回旋加速器

回旋加速器
回旋加速器

第六节 回旋加速器

●教学目标

一、知识目标

1.知道回旋加速器的基本构造及工作原理.

2.知道回旋加速器的基本用途.

二、能力目标

先介绍直线加速器,然后引出回旋加速器,并对两种加速器进行对比评述,引导学生思维,开阔学生思路.

三、德育目标

1.通过介绍两种加速器的利和弊,告诉学生应辩证地去看待某一事物.

2.通过介绍回旋加速器不利的一面,希望学生掌握现在的基础知识,将来能研究出更切合实际的加速器.

●教学重点

回旋加速器的工作原理.

●教学难点

回旋加速器的基本用途.

●教学方法

阅读法、电教法、对比法

●教学用具

实物投影仪、CAI 课件

●课时安排

1课时

●教学过程

[投影]本节课的教学目标:

1.知道回旋加速器的基本构造及工作原理.

2.知道加速器的基本用途.

●学习目标完成过程

一、引入新课

在现代的物理学中,为了进一步研究物质的微观结构,需要能量很高的带电粒子去轰击原子核,为了使带电粒子获得如此高的能量,就必须设计一个能给粒子加速的装置——加速器.

二、新课教学

让学生阅读课文,然后回答以下问题:

[问题1]用什么方法可把带电粒子加速?

[学生答]利用加速电场给带电粒子加速.

[板书]由动能定理W =ΔE k

qu =22

1mv , v =m qu /2 [问题2]带电粒子一定,即q/m 一定,要使带电粒子获得的能量增大,可采取什么方法?

[学生答]带电粒子一定,即q/m 一定,要使带电粒子获得的能量增大,可增大加速电场两极板间的电势差.

[问题3]实际所加的电压,能不能使带电粒子达到所需的能量?(不能)怎么办? [学生答]实际所加的电压,不能使带电粒子达到所需要的能量.不能,可采用高极加

速器.

[投影片出示高极加速]

带电粒子增加的动能ΔE =2022

121mv mv =qu =qu 1+qu 2+…+qu n =q (u 1+u 2+u 3+ …+u n )

分析:方法可行,但所占的空间范围大,能不能在较小的范围内实现高级加速呢?1932年美国物理学家劳伦斯发明的回旋加速器解决了这一问题.

[板书]回旋加速器

让学生阅读课文,教师随后就回旋加速器的工作原理进行讲解.

[实物投影右图]教师进行讲解:放在A 0处的粒子源发出一个

带正电的粒子,它以某一速率v 0垂直进入匀强磁场,在磁场中做匀

速圆周运动,经过半个周期,当它沿着半圆弧A 0A 1到达A 1时,在

A 1A 1′处造成一个向上的电场,使这个带电粒子在A 1A 1′处受到一

次电场的加速,速率由v 0增加到v 1,然后粒子以速率v 1在磁场中做

匀速圆周运动.我们知道,粒子的轨道半径跟它的速率成正比,因而粒子将沿着半径增大了的圆周运动,又经过半个周期,当它沿着半圆弧A 1′A 2′到达A 2′时,在A 2′A 2处造成一个向下的电场,使粒子又一次受到电场的加速,速率增加到v 2,如此继续下去,每当粒子运动到A 1A ′、A 3 A 3′等处时都使它受到向上电场的加速,每当粒子运动到A 2′A 2、A 4′A 4等处时都使它受到向下电场的加速,粒子将沿着图示的螺线A 0 A 1 A 1′A 2′A 2……回旋下去,速率将一步一步地增大.

带电粒子在匀强磁场中做匀速圆周运动的周期T=2πm/qB 跟运动速率和轨道半径无关,对一定的带电粒子和一定的磁感应强度来说,这个周期是恒定的,因此,尽管粒子的速率和半径一次比一次增大,运动周期T 却始终不变,这样,如果在直线AA 、A ′A ′处造成一个交变电场,使它以相同的周期T 往复变化,那就可以保证粒子每经过直线AA 和A ′A ′时都正好赶上适合的电场方向而被加速.

[投影片出示板书]

1.回旋加速器是利用电场对电荷的加速作用和磁场对运动电荷的偏转作用来获得高能粒子的装置.

2.回旋加速器的工作原理.

(1)磁场的作用:带电粒子以某一速度垂直磁场方向进入匀强磁场时,只在洛伦兹力作用下做匀速圆周运动,其中周期和速率与半径无关,使带电粒子每次进入D 形盒中都能运动相等时间(半个周期)后,平行于电场方向进入电场中加速.

(2)电场的作用:回旋加速器的两个D 形盒之间的窄缝区域存在周期性变化的并垂直于两D 形盒直径的匀强电场,加速就是在这个区域完成的.

(3)交变电压:为了保证每次带电粒子经过狭缝时均被加速,使之能量不断提高,要在狭缝处加一个与T =2πm/qB 相同的交变电压.

[实物投影回旋加速器的D 形盒]

让学生阅读课文后回答下列问题:

1.D 形金属扁盒的主要作用是什么?

2.在加速区有没有磁场?对带电粒子加速有没有影响?

3.粒子所能获得的最大能量与什么因素有关?

师生共同分析得出结论:

1.D 形金属扁盒的主要作用是起到静电屏蔽作用,使得盒内空间的电场极弱,这样就可以使运动的粒子只受洛伦兹力的作用做匀速圆周运动.

2.在加速区域中也有磁场,但由于加速区间距离很小,磁场对带电粒子的加速过程的影响很小,因此,可以忽略磁场的影响.

3.设D 形盒的半径为R ,则粒子可能获得的最大动能由qvB =m R v 2

得E km =221m mv =22221R m

B q ?.可见:带电粒子获得的最大能量与D 形盒半径有关.由于受D 形盒半径R 的限制,带电粒子在这种加速器中获得的能量也是有限的.为了获得更大的能量,人类又发明各种类型的新型加速器.

让学生继续阅读课文,回答以下问题

使用回旋加速器加速带电粒子有何局限性?

[学生答]回旋加速器的出现,使人类在获得具有较高能量的粒子方面前进了一步,但是要想进一步提高粒子的能量就很困难了.这是因为,在粒子的能量很高的时候,它的运动速度接近于光速,按照狭义相对论(以后会介绍),这时粒子的质量将随着速率的增加而显著地增大,粒子在磁场中回旋一周所需的时间要发生变化,交变电场的频率不再跟粒子运动的频率一致,这就破坏了加速器的工作条件,进一步提高粒子的速率就不可能了.

[投影片出示练习题]

例1 N 个长度逐渐增大的金属圆筒和一个靶,

它们沿轴线排列成一串,如图3所示(图中画出五、

六个圆筒,作为示意图).各筒和靶相间地连接到频率

为ν,最大电压值为u 的正弦交流电源的两端.整个装置放在高真空容器中,圆筒的两底面中心开有小孔.现有一电量为q ,质量为m 的正离子沿轴线射入圆筒,并将在圆筒间及靶间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿缝隙的时间可以不计,已知离子进入第一个圆筒左端的速度为v 1,且此时第一、二两个圆筒间的电势差为u 1-u 2=-u .为使打在靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶子上的离子的能量.

解析:粒子在筒内做匀速直线运动,在缝隙处被加速,因此要求粒子穿过每个圆筒的时间均为T /2(即ν

21).N 个圆筒至打在靶上被加速N 次,每次电场力做的功均为qu . 只有当离子在各圆筒内穿过的时间都为t =T /2=1/(2r )时,离子才有可能每次通过筒间缝隙都被加速,这样第一个圆筒的长度L 1=v 1t =v 1/2ν,当离子通过第一、二个圆筒间的缝隙时,两筒间电压为u ,离子进入第二个圆筒时的动能就增加了qu ,所以

E 2=m qu v v qu mv mv /2,2/2

12122122+=+= 第二个圆筒的长度L 2=v 2t =m q v /221+/2ν

如此可知离子进入第三个圆筒时的动能E 3=

qu mv qu mv 221212122+=+ 速度v 3=m qu v /421+

第三个圆筒长度L 3=m qu v /421+/2ν

离子进入第n 个圆筒时的动能

E N =qu N mv )1(2

121-+ 速度v N =m qu N v /)1(221-+

第N 个圆筒的长度L N =m qu N v /)1(221-+

此时打到靶上离子的动能

E k =E N +qu =Nqu mv +212

1 例

2 已知回旋加速器中D 形盒内匀强磁场的磁感应强度B =1.5 T ,D 形盒的半径为R = 60 cm ,两盒间电压u =2×104 V ,今将α粒子从近于间隙中心某处向D 形盒内近似等于零的初速度,垂直于半径的方向射入,求粒子在加速器内运行的时间的最大可能值. 解析:带电粒子在做圆周运动时,其周期与速度和半径无关,每一周期被加速两次,每次加速获得能量为qu ,只要根据D 形盒的半径得到粒子具有的最低(也是最大)能量,即可求出加速次数,进而可知经历了几个周期,从而求总出总时间.

