导数与零点(含答案)

导数与零点(含答案)
导数与零点(含答案)

导数与零点

考点一。求参数取值范围

(1)设函数3

2

9()62

f x x x x a =-

+-,若方程()0f x =有且仅有一个实根,求a 的取值范围.

解:(1) '

2

()3963(1)(2)f x x x x x =-+=--, 因为 当1x <时, '()0f x >;当12x <<时, '

()0f x <;当2x >时,

'

()0f x >;所以 当1x =时,()f x 取极大值 5(1)2

f a =

-;当2x =时,()f x 取极小值 (2)2f a =-;

故当(2)0f > 或(1)0f <时, 方程()0f x =仅有一个实根. 解得 2a <或52

a >

.

(2)已知函数3

()310f x x a x a =--≠,(),若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围。

解:'

2

2

()333(),f x x a x a =-=-因为()f x 在1x =-处取得极大值,所以'

2

(1)3(1)30, 1.f a a -=?--=∴= 所以3

'

2

()31,()33,f x x x f x x =--=-由'

()0f x =解得121,1x x =-=。()f x 在1x =-处取得极大值(1)1f -=, 在1x =处取得极小值(1)3f =-,又直线y m =与函数()y f x =的图象有三个不同点,则m 的范围是(3,1)-。 (3)已知函数2

()sin cos f x x x x x =++,若曲线()y f x =与直线y b = 有两个不同的交点,求b 的取值范围. 解:由2

()sin cos f x x x x x =++,得()(2cos )f x x x '=+,令()0f x '=,得0x =. 函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增,(0)1f =是()f x 的最小值. 当1b ≤时,曲线()y f x =与直线y b =最多只有一个交点;

当1b >时,()y f x =与直线y b =有且只有两个不同交点.综上可知,b 的取值范围是(1,)+∞.

(4)已知函数1()1x

f x x e =-+,

若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.

解:()11x

f x x e =-+

直线l :1y kx =-与曲线()y f x =没有公共点, 等价于关于x 的方程111x

kx x e

-=-+

R 上没有实数解,即关于x 的方程: ()11x

k x e

-=

在R 上没有实数解.

①当1k =时,方程(*)可化为10x

e

=,在R 上没有实数解.

②当1k ≠时,方程(*)化为

11

x

xe k =-. 令()x g x xe =,则有()()1x

g x x e '=+. 令()0g x '=,得1x =-,

当1x =-时,()min 1g x e

=-,同时当x 趋于+∞时,()g x 趋于+∞, 从而()g x 的取值范围为1,e

??-+∞???

?

.

所以当

1

1,1k e ?

?∈-∞- ?-??

时,方程(*)无实数解, 解得k 的取值范围是()1,1e -. 综上,得k 的最大值为1. 考点二。判断零点个数,证明

(1)已知函数

()e ,x

f x x =∈R

. 证明: 曲线y = f (x) 与曲线2

112

y x x =

++有唯一公共点.

证明:则令,,12

112

1)()(2

2

R x x x e x x x f x h x

∈---

=---

=

0)0('',0)0('0)0(,1)('')(',1)('===-=--=h h h e x h x h x e x h x

x

,,且的导数

单调递增时当单调递减时当)('0)(''0;)('0)(''0x h y x h x x h y x h x =?>>=?<<0)(,0)0(')('===≥=?x R x h y h x h y 个零点上单调递增,最多有一在所以

所以,曲线y=f(x)与曲线12

12

++=x x y 只有唯一公共点(0,1).

(2)已知函数3()s in 2

f x x x =-,判断函数f(x)在(0,π)内的零点个数,并加以证明。

解:3()s in ()()s in c o s 2

f x x x h x f x x x x

'=-?==+

①当x ∈]2

,

0[π

时,()0()f x y f x '≥?=在(0,]2

π

上单调递增,

33

(0)()0()2

2

2

f f y f x π

π-=-

?

]

2

π

上有唯一零点 ②当x ∈[

,]2

π

π时,()2co s sin 0()h x x x x f x ''=-

,]2

π

π上单调递减,2

()(

)02

2

f f π

π

π'=-

唯一0(

,)2

x π

π∈使0()0

f x '=。

由①②得:函数)(x f 在),0(π内有两个零点。

(3)已知函数3

2

2

()4361f x x tx t x t =+-+-,证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点.

解:22

()1266f x x tx t '=+-,令()0f x '=,解得.2

t x t x =-=

当0t >时,()f x 在0,

2t ?

? ??

?内的单调递减,在,2t ??+∞ ???

内单调递增,以下分两种情况讨论: (1)当

1,22

t t ≥≥

即时,()f x 在(0,1)内单调递减,2

(0)10,(1)643644230.f t f t t =->=-++≤-?+?+<

所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零点。

(2)当01,022t

t <

<<<即时,()f x 在0,2t ?? ???内单调递减,在,12t ??

