离技术——分子蒸馏技术也相应产生。 分子蒸馏是一种以液相中逸出的气相分子依靠气体扩散为主体的分离过程,是在高真空度下进行分离操作的连续蒸馏过程,实质上是一种特殊的液-液蒸馏分离技术。分子蒸馏过程中,待分离物质组分可在远低于常压沸点的温度下挥发,并且各组分的受热过程很短,因此成为目前分离目的产物最温和的蒸馏方法,特别适合于分离高沸点、粘度大、热敏性的天然物料[1]。目前,分子蒸馏技术已成功地应用于食品、医药、化妆品、精细化工、香料工业等行业。 1 基本原理 分子蒸馏技术的原理,在于突破了常规蒸馏依靠沸点差分离物质的原理,而是依靠不同物质分子逸出后的运动平均自由程的差别来实现物质的分离。普通蒸馏过程中,当形成的蒸汽分子离开溶液液面后,在运动中相互碰撞,一部分进入冷凝器中,另一部分则返回溶液。分子蒸馏技术的特点,在于溶液液面与冷凝器的冷凝面间距离十分靠近,蒸汽分子离开液面后,在它们的分子自由程未经过相互碰撞就可到达冷凝面,不再返回溶液[2]。 对液体混合物的分离,首先要加热提供能量,接受到足能量的分子就会逸出液面成为气相分子。不同质量的分,由于分子有效直径不同,一般轻分子的平均自由程较大,分子的平均自由程较小。若在离液面小于轻分子平均自由而大于重分子平均自由程处设置一个冷凝面,当轻分子到冷凝面后就被冷凝,从而使轻分子不断逸出;而重分子达不到冷凝面就会发生碰撞而返回溶液中,很快与液相中重分子趋于动态平衡,表观上不再从液相中逸出。通过这种方法,就可以将轻分子和重分子进行分离[3]。 分子平均自由程是一个分子在相邻的两次分子碰撞之间所经过的路程,它的长短与分子有效直径、压力和温度有关[4]。当压力不变时,物质的分子平均自由程随温度的增加而增加;当温度不变时,物质的分子平均自由程随压力的降低而增加。例如,当系统中的压力为13.3Pa 时,空气分子的平均自由程只有0.056cm,而当系统