粒子在D 形盒中运动的最大半径为R

则R =mv m /qB ?v m =RqB/m

则其最大动能为E km =m R q B mv m 2/2

12222= 粒子被加速的次数为n =E km /qu =B 2qR 2/2m -u

则粒子在加速器内运行的总时间为

t =n ·u

BR qB m u m qR B T 2222

22ππ=??= =4.3×10-5 s 三、小结

本节课我们学习了

1.回旋加速器的基本用途.

2.回旋加速器的工作原理.

3.回旋加速器的优点与缺点.

四、作业

1.阅读本节课文

2.习题B 组(2)(3)(4)

3.预习 安培分子电流假说 磁性材料

五、板书设计

回旋加速器

1.基本用途

利用电场加速和磁场偏转来获得高能粒子.

(1)磁场的作用:使带电粒子发生偏转

(2)电场的作用:加速带电粒子

(3)交变电压:周期为T =2πm/qB 与带电粒子做匀速圆周运动的周期相同

3.优点与缺点

六、本节优化训练设计

1.一个回旋加速器,当外加磁场一定时,可以把质子的速率加速到v ,质子所获得的能量为正.

(1)这一加速器能把α粒子加速到多大速率_______

A.v

B.v 21

C.2v

D.v 4

1 (2)这一加速器加速α粒子的电场频率跟加速质子的电场频率之比为_______

A.1∶1

B.2∶1

C.1∶2

D.1∶4

2.利用回旋加速器来加速质量为m ,带电量为q 的带电粒子,如果加速电压u 以及匀强磁场的磁感应强度B 已知,则将上述带电粒子的能量加速到E 所需的时间为多少?

3.回旋加速器的D 形盒半径为R =0.60 m ,两盒间距为d =0.01 cm,用它来加速质子时可使每个质子获得的最大能量为

4.0 MeV ,加速电压为u =2.0×104 V , 求:

(1)该加速器中偏转磁场的磁感应强度B .

(2)质子在D 形盒中运动的时间.

(3)在整个加速过程中,质子在电场中运动的总时间.(已知质子的质量为m =1.67×10-27 kg ,质子的带电量e =1.60×10-19 C )

4.如图所示为一回旋加速器的示意图,已知D 形盒的半径为R ,中

心上半面出口处O 放有质量为m 、带电量为q 的正离子源,若磁感应强

度大小为B ,求:

(1)加在D 形盒间的高频电源的频率.

(2)离子加速后的最大能量.

(3)离子在第n 次通过窄缝前后的速度和半径之比.

5.如图所示是回旋加速器示意图,一个扁圆柱形的金属盒子,盒子被

分成两半(D 形电极)分别与高压交变电源的两极相连,在裂缝处形成一

个交变电场,在两D 形电极裂缝的中心靠近一个D 形盒处有一离子源K ,

D 形电极位于匀强磁场中,磁场方向垂直于D 形电极所在平面,由下向上,

从离子源K 发出的离子(不计初速,质量为m 、电量为q )在电场作用下,

被加速进入盒D ,又由于磁场的作用,沿半圆形的轨道运动,并重新进入裂缝,这时恰好改变电场的方向,此离子在电场中又一次加速,如此不断循环进行,最后在D 盒边缘被特殊装置引出.(忽略粒子在裂缝中的运动时间)

(1)试证明交变电源的周期T =qB

m 2. (2)为使离子获得E 的能量,需加速多长时间?(已知加速电压为u ,裂缝间距为d ,磁场的磁感应强度为B )

(3)试说明粒子在回旋加速器中运动时,轨道是不等间距分布的.

6.试述回旋加速器的优缺点.

参考答案: 1.(1)B (2)C

提示:粒子经n 次加速后获得的能量为E =nqu ,则粒子加速的总时间为t =2

n T 3.(1)B =0.48 T

(2)质子在D 形盒中运动的时间为1.4×10-3s

(3)质子在电场中运动的总时间为1.4×10-9 s

提示:(1)最后一圈的半径与盒的半径相同

(2)n=E/qu =200,则t =100 T

(3)带电粒子在电场中运动连接起来,相当于发生了200d 位移的初速度为零的匀加速直线运动,即200d =2121t md

qu ?? 4.解析:(1)带电粒子在一个D 形盒内做半圆周运动到达窄缝时,只有高频电源的电压也经历了半个周期的变化,才能保证带电粒子在到达窄缝时总是遇到加速电场,这是带电粒子能不能被加速的前提条件,带电粒子在匀强磁场中做圆周运动的周期为T =2πm/qB .

T 与圆半径r 和速度v 无关,只决定于粒子的荷质比q /m 和磁感应强度B ,所以粒子做圆周运动的周期保持不变,由于两D 形盒之间窄缝距离很小,可以忽略粒子穿过窄缝所需的时间,因此只要高频电源的变化周期与粒子做圆周运动的周期相等,就能实现粒子在窄缝中总是被电场加速,故高频电源的频率应取f =m

qB T π21=. (2)离子加速后,从D 形盒引出时的能量最大,当粒子从D 形盒中引出时,粒子做最后一圈圆周运动的半径就等于D 形盒半径R ,由带电粒子做圆周运动的半径公式可知

R =mv /qB =qB mE k /2

所以被加速粒子的最大动能为E k =q 2B 2R 2/2m

由此可知,在带电粒子的质量、电量确定的情况下,粒子所能获得的最大动能只与加速器的半径R 和磁感应强度B 有关,与加速电压无关.

(3)设加在两D 形盒电极之间的高频电压为u ,粒子从粒子源中飘出时的速度很小,近似为零,则粒子第一次被加速后进入下方D 形盒的动能、速度、半径分别为

E k 1=qu v 1=m qu /2 r 1=qB

mqu qB mv 21=当粒子第n 次通过窄缝时,由动能定理可知,粒子的动能为E kn =mqu v n =

12mv m nqu = 由此可知,带电粒子第n 次穿过窄缝前后的速率和半径之比为

n n v v n n 11-=- n n R R n n 11-=-

从上面的式子可知,随着粒子运动圈数增加,粒子在D 形盒做圆周运动半径的增加越来越慢,轨道半径越来越密.

5.解析:(1)由qvB =mv 2/r 得v =qBR /m

经过半圆的时间t 1=πR /v =πm /qB

故交变电流的周期T =2t 1=2πm /qB

(2)离子只有经过缝隙时才能获得能量,每经过一次增加的能量为qu ,要获得E 的能

量,经过缝隙次数必须为n =E /qu .

所需时间t =nt 1=qB

m qv E π?=E πm /q 2vB (3)设加速k 次的速率为v k ,半径为R k

k +1次的速度为v k +1,半径为R k +1

则kqu =221k mv 可得v k =m

kqu 2∝k 同理v k +1∝1+k

又R k =qB m v k ∝v k ,故1

1+=+k k R R k k 因k 取不同的值时,R k /R k +1的值不同,故轨道是不等间距分布的.

6.回旋加速器的优点是使带电粒子在较小的空间受到电场的多次加速,而使粒子获得较高的能量.缺点是这种经典的加速器使粒子获得的能量不会很高,因为粒子能量很高时,它的运动速度接近光速,按照狭义相对论,粒子质量将随着速率的增加而显著地增

第六节 回旋加速器

●教学目标

一、知识目标

1.知道回旋加速器的基本构造及工作原理.

2.知道回旋加速器的基本用途.