???

内单调递增,

若33t 77(0,1],10.244t f t t t ??∈=-+-≤-<

?

??

,2

(1)643643230.f t t t t t =-++≥-++=-+>

所以(),12t

f x ??

???

在内存在零点。

若()3377(1,2),110.244t t f t t t ??∈=-+-<-+<

???,(0)10f t =->,所以()0,2t f x ?? ???

在内存在零点。 所以,对任意(0,),()t f x ∈+∞在区间(0,1)内均存在零点。

(4)已知a b ,是实数,1和1-是函数3

2

()f x x a x b x

=++的两个极值点,设()

(())h x f f x c

=-,其中[22]c ∈-,,

求函数()

y h x =的零点个数.

解:由3

2

()f x x a x b x

=++,得

2

()32f'x x a x b

=++,∵1和1-是函数

32

()f x x a x b x

=++的两个极值点,

∴ (1)32=0

f'a b =++,

(1)32=0

f'a b -=-+,解得==

3

a b -0,,则

3

()3f x x x

=- ,

令()=f x t

,则()()h x f t c

=

-,先讨论关于x 的方程()=f x d

根的情况:[]2, 2d ∈-。

当=2

d 时,()=2

f x -的两个不同的根为1 和一2 ,

()

f x 是奇函数,∴

()=2

f x 的两个不同的根为-1和2。

2

d <时,∵

(1)=(2)=20f d f d d >----,(1)=(2)=20

f

d f d d <----- ,∴一2 , -1,1 ,2 都不是

()=f x d

的根。

()()

()=311f'x x x +-,① 当()2x ∈+∞

时,()0

f'x >

,于是

()

f x 是单调增函数,从而

()(2)=2

f x >f ,此时

()=f x d

在()2+∞

无实根。

② 当()1 2x ∈,时.()0

f'x >,于是

()

f x 是单调增函数。又∵

(1)0

f d <-,

(2)0

f d >-,=()y f

x d

-的图象不间

断,∴

()=f x d

在(1 , 2 )内有唯一实根。同理,

()=f x d

在(一2 ,一I )内有唯一实根。

③ 当()1 1x ∈-,时,()0

f'x <,于是

()

f x 是单调减两数。又∵(1)0

f d >--,

(1)0

f d <-,=()y f

x d

-的图象

不间断,∴()=f x d

在(一1,1 )内有唯一实根。

因此,当

=2

d 时,

()=f x d

有两个不同的根12x x ,满足

12=1 =2

x x ,;当

2

d < 时 ()=f x d

有三个不同的根315x x x ,,,满足

2 =3, 4, 5

i x

y h x =的零点:

( i )当=2

c 时,

()=f t c

有两个根12t t ,,满足

12==2

t t 1,。而

1()=f x t 有三个不同的根,2

()=f x t 有两个不同的

根,故()

y

h x =有5 个零点。 ( 11 )当2

c <时,

()=f t c

有三个不同的根345t t t ,,,满足

2 =3, 4, 5

i t

()

=3,() 4, = 5i f x t i 有三个不同

的根,故()

y

h x =有9 个零点。 综上所述,当

=2

c 时,函数()

y

h x =有5 个零点;当

2

c <时,函数()

y

h x =有9 个零点。

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题 导数压轴题之隐零点问题(共13题) 1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立. (1)求实数a的值; (2)证明:f(x)存在唯一极大值点x0,且. 【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立, 即a(e x﹣1)≥x恒成立, x=0时,显然成立, x>0时,e x﹣1>0, 故只需a≥在(0,+∞)恒成立, 令h(x)=,(x>0), h′(x)=<0, 故h(x)在(0,+∞)递减, 而==1, 故a≥1, x<0时,e x﹣1<0, 故只需a≤在(﹣∞,0)恒成立, 令g(x)=,(x<0), g′(x)=>0, 故h(x)在(﹣∞,0)递增,

而==1, 故a≤1, 综上:a=1; (2)证明:由(1)f(x)=e x(e x﹣x﹣1), 故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1, 所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增, h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0, ∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知, 方程h(x)=0在(﹣2,ln)有唯一根, 设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0, 所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增, 从而f(x)存在唯一的极大值点x0即证, 由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1, ∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤() 2=, 取等不成立,所以f(x0)<得证, 又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增 所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证, 从而0<f(x0)<成立. 2.已知函数f(x)=ax+xlnx(a∈R) (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧 些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2. (1)求f(x)的单调区间; (2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值. 解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增; 若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞). (2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1. 故当x>0时,(x﹣k)f′(x)+x+1>0等价于k< 1 1 x x e + - +x(x>0)(*), 令g(x)= 1 1 x x e + - +x,则g′(x)= 2 (2) (1) x x x e e x e -- - , 而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0, 所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点. 设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a). ③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