分子蒸馏技术原理

1、分子蒸馏技术的基本原理 分子蒸馏不同于一般的蒸馏技术。它是运用不同物质分子运动平均自由程的差别而实现物质的分离,因而能够实现在远离沸点下操作。 根据分子运动理论,液体混合物的分子受热后运动会加剧,当接受到足够能量时,就会从液面逸出而成为气相分子,随着液面上方气相分子的增加,有一部分气体就会返回液体,在外界条件保持恒定情况下,就会达到分子运动的动态平衡。从宏观上看达到了平衡。 液体混合物为达到分离的目的,首先进行加热,能量足够的分子逸出液面,轻分子的平均自由程大,重分子平均自由程小,若在离液面小于轻分子的平均自由程而大于重分子平均自由程处设置一冷凝面,使得轻分子不断被冷凝,从而破坏了轻分子的动平衡而使混合液中的轻分子不断逸出,而重分子因达不到冷凝面很快趋于动态平衡,不再从混合液中逸出,这样,液体混合物便达到了分离的目的。 2、分子蒸馏技术的特点 由分子蒸馏的原理可以看出,分子蒸馏有许多常规蒸馏所不具备的特点。 2.1分子蒸馏的操作真空度高。 由于分子蒸馏的冷热面间的间距小于轻分子的平均自由程,轻分子几乎没有压力降就达到冷凝面,使蒸发面的实际操作真空度比传统真空蒸馏的操作真空度高出几个数量级。分子蒸馏的操作残压一般约为0.1~1Pa数量级。 2.2分子蒸馏的操作温度低。 分子蒸馏依靠分子运动平均自由程的差别实现分离,并不需要到达物料的沸点,加之分子蒸馏的操作真空度更高,这又进一步降低了操作温度。 分子蒸馏在蒸发过程中,物料被强制形成很薄的液膜,并被定向推动,使得液体在分离器中停留时间很短。特别是轻分子,一经逸出就马上冷凝,受热时间更短,一般为几秒或十几秒。这样,使物料的热损伤很小,特别对热敏性物质的分离过程提供了传统蒸馏无法比拟的操作条件。 3.4分子蒸馏的分离程度更高。 ,由分子蒸馏的相对挥发度可以看出: x式中:M1————轻分子分子量; M2————重分子分子量 而常规蒸馏相对挥发度α=P1/P2 ,由于M2 >M1 ,所以ατ>α。2 q+ p1 d2 `1 J/ u 由以上特点可以看出,分子蒸馏技术,能分离常规蒸馏不易分离的物质,特别适宜于高沸点、热敏性物质的分离。 分子蒸馏是一种在高真空(<10Pa)条件下,在加热面上被蒸发的分子经过尽可能短的距离到达冷凝面进行冷凝,从而实现液-液分离的蒸馏过程。它具有蒸馏温度低、蒸馏真空度高、受热时间短、分离程度高等优点,是一种较新的尚未广泛运用于工业化生产的分离技术。 物料从上法兰盖进入分子蒸馏器,通过转子上的分配盘将物料连续均匀的分布到垂直的筒体加热面上,物料靠重力下降的同时,被旋转的刮膜装置在加热面强制形成极薄的湍流状液膜。 被蒸发的分子经过很短的距离到达内置冷凝器并冷凝下来,通过蒸发器底部的出料口排出,重组份进入短程蒸馏器的残渣收集槽并从侧面的出口排出。其蒸馏过程分以下几个步骤: 物料在加热面上形成液膜 分子在液膜表面上蒸发 被蒸发的分子从加热面向冷凝面运动 被蒸发的分子在冷凝面上冷凝 蒸馏物和残留物的收集排放 ◆真空度高、蒸馏温度低 分子蒸馏器及其配套设备充分考虑到分子蒸馏的要求,确保最小的空气泄漏率,并根据具体工艺要求,配置最合理的真空系统及其附属设备,使分子蒸馏器内部能稳定处于高真空状态(0.1Pa~10 Pa),此外由于刮膜装置在加热面上强制形成极薄的湍流状液膜,在较低的蒸馏温度下,被蒸发的分子经过很短的距离到达冷凝面并冷凝下来。

最新分子蒸馏技术的原理和应用

分子蒸馏技术的原理 和应用

分子蒸馏技术的原理和应用 分子蒸馏技术简介 分子蒸馏是一项较新的尚未广泛应用于产业化生产的分离技术,能解决大量常规蒸馏技术所不能解决的题目。分子蒸馏是一种特殊的液-液分离技术,能在极高真空下操纵,它依据分子运动均匀自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物系的分离。由于其具有蒸馏温度低于物料的沸点、蒸馏压强低、受热时间短、分离程度高等特点,因而能大大降低高沸点物料的分离本钱,极好地保护了热敏性物质的特点品质,该项技术用于纯自然保健品的提取,可摆脱化学处理方法的束缚,真正保持了纯自然的特性,使保健产品的质量迈上一个新台阶。 分子蒸馏技术,作为一种对高沸点、热敏性物料进行有效的分离手段,自本世纪三十年代出现以来,得到了世界各国的重视。到本世纪六十年代,为适应浓缩鱼肝油中维生素A的需要,分子蒸馏技术得到了规模化的产业应用。在日、美、英、德、苏相继设计制造了多套分子蒸馏装置,用于浓缩维生素A,但当时由于各种原因,应用面太窄,发展速度很慢。但是,在过往地三十多年中,人们一直在不断地重视着这项新的液-液分离技术的发展,对分离装置精益求精、完善,对应用领域不断探索、扩展,因而一直有新的专利和新的应用出现。特别是从八十年代末以来,随着人们对自然物质的青睐,回回自然潮流的兴起,分子蒸馏技术得到了迅速的发展。