二、能力目标

先介绍直线加速器,然后引出回旋加速器,并对两种加速器进行对比评述,引导学生思维,开阔学生思路.

三、德育目标

1.通过介绍两种加速器的利和弊,告诉学生应辩证地去看待某一事物.

2.通过介绍回旋加速器不利的一面,希望学生掌握现在的基础知识,将来能研究出更切合实际的加速器.

●教学重点

回旋加速器的工作原理.

●教学难点

回旋加速器的基本用途.

●教学方法

阅读法、电教法、对比法

●教学用具

实物投影仪、CAI 课件

●课时安排

1课时

●教学过程

[投影]本节课的教学目标:

1.知道回旋加速器的基本构造及工作原理.

2.知道加速器的基本用途.

●学习目标完成过程

一、引入新课

在现代的物理学中,为了进一步研究物质的微观结构,需要能量很高的带电粒子去轰击原子核,为了使带电粒子获得如此高的能量,就必须设计一个能给粒子加速的装置——加速器.

二、新课教学

让学生阅读课文,然后回答以下问题:

[问题1]用什么方法可把带电粒子加速?

[学生答]利用加速电场给带电粒子加速.

[板书]由动能定理W =ΔE k

qu =22

1mv , v =m qu /2 [问题2]带电粒子一定,即q/m 一定,要使带电粒子获得的能量增大,可采取什么方法?

[学生答]带电粒子一定,即q/m 一定,要使带电粒子获得的能量增大,可增大加速电场两极板间的电势差.

[问题3]实际所加的电压,能不能使带电粒子达到所需的能量?(不能)怎么办? [学生答]实际所加的电压,不能使带电粒子达到所需要的能量.不能,可采用高极加速器.

[投影片出示高极加速]

带电粒子增加的动能ΔE =2022

121mv mv =qu =qu 1+qu 2+…+qu n =q (u 1+u 2+u 3+ …+u n )

分析:方法可行,但所占的空间范围大,能不能在较小的范围内实现高级加速呢?1932年美国物理学家劳伦斯发明的回旋加速器解决了这一问题.

[板书]回旋加速器

让学生阅读课文,教师随后就回旋加速器的工作原理进行讲解.

[实物投影右图]教师进行讲解:放在A 0处的粒子源发出一个

带正电的粒子,它以某一速率v 0垂直进入匀强磁场,在磁场中做匀

速圆周运动,经过半个周期,当它沿着半圆弧A 0A 1到达A 1时,在

A 1A 1′处造成一个向上的电场,使这个带电粒子在A 1A 1′处受到一

次电场的加速,速率由v 0增加到v 1,然后粒子以速率v 1在磁场中做

匀速圆周运动.我们知道,粒子的轨道半径跟它的速率成正比,因而粒子将沿着半径增大了的圆周运动,又经过半个周期,当它沿着半圆弧A 1′A 2′到达A 2′时,在A 2′A 2处造成一个向下的电场,使粒子又一次受到电场的加速,速率增加到v 2,如此继续下去,每当粒子运动到A 1A ′、A 3 A 3′等处时都使它受到向上电场的加速,每当粒子运动到A 2′A 2、A 4′A 4等处时都使它受到向下电场的加速,粒子将沿着图示的螺线A 0 A 1 A 1′A 2′A 2……回旋下去,速率将一步一步地增大.

带电粒子在匀强磁场中做匀速圆周运动的周期T=2πm/qB 跟运动速率和轨道半径无关,对一定的带电粒子和一定的磁感应强度来说,这个周期是恒定的,因此,尽管粒子的速率和半径一次比一次增大,运动周期T 却始终不变,这样,如果在直线AA 、A ′A ′处造成一个交变电场,使它以相同的周期T 往复变化,那就可以保证粒子每经过直线AA 和A ′A ′时都正好赶上适合的电场方向而被加速.

[投影片出示板书]

1.回旋加速器是利用电场对电荷的加速作用和磁场对运动电荷的偏转作用来获得高能粒子的装置.

2.回旋加速器的工作原理.

(1)磁场的作用:带电粒子以某一速度垂直磁场方向进入匀强磁场时,只在洛伦兹力作用下做匀速圆周运动,其中周期和速率与半径无关,使带电粒子每次进入D 形盒中都能运动相等时间(半个周期)后,平行于电场方向进入电场中加速.

(2)电场的作用:回旋加速器的两个D 形盒之间的窄缝区域存在周期性变化的并垂直于两D 形盒直径的匀强电场,加速就是在这个区域完成的.

(3)交变电压:为了保证每次带电粒子经过狭缝时均被加速,使之能量不断提高,要在狭缝处加一个与T =2πm/qB 相同的交变电压.

[实物投影回旋加速器的D 形盒]

让学生阅读课文后回答下列问题:

1.D 形金属扁盒的主要作用是什么?

2.在加速区有没有磁场?对带电粒子加速有没有影响?

3.粒子所能获得的最大能量与什么因素有关?

师生共同分析得出结论:

1.D 形金属扁盒的主要作用是起到静电屏蔽作用,使得盒内空间的电场极弱,这样就可以使运动的粒子只受洛伦兹力的作用做匀速圆周运动.

2.在加速区域中也有磁场,但由于加速区间距离很小,磁场对带电粒子的加速过程的影响很小,因此,可以忽略磁场的影响.

3.设D 形盒的半径为R ,则粒子可能获得的最大动能由qvB =m R v 2

得E km =221m mv =22221R m

B q .可见:带电粒子获得的最大能量与D 形盒半径有关.由于受D 形盒半径R 的限制,带电粒子在这种加速器中获得的能量也是有限的.为了获得更大的能量,人类又发明各种类型的新型加速器.

让学生继续阅读课文,回答以下问题

使用回旋加速器加速带电粒子有何局限性?

[学生答]回旋加速器的出现,使人类在获得具有较高能量的粒子方面前进了一步,但是要想进一步提高粒子的能量就很困难了.这是因为,在粒子的能量很高的时候,它的运动速度接近于光速,按照狭义相对论(以后会介绍),这时粒子的质量将随着速率的增加而显著地增大,粒子在磁场中回旋一周所需的时间要发生变化,交变电场的频率不再跟粒子运动的频率一致,这就破坏了加速器的工作条件,进一步提高粒子的速率就不可能了.

[投影片出示练习题]

例1 N 个长度逐渐增大的金属圆筒和一个靶,

它们沿轴线排列成一串,如图3所示(图中画出五、

六个圆筒,作为示意图).各筒和靶相间地连接到频率为ν,最大电压值为u 的正弦交流电源的两端.整个装置放在高真空容器中,圆筒的两底面中心开有小孔.现有一电量为q ,质量为m 的正离子沿轴线射入圆筒,并将在圆筒间及靶间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿缝隙的时间可以不计,已知离子进入第一个圆筒左端的速度为v 1,且此时第一、二两个圆筒间的电势差为u 1-u 2=-u .为使打在靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶子上的离子的能量.

解析:粒子在筒内做匀速直线运动,在缝隙处被加速,因此要求粒子穿过每个圆筒的时间均为T /2(即ν

21).N 个圆筒至打在靶上被加速N 次,每次电场力做的功均为qu . 只有当离子在各圆筒内穿过的时间都为t =T /2=1/(2r )时,离子才有可能每次通过筒间缝隙都被加速,这样第一个圆筒的长度L 1=v 1t =v 1/2ν,当离子通过第一、二个圆筒间的缝隙时,两筒间电压为u ,离子进入第二个圆筒时的动能就增加了qu ,所以

E 2=m qu v v qu mv mv /2,2/2

12122122+=+= 第二个圆筒的长度L 2=v 2t =m q v /221+/2ν

如此可知离子进入第三个圆筒时的动能E 3=

qu mv qu mv 221212122+=+ 速度v 3=m qu v /421+

第三个圆筒长度L 3=m qu v /421+/2ν

离子进入第n 个圆筒时的动能

E N =qu N mv )1(2

121-+ 速度v N =m qu N v /)1(221-+

第N 个圆筒的长度L N =m qu N v /)1(221-+

此时打到靶上离子的动能

E k =E N +qu =Nqu mv +212

1 例

2 已知回旋加速器中D 形盒内匀强磁场的磁感应强度B =1.5 T ,D 形盒的半径为R = 60 cm ,两盒间电压u =2×104 V ,今将α粒子从近于间隙中心某处向D 形盒内近似等于零的初速度,垂直于半径的方向射入,求粒子在加速器内运行的时间的最大可能值. 解析:带电粒子在做圆周运动时,其周期与速度和半径无关,每一周期被加速两次,每次加速获得能量为qu ,只要根据D 形盒的半径得到粒子具有的最低(也是最大)能量,即可求出加速次数,进而可知经历了几个周期,从而求总出总时间.