导数与函数的切线及函数零点问题专题

导数与函数的切线及函数零点问题 高考定位 高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B 级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)在高考试题导数压轴题中涉及函数的零点问题是高考命题的另一热点. 真 题 感 悟 (2016·江苏卷)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =1 2. ①求方程f (x )=2的根; ②若对任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 解 (1)①由已知可得2x +? ?? ??12x =2, 即2x +1 2 x =2.∴(2x )2-2·2x +1=0, 解得2x =1,∴x =0. ②f (x )=2x +? ?? ??12x =2x +2-x , 令t =2x +2-x ,则t ≥2. 又f (2x )=22x +2-2x =t 2-2, 故f (2x )≥mf (x )-6可化为t 2-2≥mt -6, 即m ≤t +4t ,又t ≥2,t +4 t ≥2 t ·4 t =4(当且仅当t =2时等号成立), ∴m ≤? ? ???t +4t min =4,即m 的最大值为4. (2)∵0<a <1,b >1,∴ln a <0,ln b >0. g (x )=f (x )-2=a x +b x -2,

g′(x)=a x ln a+b x ln b且g′(x)为单调递增,值域为R的函数.∴g′(x)一定存在唯一的变号零点, ∴g(x)为先减后增且有唯一极值点. 由题意g(x)有且仅有一个零点, 则g(x)的极值一定为0, 而g(0)=a0+b0-2=0,故极值点为0. ∴g′(0)=0,即ln a+ln b=0,∴ab=1. 考点整合 1.求曲线y=f (x)的切线方程的三种类型及方法 (1)已知切点P(x0,y0),求y=f (x)过点P的切线方程:求出切线的斜率 f ′(x ),由点斜式写出方程. (2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0,y0),通过方程k=f ′(x )解得x0,再由点斜式写出方程. (3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f ′(x0),再由斜率公式求得切线斜率,列方程(组)解得x ,再由点斜式或两点式写出方程. 2.三次函数的零点分布 三次函数在存在两个极值点的情况下,由于当x→∞时,函数值也趋向∞,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x1<x2的函数f (x)=ax3+bx2+cx+d(a≠0)的零点分布情况如下: 3.(1)研究函数零点问题或方程根问题的思路和方法 研究函数图象的交点、方程的根、函数的零点,归根到底还是研究函数的图

数学高考导数难题导数零点问题导数整理

f '(x) = (x - a)(2ln x ■ 1 - a ),但这时会发现 f' (x) = 0 的解除了 x = a 外还有 2In x ■ 1 - ◎ =0 的 x x 解,显然无法用特殊值猜出。 a 令 h(x) = 21 n x 1 ,注意到 h(1) = 1 -a :: 0 , h(a) = 2In a 0 , x 故f '(x) = 0在(1, a)及(1, 3e )至少还有一个零点, 又h(x)在(0, +^)内单调递增,所以函数h(x) 在(1,3e]内有唯一零点,但此时无法求出此零点怎么办。 我们可以采取设而不求的方法, 记此零点为x 0, 含参导函数零点问题的几种处理方法 方法一:直接求出,代入应用 对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。 (1)因式分解求零点 例1讨论函数 f(x) 1 3 1 2 ax -(a )x 2x 1(a ? R)的单调区间 3 2 解析:即求f'(x)的符号问题。由f'(x)二ax 2 -(2a - 1)x 2 = (ax - 1)(x - 2)可以因式分 解析: f'(x) = (x -a)e x ? x 2 -( a ? 1)x ? a = (x -a)(e x ? x -1),只能解出 f '(x)的一个零点为 a , 方法二:猜出特值,证明唯一 对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去 猜出零点,再证明该函数的单调性而验证其唯一性。 1 1 例 4 讨论函数 f (x) =(x - a-1)e x x 3 (a 1)x 2 ax , a ?二 R ,的极值情况 其它的零点就是e x x 0的根,不能解。 例5(2011高考浙江理科)设函数 f (x) = (x - a)21n x,a ? R (I) 若x =e 为y = f (x)的极值点,求实数a (n) 求实数a 的取值范围,使得对任意的 2 (0,3e],恒有 f(x) — 4e 成立(注:e 为自然对数), 方法三:锁定区间,设而不求 对于例5,也可以直接设函数来求, ①当0 ::: x 乞1时,对于任意的实数 a ,恒有f (x)乞0 ::: 4e 2成立②当1 ::: x 乞3e ,由题意,首先 有 f (3e) =(3e - a )2 In(3e)乞4e 2 , 解 3e 2e 乞a 乞3e ---------- n ( , I 3e) 3e 且 h(3e) =2In(3 e) 1 a 3e -2I n(3e) 1 2e I n(3e) 3e = 2(I n3e- 1 3;I )>0 。