对分子蒸馏的设备,各国研制的形式多种多样。发展至今,大部分已被淘汰,目前应用较广的为离心薄膜式和转子刮膜式。这两种形式的分离装置,也一直在精益求精和完善,特别是针对不同的产品,其装置结构与配套设备要有不同的特点,因此,就分子蒸馏装置本身来说,其开发研究的内容尚十分丰富。 在应用领域方面,国外已在数种产品中进行产业化生产。特别是近几年来在自然物质的提取方面应用较为突出,如:从鱼油中提取EPA与DHA、从植物油中提取自然维生素E等。另外,在精细化工中间体方面的提取和分离,品种也越来越多。 我国对分子蒸馏技术的研究起步较晚,八十年代末期,国内引进了几套分子蒸馏生产线,用于硬脂酸单甘酯的生产。国内的科研职员也曾经作过一些研究,但未见产业化应用的报道。 分子蒸馏成套产业化装置具有设计新奇、结构独特、工艺先进,可明显进步分离效率。从小试到产业化生产又到小试的反复循环实验探索中,特别解决了产业化生产中轻易出现的突出题目。如有效地解决了物料返混题目,明显地进步了产品质量,创造性地设计了有补偿功能的消息密封方式;实现了产业装置高真空下的长期稳定运行。该项技术属国内领先、国际先进。 截止目前为止已经开发的产品有二十余种,如:硬脂酸单甘酯、丙二醇酯、玫瑰油、小麦胚芽油、米糠油、谷维素等。并已确定了应用分子蒸馏技术的有关工艺条件,为进行产业化生产奠定了基础。 分子蒸馏的原理和装置的结构决定其有如下特点: 1、分子蒸馏的操纵温度远低于物料的沸点:

食品分子蒸馏

食品分子蒸馏技术 摘要:分子蒸馏是一种新型的分离方法,它可以使一些常规蒸馏不能分离的热敏性物质和高沸点难分离物质实现分离。本文简要介绍了分子蒸馏的原理、特点及在食品工业中的应用。 关键词:分子蒸馏,食品工业,应用 分子蒸馏(molecular distillation)又叫短程蒸馏(short-path distillation),是一种在高真空下进行液—液分离操作的连续蒸馏过程。由早期的真空间歇蒸馏,经过降膜蒸馏,强制成膜蒸馏,最后发展到分子蒸馏。其操作温度远低于物质常压下的沸点温度,且物料被加热的时间非常短,不会对物质本身造成破坏,因而适合于分离高沸点、高黏度、热敏性的物质[1]。目前该技术已广泛应用于石油化工、医药、食品、化妆品等行业。 1 分子蒸馏的基本原理 液体混合物在高真空度下受热,能量足够的分子在低于沸点的温度下逸出液面,由于轻分子的平均自由程大于重分子平均自由程,且蒸发速度快,在距蒸发面适当位置处设置捕集器,使轻分子不断被冷凝捕集,从而破坏轻分子的动平衡而使混合物中的轻分子不断逸出而重分子因达不到捕集器很快趋于动态平衡,不再从混合液中逸出,而实现分离的目的[2]。 过程一般可分为以下五步: (1)物料在加热面上的液膜形成; (2)分子在液膜表面上的自由蒸发; (3)分子从加热面向冷凝面的运动; (4)分子在冷凝面上的捕获; (5)馏出物和残留物的收集[3]。 2 分子蒸馏的特点 2.1 蒸馏温度低 普通蒸馏在沸点温度进行,分子蒸馏是在低于蒸馏物质沸点的任何温度下进行,被分离物质只要存在着温度差,就能达到分离目的。 2.2 蒸馏真空度高。 整个物料系统均在真空下其最低蒸馏压力必须保证低于0.5~1Pa,因此物料不易氧化受损。 2.3 受热时间短 分子蒸馏装置加热面与冷凝面的距离小于轻分子的平均自由程,液面逸出的轻分子几乎未经碰撞就达到冷凝面,所以受热时间很短,在蒸馏温度下停留时间一般几秒至几十秒之间。由于分子蒸馏温度低,受热时间短,因此,它特别适合对高沸点、热敏性物料进行有效的分离[4]。