粒子在D 形盒中运动的最大半径为R

则R =mv m /qB ?v m =RqB/m

则其最大动能为E km =m R q B mv m 2/2

12222= 粒子被加速的次数为n =E km /qu =B 2qR 2/2m -u

则粒子在加速器内运行的总时间为

t =n ·u

BR qB m u m qR B T 2222

22ππ=??= =4.3×10-5 s 三、小结

本节课我们学习了

1.回旋加速器的基本用途.

2.回旋加速器的工作原理.

3.回旋加速器的优点与缺点.

四、作业

1.阅读本节课文

2.习题B 组(2)(3)(4)

3.预习 安培分子电流假说 磁性材料

五、板书设计

回旋加速器

1.基本用途

利用电场加速和磁场偏转来获得高能粒子.

2.工作原理

(1)磁场的作用:使带电粒子发生偏转

(2)电场的作用:加速带电粒子

(3)交变电压:周期为T =2πm/qB 与带电粒子做匀速圆周运动的周期相同

3.优点与缺点

六、本节优化训练设计

1.一个回旋加速器,当外加磁场一定时,可以把质子的速率加速到v ,质子所获得的能量为正.

(1)这一加速器能把α粒子加速到多大速率_______

A.v

B.v 21

C.2v

D.v 4

1 (2)这一加速器加速α粒子的电场频率跟加速质子的电场频率之比为_______

A.1∶1

B.2∶1

C.1∶2

D.1∶4

2.利用回旋加速器来加速质量为m ,带电量为q 的带电粒子,如果加速电压u 以及匀强磁场的磁感应强度B 已知,则将上述带电粒子的能量加速到E 所需的时间为多少?

3.回旋加速器的D 形盒半径为R =0.60 m ,两盒间距为d =0.01 cm,用它来加速质子时可使每个质子获得的最大能量为

4.0 MeV ,加速电压为u =2.0×104 V , 求:

(1)该加速器中偏转磁场的磁感应强度B .

(2)质子在D 形盒中运动的时间.

(3)在整个加速过程中,质子在电场中运动的总时间.(已知质子的质量为m =1.67×10-27 kg ,质子的带电量e =1.60×10-19 C )

4.如图所示为一回旋加速器的示意图,已知D 形盒的半径为R ,中

心上半面出口处O 放有质量为m 、带电量为q 的正离子源,若磁感应强

度大小为B ,求:

(1)加在D 形盒间的高频电源的频率.

(2)离子加速后的最大能量.

(3)离子在第n 次通过窄缝前后的速度和半径之比.

5.如图所示是回旋加速器示意图,一个扁圆柱形的金属盒子,盒子被

分成两半(D 形电极)分别与高压交变电源的两极相连,在裂缝处形成一

个交变电场,在两D 形电极裂缝的中心靠近一个D 形盒处有一离子源K ,

D 形电极位于匀强磁场中,磁场方向垂直于D 形电极所在平面,由下向上,

从离子源K 发出的离子(不计初速,质量为m 、电量为q )在电场作用下,

被加速进入盒D ,又由于磁场的作用,沿半圆形的轨道运动,并重新进入裂缝,这时恰好改变电场的方向,此离子在电场中又一次加速,如此不断循环进行,最后在D 盒边缘被特殊装置引出.(忽略粒子在裂缝中的运动时间)

(1)试证明交变电源的周期T =qB

m π2. (2)为使离子获得E 的能量,需加速多长时间?(已知加速电压为u ,裂缝间距为d ,磁场的磁感应强度为B )

(3)试说明粒子在回旋加速器中运动时,轨道是不等间距分布的.

6.试述回旋加速器的优缺点.

参考答案:

1.(1)B (2)C

2.πEm /q 2uB

提示:粒子经n 次加速后获得的能量为E =nqu ,则粒子加速的总时间为t =2

n T 3.(1)B =0.48 T

(2)质子在D 形盒中运动的时间为1.4×10-3s

(3)质子在电场中运动的总时间为1.4×10-9 s

提示:(1)最后一圈的半径与盒的半径相同

(2)n=E/qu =200,则t =100 T

(3)带电粒子在电场中运动连接起来,相当于发生了200d 位移的初速度为零的匀加速直线运动,即200d =2121t md

qu ?? 4.解析:(1)带电粒子在一个D 形盒内做半圆周运动到达窄缝时,只有高频电源的电压也经历了半个周期的变化,才能保证带电粒子在到达窄缝时总是遇到加速电场,这是带电粒子能不能被加速的前提条件,带电粒子在匀强磁场中做圆周运动的周期为T =2πm/qB .

T 与圆半径r 和速度v 无关,只决定于粒子的荷质比q /m 和磁感应强度B ,所以粒子做圆周运动的周期保持不变,由于两D 形盒之间窄缝距离很小,可以忽略粒子穿过窄缝所需的时间,因此只要高频电源的变化周期与粒子做圆周运动的周期相等,就能实现粒子在窄缝中总是被电场加速,故高频电源的频率应取f =m

qB T π21=. (2)离子加速后,从D 形盒引出时的能量最大,当粒子从D 形盒中引出时,粒子做最后一圈圆周运动的半径就等于D 形盒半径R ,由带电粒子做圆周运动的半径公式可知

R =mv /qB =qB mE k /2

所以被加速粒子的最大动能为E k =q 2B 2R 2/2m

由此可知,在带电粒子的质量、电量确定的情况下,粒子所能获得的最大动能只与加速器的半径R 和磁感应强度B 有关,与加速电压无关.

(3)设加在两D 形盒电极之间的高频电压为u ,粒子从粒子源中飘出时的速度很小,

近似为零,则粒子第一次被加速后进入下方D 形盒的动能、速度、半径分别为

E k 1=qu v 1=m qu /2 r 1=qB

mqu qB mv 21=当粒子第n 次通过窄缝时,由动能定理可知,粒子的动能为E kn =mqu v n =

12mv m nqu = 由此可知,带电粒子第n 次穿过窄缝前后的速率和半径之比为

n n v v n n 11-=- n n R R n n 11-=-

从上面的式子可知,随着粒子运动圈数增加,粒子在D 形盒做圆周运动半径的增加越来越慢,轨道半径越来越密.

5.解析:(1)由qvB =mv 2/r 得v =qBR /m

经过半圆的时间t 1=πR /v =πm /qB

故交变电流的周期T =2t 1=2πm /qB

(2)离子只有经过缝隙时才能获得能量,每经过一次增加的能量为qu ,要获得E 的能量,经过缝隙次数必须为n =E /qu .

所需时间t =nt 1=qB

m qv E π?=E πm /q 2vB (3)设加速k 次的速率为v k ,半径为R k

k +1次的速度为v k +1,半径为R k +1

则kqu =221k mv 可得v k =m

kqu 2∝k 同理v k +1∝1+k

又R k =qB m v k ∝v k ,故1

1+=+k k R R k k 因k 取不同的值时,R k /R k +1的值不同,故轨道是不等间距分布的.

6.回旋加速器的优点是使带电粒子在较小的空间受到电场的多次加速,而使粒子获得较高的能量.缺点是这种经典的加速器使粒子获得的能量不会很高,因为粒子能量很高时,它的运动速度接近光速,按照狭义相对论,粒子质量将随着速率的增加而显著地增

3.6 带电粒子在匀强磁场中的运动教学设计

普通高中课程标准实验教科书—物理选修3-1[人教版] 第三章磁场 3.6 带电粒子在匀强磁场中的运动 ★新课标要求 (一)知识与技能 1、理解洛伦兹力对粒子不做功。 2、理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀强磁场中做匀速圆周运动。 3、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,知道它们与哪些因素有关。 4、了解回旋加速器的工作原理。 (二)过程与方法 通过带电粒子在匀强磁场中的受力分析,灵活解决有关磁场的问题。 (三)情感、态度与价值观 通过本节知识的学习,充分了解科技的巨大威力,体会科技的创新与应用历程。 ★教学重点 带电粒子在匀强磁场中的受力分析及运动径迹 ★教学难点 带电粒子在匀强磁场中的受力分析及运动径迹 ★教学方法 1

实验观察法、讲述法、分析推理法 ★教学用具: 洛伦兹力演示仪、电源、投影仪、投影片、多媒体辅助教学设备 ★教学过程 (一)引入新课 教师:(复习提问)什么是洛伦兹力? 学生答:磁场对运动电荷的作用力 教师:带电粒子在磁场中是否一定受洛伦兹力? 学生答:不一定,洛伦兹力的计算公式为f=qvB sinθ,θ为电荷运动方向与磁场方向的夹角,当θ=90°时,f=qvB;当θ=0°时,f=0。 教师:带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?今天我们来学习——带电粒子在匀强磁场中的运动。 (二)进行新课 1、带电粒子在匀强磁场中的运动 教师:介绍洛伦兹力演示仪。如图所示。 教师:引导学生预测电子束的运动情况。 (1)不加磁场时,电子束的径迹; (2)加垂直纸面向外的磁场时,电子束的径迹; (3)保持出射电子的速度不变,增大或减小磁感应强度,电子束的径迹; (4)保持磁感应强度不变,增大或减小出射电子的速度,电子束的径迹。

高中物理回旋加速器

高中物理回旋加速器 一.选择题(共4小题) 1.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来加速带电粒子 D.带电粒子在D形盒中运动时,磁场力使带电粒子速度增大 2.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来使带电粒子做圆周运动 D.带电粒子在D形盒中运动时,磁场力使带电粒子加速 3.关于回旋加速器的说法正确的是() A.回旋加速器是利用磁场对运动电荷的作用使带电粒子的速度增大的 B.回旋加速器是通过多次电场加速使带电粒子获得高能量的 C.粒子在回旋加速器中不断被加速,故在磁场中做圆周运动一周所用时间越来越小D.若加速电压提高到4倍,其它条件不变,则粒子获得的最大速度就提高到2倍4.回旋加速器由下列哪一位物理学家发明() A.洛伦兹B.奥斯特C.劳伦斯D.安培 二.填空题(共1小题) 5.回旋加速器的D型金属盒半径为R,两D型盒间电压为U,电场视为匀强电场,用来加速质量为m,电荷量为q的质子,使质子由静止加速到能量为E后,由小孔射出.(设质子每次经过电场加速后增加相同的能量)求: (1)加速器中匀强磁场B的大小. (2)加速到上述能量所需的回旋次数. (3)加速到上述能量所需时间.(不计经过电场的时间)

三.解答题(共1小题) 6.如图回旋加速器D形盒的半径为r,匀强磁场的磁感应强度为B.一个质量了m、电荷量为q的粒子在加速器的中央从速度为零开始加速. (1)求该回旋加速器所加交变电场的频率; (2)求粒子离开回旋加速器时获得的动能; (3)有同学想自利用该回旋加速器直接对质量为m、电量为2q的粒子加速.能行吗?行,说明理由;不行,提出改进方案.

高中物理速度选择器和回旋加速器试题类型及其解题技巧及解析

高中物理速度选择器和回旋加速器试题类型及其解题技巧及解析 一、速度选择器和回旋加速器 1.如图所示,在直角坐标系xOy 平面内有一个电场强度大小为E 、方向沿-y 方向的匀强电场,同时在以坐标原点O 为圆心、半径为R 的圆形区域内,有垂直于xOy 平面的匀强磁场,该圆周与x 轴的交点分别为P 点和Q 点,M 点和N 点也是圆周上的两点,OM 和ON 的连线与+x 方向的夹角均为θ=60°。现让一个α粒子从P 点沿+x 方向以初速度v 0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。 (1)求匀强磁场的磁感应强度的大小和方向; (2)若只是把匀强电场撤去,α粒子仍从P 点以同样的速度射入,从M 点离开圆形区域,求α 粒子的比荷 q m ; (3) 若把匀强磁场撤去,α粒子的比荷 q m 不变,α粒子仍从P 点沿+x 方向射入,从N 点离开圆形区域,求α粒子在P 点的速度大小。 【答案】(1)0E v ,方向垂直纸面向里(2)03BR (3)3v 0 【解析】 【详解】 (1)由题可知电场力与洛伦兹力平衡,即 qE =Bqv 0 解得 B = E v 由左手定则可知磁感应强度的方向垂直纸面向里。 (2)粒子在磁场中的运动轨迹如图所示, 设带电粒子在磁场中的轨迹半径为r ,根据洛伦兹力充当向心力得 Bqv 0=m 20 v r

由几何关系可知 r=3R,联立得 q m =0 3BR (3)粒子从P到N做类平抛运动,根据几何关系可得 x=3 2 R=vt y= 3 2 R= 1 2 × qE m t2 又 qE=Bqv0联立解得 v=3 2 3 Bqv R m = 3 v0 2.如图所示,一束质量为m、电荷量为q的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B,方向均垂直纸面向内,两平行板间距为d,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U; (2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R=0 tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】

医用回旋加速器

【医用回旋加速器】详细说明 近年来,随着核医学科建设的不断发展壮大,分子显像越来越多的应用到临床。PET/CT 已在全球临床医学领域得到广泛应用。正电子示踪剂是实施PET检查的先决条件,而要生产PET检查所需示踪剂中的放射性核素,医用回旋加速器是必需设备,起着至关重要的作用。回旋加速器生产正电子示踪剂的基础理念就是利用P/N(质子/中子)反应,用高能量的质子轰击靶原子核,将其中一个中子击出,质子留下,形成半衰期很短的新原子核。经过放化合成系统,通过化学反应,将新原子核标记到生理性代谢物质上(如葡萄糖、氨基酸、胆碱等),生成P ET检查所需的示踪剂。 设备主要特点: (1)一键化操作:该设备整合了一套同位素发射器,基于显微放射化学技术和自动化质量控制,为生成PET示踪剂标记提供了有效、便捷的工具。 ?简单的图形用户操作界面,可以导航客户对于设备的操作; ?嵌入式生产和自动化质量控制处理,使得对于操作人员的专业要求最小化; ?确保已有的技术人员能够快速、熟练的操作设备,并进行PET示踪剂标记; (2)小型化设计理念:全新自屏蔽系统,占地小,低功率; ?一个完整PET示踪剂标记实验室,占地约30平方米; ?自屏蔽回旋加速器和显微化学系统,将辐射降到最低; ?运行维护成本低; (3)高效率、低成本、快速制备: ?对于一个用户,可实现单次剂量制备; ?FDG工业剂量的快速生产; ?耗材:剂量合成卡和试剂盒; ?低设施要求; ?有效的降低运行成本;

(4)灵活、适用性强:适用于临床和科学研究;对于目前的临床需要,可实现临床P ET 示踪剂标记、FDG,也可用于将来放射性同位素研究。 ?一个FDG剂量的单次剂量生产,每隔30分钟; ?F-18、C11生产; ?先进的F-18标记功能; (5)低辐射:更低的能量使得该设备对环境、用户或操作人员的辐射更低,同时自屏蔽系统更是降低了这种影响。 技术指标: 1)低能量、正离子放射性同位素发生器 束特点 离子质子 内束能量7.5MeV 内束电流<5uAmps for F-18 内靶端口3(非同时) 物理设计: 电极直径74.8mm Extraction半径35mm Dee系统 4 Dee操作电压16kV Max. 频率72mHz 磁场 1.2Tesla 平均,最大1.8 Tesla 物理尺寸: 磁铁重量 3.5吨 回旋加速器高度0.37m 回旋加速器直径 1.25m 2)发生器屏蔽系统 外壳材料1/4inch 钢 屏蔽材料密实混凝土和硼化聚乙烯直径 2.39m 高度 1.63m 重量21吨 3)化学平台