分子蒸馏的应用研究进展

!" 分子蒸馏的应用研究进展 陈文伟,陈 钢,高荫榆 (南昌大学食品科学教育部重点实验室,江西南昌!!##$%) 摘 要:阐述了分子蒸馏的基本原理及其区别于普通真空蒸馏的主要特点,并介绍了分子蒸馏在食品、医 药、香料等工业方面的应用研究。 关键词:分子蒸馏;短程;研究应用中图分类号:&’#()*) 文献标识码:+ 文章编号:,##%-.!/"0(##!1#"-##!"-#! 分子蒸馏过程一般可分为以下"步: 21物料在加热面上的液膜形成;31分子在液膜表面上的自由蒸发;41分子从加热面向冷凝面的运动;51分子在冷凝面上的捕获;61馏出物和残留物的收集。! 分子蒸馏的特点 分子蒸馏具有如下特点: 0,1分子蒸馏的操作温度。由分子蒸馏原理可知,混合物的分离是由于不同种类的分子逸出液面后的平均自由程不同的性质来实现的,并不需要沸腾,所以分子蒸馏是在远低于沸点的温度下进行操作的。这点与常规蒸馏有本质的区别。 0(1蒸馏压强低。整个物料系统均在真空下,其最低蒸馏压力必须保证低于#*"7892,因此物料不易氧化受损。 从以上两个特点可知,分子蒸馏一般是在远低于常规蒸馏温度的情况下进行操作的。一般常规真空蒸馏或真空精馏由于在沸腾状态下操作,其蒸发温度比分子蒸馏高得多,加之其塔板或填料的阻力,比分子蒸馏大得多,所以其操作温度比分子蒸馏高得多。 0!1受热时间短。由分子蒸馏原理可知,受加热的液面与冷凝面间的距离要求小于轻分子的平均自由程,而由液面逸出的轻分子,几乎未经碰撞就到达冷凝面,所以受热时间很短。另外,混合液体呈薄膜状,使液面与加热面的面积几乎相等,这样物料在蒸馏过程中受热时间就变得更短。对真空蒸馏而言,受热时间为,:,而分子蒸馏仅为十几秒。 0$1分离程度更高。分子蒸馏能分离常规蒸馏 收稿日期:(##!-#(-(#作者简介:陈文伟(,/%.-) ,男,硕士,研究方向为食品资源的开发与利用。分子蒸馏0;<864=82>5?@A?882A?A -D2A:5?@A?882A?

分子蒸馏及其在食品工业中的应用

现代分离技术课程论文 题目分子蒸馏及其在食品工业中的应用 姓名费鹏学号2011309110056 粮食、油脂和植 评分 专业 物蛋白工程 指导教师杨宏职称教授 中国·武汉 二○一二年四月