带电粒子在匀强磁场中的运动之回旋加速器 高中物理选修教案教学设计 人教版

带电粒子在匀强磁场中的运动之回旋加速器微课教学设计【设计思想】 “回旋加速器”是带电粒子在电场和磁场中运动的一个具体的综合实例。本节微课的主要任务讲清楚回旋加速器的优势、工作原理。本节课采用问题引导的方式,充分调动学生进行分析讨论。 【教学目标】 1.了解回旋加速器的基本结构和优势 2.理解回旋加速器的设计原理 3.提升分析问题的能力 【教学重点】 回旋加速器工作原理 【教学难点】 1.加速电场与带电粒子运动周期的同步关系 2.带电粒子最大动能和最大速度的影响因素 【教学过程】 一、引入 1.问题导向引入 如何获得一个高速带电粒子? 学生很容易想到带电粒子在加速电场中加速,回顾分析加速电场的原理,引导学生思考如何获得更高能量?部分学生会想到多级加速器。 这种直线多级加速器的弊端是什么?出示直线加速器图片(北京正负电子对撞机注入器),全长204米。是否占据太大空间? 2.课题引入 如何解决直线加速器的的弊端,让粒子不断地进入加速电场,猜测加速器应该具有的结构,利用磁场来控制轨迹,使其多次进入同一个电场。 二、回旋加速器的原理 1.加速原理 利用动画展示回旋加速器的工作原理,让学生边看边思考D形盒狭缝加的电场能不能是匀强电场?为什么?有什么要求?学生可以通过播放器的暂停、重复多看几遍微课,真正搞清楚回旋加速器的工作原理,细心的学生会观察到狭缝中的电场方向有规律的变化,思考是什么规律,边看边思考粒子的在磁场中运动周期会随着速度变大而变化吗?复习带电粒子在磁场中做圆周运动的周期规律。2.交变电场的规律

讨论加速电压的变化问题,明确加速电压应与粒子运动相配合。讨论加速电压周期和粒子圆周运动周期的关系,并讨论粒子圆周运动周期的特点。 (通过讨论,最终得到加速电压周期与粒子圆周运动周期相同(同步条件),并且不随速度增大而改变。) 3.展示实际中的回旋加速器 通过实物图片让学生真正看到物理规律的具体实践应用,增强学习物理的兴趣三、思考与讨论 问题1.粒子速度和运动半径越来越大,那么周期是否会变化? 引导学生通过前面的学习找到相应的理论依据来回答这个问题 问题2.如果D型盒半径为r,则该加速器能将质量为m,电荷量为q的粒子加速到多大的速度?这个最大速度跟什么因素有关? 引导学生学习用理论推导出正确的结论,从而提升解决问题的能力 四、思考与拓展 思考1。若有人将加速器狭缝变短,期间加入匀强电场,能否实现加速? 这个问题既能考察学生对回旋加速器原理的理解情况,又能拓展学生思维,还有没有别的加速器?引导学生课后主动查找资料学习不同类型的加速器。 思考2.若能增加磁感应强度B,回旋加速器是否可以将粒子速度加到无穷大?作为课外知识补充一点相对论的初步知识,对渴望求知的孩子是一种动力,鼓励学生主动学习。 五、总结 1.本节课的主要内容是回旋加速器,经历了加速器的整个设计改进过程。2.本节课的几个重点:回旋加速器的基本设计思想(电场加速、磁场控制轨道);交变电压周期与粒子回旋周期相同;粒子加速后的最大能量与最大半径和磁场强弱有关,与加速电压无关。 3.加速器有很多种类型,了解他们的工作原理

回旋加速器(含详解)

练习八回旋加速器 一、选择题(每题6分,共48分) 1.A 关于回旋加速器中电场和磁场的说法中正确的是 A.电场和磁场都对带电粒子起加速作用 B.电场和磁场是交替地对带电粒子做功的 C.只有电场能对带电粒子起加速作用 D.磁场的作用是使带电粒子在D 形盒中做匀速圆周运动 答案:CD 2.在回旋加速器内,带电粒子在半圆形盒内经过半个周期所需的时间与下列哪个量有关 A.带电粒子运动的速度 B.带电粒子运动的轨道半径 C.带电粒子的质量和电荷量 D.带电粒子的电荷量和动量 答案:C 3.B 关于回旋加速器加速带电粒子所获得的能量,下列说法正确的是 A.与加速器的半径有关,半径越大,能量越大 B.与加速器的磁场有关,磁场越强,能量越大 C.与加速器的电场有关,电场越强,能量越大 D.与带电粒子的质量和电荷量均有关,质量和电荷量越大,能量越大 答案:AB(由带电粒子在磁场中运动的半径公式R=qB mv 可得v=m RqB ,所以粒子获得的最大动能E k =2mv 21=()2m RqB 2 4.A 加速器使某种粒子的能量达到15MeV ,这个能量是指粒子的 A.势能 B.动能 C.内能 D.电能 答案:B 5.A 下列关于回旋加速器的说法中,正确的是 A.回旋加速器一次只能加速一种带电粒子 B.回旋加速器一次最多只能加速两种带电粒子 C.回旋加速器一次可以加速多种带电粒子 D.回旋加速器可以同时加速一对电荷量和质量都相等的正离子和负离子 答案:A 6.A 用回旋加速器分别加速α粒子和质子时,若磁场相同,则加在两个D 形盒间的交变电压的频率应不同,其频率之比为 A1:1 B.1:2 C.2:1

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U ;

(2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R= tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】 (1)由粒子在平行板间做直线运动可知,Bv0q=qE,平行板间的电场强度E= U d ,解得两平行板间的电势差:U=Bv0d (2)在圆形磁场区域中,由洛伦兹力提供向心力可知: Bv0q=m 2 v r 同时有T= 2r v π 粒子在圆形磁场区域中运动的时间t= 2 θ π T 解得t= m Bq θ (3)由几何关系可知:r tan 2 θ =R 解得圆形磁场区域的半径R=0 tan 2 mv qB θ 3.如图为质谱仪的原理图。电容器两极板的距离为d,两板间电压为U,极板间的匀强磁场的磁感应强度为B1,方向垂直纸面向里。一束带电量均为q但质量不同的正粒子从图示方

高中物理速度选择器和回旋加速器解题技巧分析及练习题

高中物理速度选择器和回旋加速器解题技巧分析及练习题 一、速度选择器和回旋加速器 1.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。 【答案】(1)500m/s v =;(2)10 4.010kg m -=? 【解析】 【分析】 【详解】 (1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有 qE qvB = 解得带电粒子的速度大小 100m/s 500m/s 0.2 E v B = == (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有 2 v qvB m R = 而粒子偏转90°,由几何关系可知 0.5m R L == 联立可得带电粒子的质量 6102100.20.5kg 4.010kg 500 qBL m v --???===? 2.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,

在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力. (1)求两极板间电压U 的大小 (2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围. 【答案】(1)20mv q (2)002121 22 v v v -+≤≤ 【解析】 试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度. (1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有: 212 R at = ,02R v t =,2qU a Rm = 解得:2 mv U q = (2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R = 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图: 由几何关系有:2r r R = 由洛伦兹力提供向心力有:2 11v qv B m r =

回旋加速器教学设计

回旋加速器教学设计Cyclotron teaching design

回旋加速器教学设计 前言:小泰温馨提醒,物理学是研究物质运动最一般规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的唯一标准,是当今最精密的一门自然科学学科。本教案根据物理课程标准的要求和针对教学对象是高中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。便于学习和使用,本文下载后内容可随意修改调整及打印。 教学目标 知识目标 1、知道的基本构造和加速原理. 2、了解加速器的基本用途.通过由直线加速器迁移到的教学,培养学生解决实际问题的能力,开阔学生解决问题的思路.通过介绍我国高能粒子加速器——北京正负电子对撞机的研制,培养民族自豪感,激发同学们学习科学报效祖国的热情.教学建议本节重点是的加速原理.在通过前面带电粒子在磁场中的运动规律的学习,学生通过反复习电场的相关知识后在理解本节知识时比较容易,需要强调的是: 1、加速电场的平行极板接的是交变电压,且它的周期和粒子的运动周期相同. 2、当粒子加速到接近光速时,加速粒子就不可能了.由于前面已经学习了带电粒子在磁场中的运动规律,因此本节内容在

教法上可以通过复习相关的电场知识后在,让学生思考想象加速器的原理,最后得出原理. 在讲解时,教师可以通过介绍中国高能粒子加速器——北京正负电子对撞机的开发以及研制过程,激发学生的民族自豪感,培养学生的爱国主义热情。 教学设计方案 一、素质教育目标 (一)知识教学点 1、知道的基本构造和加速原理. 2、了解加速器的基本用途. (二)能力训练点 通过由直线加速器迁移到的教学,培养学生解决实际问题的能力,开阔学生解决问题的思路. (三)德育渗透点 介绍我国高能粒子加速器——北京正负电子对撞机,培养民族自豪感,激发同学们学习科学报效祖国的热情. (四)美育渗透点

回旋加速器课件

回旋加速器: (1)构造: 回旋加速器的核心部件是两个D 形扁金属盒,整个装置放在真空容器中,如图所示。 ①两个D形盒之间留有一个窄缝,在中心位置放有粒子源。 ②两个D形盒分别接在高频交变电源的两极上,在两盒间的窄缝中形成一个方向呈周期性变化的交变电场。 (2)原理: 利用电场对带电粒子的加速作用和磁场对运动电荷的偏转作用来获得高能粒子,如图所示。 ①磁场的作用:带电粒子以某一速度垂直于磁场方向进入匀强磁场时,只在洛伦兹力作用下做匀速圆周运动,其中周期与速度和半径无关,使带电粒子每次进入D形盒中都能运动相等时间(半个周期)后,平行于电场方向进入电场中加速。 ②交流电压:为了保证每次带电粒子经过狭缝时均被加速,使能量不断提高,要在狭缝处加 一个周期与相同的交流电压。 (3)特点

①带电粒子在D形盒中的回转周期等于两盒狭缝间高频电场的变化周期,与带电粒子速度无关(磁场保证带电粒子做回旋运动,如图所示)。 ②带电粒子在D形金属盒内运动的轨道半径不等距分布。设带正电粒子的质量为m,电荷量为q,狭缝间加速电压大小为U,粒子源产生的带电粒子,经电场加速第一次进入左半盒 时速度和半径分别为。 第二次进入左半盒时,经电场加速3次,进人左半盒的速度和半径为 第k次进入左半盒时,经电场加速(2k一1)次,进入左半盒时速度和半径为 所以,任意相邻两轨道半径之比 可见带电粒子在D形金属盒内运动时,越靠近D 形金属盒的边缘,相邻两轨道的间距越小。 ③带电粒子在回旋加速器内运动的最终能量。由于D形金属盒的大小一定,所以不管粒子的大小及带电荷量如何,粒子最终从加速器内射出时应具有相同的旋转半径。 由牛顿第二定律得 动量大小与动能之间存在定量关系 由①②两式得 可见,带电粒子离开回旋加速器的动能与加速电压无关,而仅受磁感应强度B和D形盒半

高中物理速度选择器和回旋加速器专项练习及解析

高中物理速度选择器和回旋加速器专项练习及解析 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

2 121 m v B qv R = 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+

回旋加速器原理和考点分析

回旋加速器原理和考点分析 作者:丑佳丽 黑龙江省铁力职业教育中心学校 【内容摘要】 回旋加速器的原理和意义,并利用原理解决相关问题。增大加速电压或微粒的核质比增大,能使一个带电粒子获得很大的速度(能量), 但所占的空间范围大。能不能在较小的范围内实现多级加速呢因此人们创造出回旋加速器。回旋加速器的构造:两个D 形金属盒,粒子源,半径为R D ,大型电磁铁,高频振荡交变电压U.回旋加速器是产生大量高能量的带电粒子的实验设备.交变电压的周期与带电粒子做匀速圆周运动的周期相等。高频交流电源的周期与带电粒子在D 形盒中运动的周期相同是加速条件。回旋加速器的优点是体积小,缺点是粒子的能量不会很高。高频考点:回旋加速器中的D 形金属盒,它的作用是静电屏蔽。带电粒子从电场中获得能量。 做题过程中注意应用公式推导和运算。 【关键词】 带电粒子 加速 回旋加速器 一、如何能使带电粒子在较小的范围内实现多级加速 1.如何使一个带电的微粒获得速度(能量) 由动能定理K E W ?= 221mv qU = m qU v 2= 2.如何使一个带电粒子获得很大的速度(能量) 拓展:如: ①增大加速电压;②使微粒的核质比增大,等等。 3.带电粒子一定,即q/m 一定,要使带电粒子获得的能量增大,可采取什么方法 4.实际所加的电压,能不能使带电粒子达到所需要的能量(不能)怎么办 多级加速::带电粒子增加的动能为 ) (2 121321212 02n n U U U U q qU qU qU qU mv mv E ++++=+++==-= ? 分析:方法可行,但所占的空间范围大。能不能在较小的范围内实现多级加速呢因此人们创造出回旋加速器。 二、 回旋加速器的原理和考点 回旋加速器 图1 图2 图3

高中物理_带电粒子在匀强磁场中的运动教学设计学情分析教材分析课后反思

程教学[实验现象]在暗室中可以清楚地看到,在没有磁场作用时,电子的径迹是直线;在管外加上匀强磁场(这个磁场是由两个平行的通电环形线圈产生的),电子的径迹变弯曲成圆形。[教师引导学生分析得出结论] 当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动。 带电粒子垂直进入匀强磁场中的受力及运动情况分析(动态课件)。 一是要明确所研究的物理现象的条件——在匀强磁场中垂直于磁场方向运动的带电粒子;二是分析带电粒子的受力情况,用左手定则明确带电粒子初速度与所受到的洛伦兹力在同一平面内,所以只可能做平面运动;三是洛伦兹力不对运动的带电粒子做功,它的速率不变,同时洛伦兹力的大小也不变;四是根据牛顿第二定律,洛伦兹力使运动的带电粒子产生加速度(向心加速度)。[来源:https://www.360docs.net/doc/651456939.html,] [出示投影] [来源学科网] ①电子受到怎样的力的作用?这个力和电子的速度的关系是怎样的?(电子受到垂直于速度方向的洛伦兹力的作用)[来源:https://www.360docs.net/doc/651456939.html,] ②洛伦兹力对电子的运动有什么作用?(洛伦兹力只改变速度的方向,不改变速度的大小) ③有没有其他力作用使电子离开磁场方向垂直的平面?(没有力作用使电子离开磁场方向垂直的平面) ④洛伦兹力做功吗?(洛伦兹力对运动电荷不做功) 1.带电粒子在匀强磁场中的运动 (1)运动轨迹:沿着与磁场垂直的方向射入磁场的带电粒子,粒子在垂直磁场方向的平面内做匀速圆周运动,此洛伦兹力不做功。 【注意】带电粒子做圆周运动的向心力由洛伦兹力提供。 通过“思考与讨论”,使学生理解带电粒子在匀强磁场中做匀速圆周运动的轨道半径r和周期T与粒子所带电荷量、质量、粒子的速度、磁感应强度有什么关系。 [出示投影] 一带电量为q,质量为m,速度为v的带电粒子垂直进入磁感应强度为B的匀强磁场中,其