分子蒸馏及其在食品工业中的应用 摘要:分子蒸馏技术是一种新型、特殊的用于分离或精制的技术。本文介绍了分子蒸馏基本原理、技术特点、主要装置和优势。此外还详细介绍了分子蒸馏技术在国内外的应用新进展,并提出了未来分子蒸馏领域的重点研究方向。 关键词:分子蒸馏;食品工业;应用 Abstract: The molecular distillation is a new and special technology. The basic principle, technique characteristics, main equipment and predominance of the molecular distillation were introduced. In addition, the new advance in the application of the molecular distillation at home and abroad is introduced at length. The key research orientation of molecular distillation in the future is brought forward. Key words: molecular distillation; food industry; application 分子蒸馏(又称短程蒸馏)是在一定温度和真空度下,依据不同物质分子运动的均自由程不同而实现物质分离的一种液液分离技术,是一种非平衡状态下的蒸馏。分子蒸馏技术具有真空度高、受热时间短、蒸馏温度低、分离效果好等特点而适用于高沸点、热敏性和易氧化的组分分离。 分子蒸馏技术产生于20世纪20年代,由于当时精密仪器的机械制造水平和学计量学等统计分析方法还不够成熟,致使分子蒸馏的技术不能得到很好的应用。从20 世纪60 年代至今,天然物质的提炼及使用获得了广泛的关注,分子蒸馏技术逐渐被应用于精细化工、石油化学制品、油脂、制药、轻工业及食品加工等领域。 1. 分子蒸馏的原理 1.1 分子运动平均自由程 分子碰撞:分子与分子之间存在着相互作用力。当两分子离得较远时,分子之间的作用力表现为吸引力,但当两分子接近到一定程度后,分子之间的作用力会改变为排斥力,并随其接近到一定程度,排斥力迅速增加。当两分子接近到一定程度,排斥力的作用使两分子分开,这种由接近而至排斥分离的过程就是分子的碰撞过程。 分子有效直径:分子在碰撞过程中,两分子质心的最短距离,即发生斥离的质心距离。 分子运动自由程:一个分子相邻两次分子碰撞之间所走的路程。 分子运动平均自由程:任一分子在运动过程中都在变化自由程,而在一定的

分子蒸馏的原理word版

分子蒸馏的原理 分子蒸馏是一种特殊的液--液分离技术,它不同于 传统蒸馏依靠沸点差分离原理,而是靠不同物质分子运 动平均自由程的差别实现分离。这里,分子运动自由程 (用λ表示)是指一个分子相邻两次碰撞之间所走的路 程。 当液体混合物沿加热板流动并被加热,轻、重分 子会逸出液面而进入气相,由于轻、重分子的自由程不 同,因此,不同物质的分子从液面逸出后移动距离不同, 若能恰当地设置一块冷凝板,则轻分子达到冷凝板被冷 凝排出,而重分子达不到冷凝板沿混合液排出。这样, 达到物质分离的目的。 >>> 分子蒸馏技术的特点 分子蒸馏技术作为一种与国际同步的高新分离技术,具有其它分离技术无法比拟的优点: 1、操作温度低(远低于沸点)、真空度高(空载≤1Pa)、受热时间短(以秒计)、分离效率高等,特别适宜于高沸点、热敏性、易氧化物质的分离; 2、可有效地脱除低分子物质(脱臭)、重分子物质(脱色)及脱除混合物中杂质; 3、其分离过程为物理分离过程,可很好地保护被分离物质不被污染,特别是可保持天然提取物的原来品质; 4 、分离程度高,高于传统蒸馏及普通的薄膜蒸发器。 >>> 分子蒸馏技术工业化应用产品 A 氨基酸酯阿魏酸三萜醇酯 B 丙烯酸酯丙二醇酯苯乙烯-丙烯腈丙交酯薄荷酯白术挥发油苯基马来酰亚胺柏木油菠萝酮苯甲酸C12~C15醇酯 C 长链二元酸(C9-C18)粗石蜡除草剂柴胡挥发油茶树油苍术油川芎提取物蚕蛹油 D 单甘酯(单硬脂酸甘油酯单月桂酸甘油脂等)(牛油及猪油等)脱胆固醇大蒜油丁三醇当归提取物2-丁基辛醇独活提取物豆甾醇独活提取物多糖酯多不饱和脂肪酸对苯二甲酸二乙酯脱除多氯联苯

相关文档
最新文档