高中物理速度选择器和回旋加速器试题经典及解析

高中物理速度选择器和回旋加速器试题经典及解析 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

高考物理速度选择器和回旋加速器解题技巧讲解及练习题

高考物理速度选择器和回旋加速器解题技巧讲解及练习题 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

回旋加速器教学设计

3.6教学设计——回旋加速器 人教版选修3-1 第三章第6节 一、教材分析 本节教材是从学生已经学过的知识入手,先简单介绍直线加速器的设想,提出不足,进而引出回旋加速器,分析其工作原理,并简单介绍回旋加速器的结构。通过对比多级直线加速器和回旋加速器的优缺点,显示科学发展的规律和发展的方向,引导学生思维,开阔学生思路,强化学生探索意识,激发学生学习兴趣。 二、学情分析 学生对电场和磁场的相关知识有了一定的了解,能够通过自己的分析探索带电粒子的加速原理,进而得到回旋加速器的基本构造。根据本节课内容特点和学生现状,采取探究学习的方法,锻炼学生的探索创新能力、分析解决问题能力,升华情感态度和价值观。具体教学策略是首先提出实际问题,激发学生的学习兴趣,引导学生分析问题,激发学生的思维,结合所学知识提出解决问题的方案,最后达到解决问题的目的,让学生体验成功的喜悦,树立科学探索精神。 三、教学目标 1. a.知道回旋加速器的基本构造和加速原理。 b.知道加速器的基本用途; c.通过情景设置, 培养学分析实际问题、解决实际问题的能力;

d.通过师生、生生思维碰撞, 开阔学生, 思维锻炼学生的创新意识. 2. 通过问题提出,结合所学知识,引导学生探究,最后达到知道加速器的基本结构和加速原理的教学目的,让学生体会研究、设计新仪器的思路。 3. a.介绍我国高能粒子加速器——北京正负电子对撞机, 培养民 族自豪感, 激发学生的学习兴趣; b.体验探究乐趣, 激发创新意识。 四、教学重难点 教学重点: 回旋加速器的构造和加速原理; 教学难点: 交变电压的周期和粒子的运动周期相同。 五、教学方法 预习检测、教师引导、课堂交流讨论 六、教学过程 预习任务回顾: 1.阅读课本101页至102页回旋加速器相关内容; 2.完成《新新学案》大册子87页预习内容填空。 一、预习情况交流: 1.为什么要对带电微粒进行加速? 答:认识原子核内部结构的需要,加速粒子充当“炮弹”;

回旋加速器(答案)

回旋加速器(参考答案) 一、知识清单 1. 【答案】 二、经典习题 2. 【答案】BC . 【解析】回旋加速器粒子在磁场中运动的周期和高频交流电的周期相等,当粒子从D 形盒中出来时,速度最大,此时运动的半径等于D 形盒的半径,再推导出动能表达式,从而即可不解. 【解答】解:A 、当粒子从D 形盒中出来时速度最大,根据qv m B=m ,得v m =,那么质子获得的最大动能E Km = ,则最大动能与交流电压U 无关.故A 错误. B 、根据T=,若只增大交变电压U ,不会改变质子在回旋加速器中运行的周期,但加速次数减少,则运行时间也会变短.故B 正确. C 、根据T= ,若磁感应强度B 增大,那么T 会减小,只有当交流电频率f 必须适当增大才能正常工作.故C 正确. D 、带电粒子在磁场中运动的周期与加速电场的周期相等,根据T=知,换用α粒子,粒子的比荷变化,周期变化,回旋加速器需改变交流电的频率才能加速α粒子.故D 错误. 3. 【答案】B 【解析】回旋加速器所加高频电源的频率与带电粒子在磁场中运动频率相同,在一个周期内,带电粒子两次通过匀强电场而加速,故高频电源的变化周期为t n -t n -2,A 错误;带电粒子在匀强磁场中运动周期与粒子速度 无关,故B 正确;粒子获得的最大动能可由最后半个圆周的偏转求得,设D 形盒的最大半径为R ,则R =mv m Bq ,所以最大动能E km =12mv 2m =B 2q 2R 22m ,R 越大,E km 越大,且比荷不同的粒子获得的最大动能不同,故C 、D 错误。 4. 【答案】AC 【解析】根据带电粒子在匀强磁场中运动的周期与速度无关可知,在E k -t 图中应该有t n +1-t n =t n -t n -1,选项A 正确B 错误;由于带电粒子在电场中加速,电场力做功相等,所以在E k -t 图中应该有E n +1-E n =E n -E n -1,选项C 正确D 错误。 5. 【答案】 A 【解析】 根据qvB =m v 2R ,得v =qBR m .两粒子的比荷q m 相等,所以最大速度相等.故A 正确.最大动能E k =12 mv 2=q 2B 2R 22m ,两粒子的比荷q m 相等,但质量不相等,所以最大动能不相等.故B 错.带电粒子在磁场中运动的周期T =2πm qB ,两粒子的比荷q m 相等,所以周期相等.做圆周运动的频率相等,因为所接高频电源的频率等于粒子做圆周运动的频率,故两次所接高频电源的频率相同,故C 错误.由E k =q 2B 2R 22m 可知,粒子的最大动能与加速电压的频率无关,故仅增大高频电源的频率不能增大粒子的最大动能.故D 错. 6. 【答案】B 【解析】根据T =2πm qB ,则三种粒子在磁场中运动的周期分别为:T 1=4πm qB 、T 2=4πm qB 、T 3=3πm qB ;因为加速电

(物理)高考必备物理速度选择器和回旋加速器技巧全解及练习题

(物理)高考必备物理速度选择器和回旋加速器技巧全解及练习题 一、速度选择器和回旋加速器 1.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。在极板的右侧还存在着另一圆形匀强磁场区域,磁场的方向垂直纸面向外,圆形磁场的圆心O 位于平行金属板的中线上,圆形磁场的半径R =0.6m 。有一带正电的粒子以一定初速度v 0沿极板中线水平向右飞入极板间恰好做匀速直线运动,然后进入圆形匀强磁场区域,飞出后速度方向偏转了74°,不计粒子重力,粒子的比荷q m =3.125×106C/kg ,sin37°=0.6,cos37°=0.8,5≈2.24。求: (1)粒子初速度v 0的大小; (2)圆形匀强磁场区域的磁感应强度B 2的大小; (3)在其他条件都不变的情况下,将极板间的磁场撤去,为使粒子飞出极板后不能进入圆形磁场,则圆形磁场的圆心O 离极板右边缘的水平距离d 应该满足的条件。 【答案】(1)v 0=5×104m/s ;(2)B 2=0.02T ;(3) 1.144m d ≥。 【解析】 【详解】 (1)粒子在电场和磁场中匀速运动,洛伦兹力与电场力平衡 qv 0B 1=Eq 带电粒子初速度 v 0=5×104m/s (2)带电粒子进入磁场后做匀速圆周运动,洛伦兹力充当向心力 20 02v qv B m r = 轨迹如图所示:

由几何关系,带电粒子做圆周运动的半径为 4 0.8m tan 373 R r R = ==? 联立解得: B 2=0.02T (3)带电粒子在电场中做类平抛运动 水平方向 0L v t =? 竖直方向 212 y at = 由牛顿第二定律 qE ma = 粒子飞出极板后不能进入圆形磁场即轨迹刚好与圆形磁场相切,如图所示: 由几何关系 ,利用三角形相似,有: 22 ()22 L y y R d +=+ 解得

高中物理速度选择器和回旋加速器解题技巧及练习题及解析

高中物理速度选择器和回旋加速器解题技巧及练习题及解析 一、速度选择器和回旋加速器 1.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。一带正电的粒子质量为m 、电荷量为q 从P (x =0,y =h )点以一定的速度平行于x 轴正向入射。这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求: (1)若只有磁场,粒子做圆周运动的半径R 0大小; (2)若同时存在电场和磁场,粒子的速度0v 大小; (3)现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点。(不计重力)。粒子到达x =R 0平面时速度v 大小以及粒子到x 轴的距离; (4)M 点的横坐标x M 。 【答案】(1)0mv qB (2)E B (302v ,02R h +(4)2 2000724 M x R R R h h =++-【解析】 【详解】 (1)若只有磁场,粒子做圆周运动有:2 00 qB m R =v v 解得粒子做圆周运动的半径0 0m R qB ν= (2)若同时存在电场和磁场,粒子恰好做直线运动,则有:0qE qB =v 解得粒子的速度0E v B = (3)只有电场时,粒子做类平抛,有: 00y qE ma R v a t v t === 解得:0y v v =

所以粒子速度大小为:22 002y v v v v =+= 粒子与x 轴的距离为:2 0122 R H h at h =+ =+ (4)撤电场加上磁场后,有:2 v qBv m R = 解得:02R R = 粒子运动轨迹如图所示: 圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4 π ,由几何关系得C 点坐标为: 02C x R =, 02 C R y H R h =-=- 过C 作x 轴的垂线,在ΔCDM 中: 02CM R R == 2 C R C D y h ==- 解得:2 2 2 20074 DM CM CD R R h h =-=+-M 点横坐标为:2 2000724 M x R R R h h =+- 2.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速

相关文档
最新文档