专题03 导数与函数零点(精讲篇)-用思维导图突破导数压轴题

用思维导图突破导数压轴题 专题3 导数与函数零点 () f x() f x() f x () f x y h x =()y g x =() 求函数f(x)的零点 :求导判断f(x)的单调性,适当选取区间,确定端点函数值异号 :a=g(x)或h(x)=q(x)判断相应函数单调性、值域,确定零点个数或范围 结合具体问题运用分析法和相关性质确定端点(一般不唯一,见例2等)结合图象确定零点范围(见例3、例6),有时还需证明(见例1)

()sin (1) f x x ln x =-+() f x '() f x ()f x '(1,) 2 π -() f x 思路点拨 第(1)题:若1 ()cos 1f x x x '=- +在区间(1,)2 π -的极大值点x 0,则在x 0左边,() f x '递增,在x 0右边()f x '递减.这需要考虑()f x ''在x 0左边为正,右边为负,也就是说x 0是() f x '的零点,从而()f x '在0(1,)x -上单调递增;在0(x ,)2 π 上()f x ''<0,可得()f x '单调递减. 第(2)结论等价于方程sinx=ln(1+x)有且仅有两个不等的实数根.在同一坐标系中分别作出图象可知一根为0,另 一根介于(2]2 π ,之间. 从图象可以看出当(1,0)x ∈-和 (0,)2 π 时,sin ln(1)0x x -+>,即()0f x >;当[2,)x ∈+∞,()0f x <. 这就需要考虑f ′(x )在(?1,0)、 (0,π 2]、(π 2,2]、(2,+∞)单调性以及端点值的正负.由于x 0位于(0,x 0)和(x 0,π 2),还有对这两个区间作相应讨论. 第(2)的思维导图: f '(x) -1 y x π2 x 0 2y =ln(1+x ) y =sin x -1y x 0π2 已知f (x )=sin x -ln(1+x ) 结论: f (x )有且仅有2个零点 sinx=ln(1+x)有两个不等实数根 数形结合:一根为0,一根在 当和时, f (x )>0;当 x ∈?2,+∞)时,f (x )<0 当 x ∈?2,+∞)时, f (x )<0 等价转化

数学高考导数难题导数零点问题导数整理2017

含参导函数零点问题的几种处理方法方法一:直接求出,代入应用对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。 1)因式分解求零点(1123)?Rx?1(?(a?)x)f(x?a?2ax 例1 讨论函数的单调区间232)?2?1)(x?1)x?2?(axf'(x)?ax?(2a)(xf'可以因式分的符号问 题。由解析:即求 方法二:猜出特值,证明唯一对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去猜出零点,再证明该函数的单调性而验证其唯一性。 112x3ax1)x??x(a?f(x)?(x?a?1)e?R?a,讨论函数,的极值情况例4 23x2x)1e?x?a?(x?a)(?(x?a)ex?(a?1)x?f'(x)?a)f'(x其它的零点就的一个零点为,解析:,只能解 出x0?1?e?x的根,不能解。是 2Ra?x?a)ln x,f(x)?(例5(2011高考浙江理科)设函数a?ex)xy?f(的极值点,求实数(Ⅰ)若为2exf()?4ea],3e(0,x?为自然对数),(Ⅱ)求实数恒有的取值范围,使得对任意的成立(注:方法三:锁定区间,设而不求对于例5,也可以直接设函数来求,2e)?0?4f(xa e1?1?x?30?x 有实时,对于任意的数题,恒有意,首②当先①当,由立成a e22e22,?e?a) 4e ln(3e)f(3e)?(3)1???a)(2ln xf'(x)?(x?e?e?3?a3,但这时解得由 x)e3ln(ln(3e)a??12ln x ax?0?'(x)f=0外还有会发现的解除了的解,显然无法用特殊值猜出。 xa??(x)2ln x?1h h(1)?1?a?0h(a)?2ln a?0,,令,注意到x2e?3e ln(3e)1a)f02(ln3e?h(3e)?2ln(3e?2ln(3e)?1?)?1?且。= e33e)e3ln(3f'(x)?0(1,a)h(x)h(x)(1,3e]内,及(13e在)至少还有一个零点,又在故+∞)内 单调递增,所以函数0在(,x1?x?a。,则有唯一零点,但此时无法求出此零点怎么办。我们 可以采取设而不求的方法,记此零点为从 00x?(x,a)(0,x))x?x(0,)x f x)0f()x f0f,x)f'(x f a?(a??)'('(f在时,;当而,当时,,即;当时, 000?2e?x(1,3)xa(ef?)(x4)a(??,恒成立,只要内单调递增,在对内单调递增。所以要使内单调递减,在0,. 22?f(x)?(x?a)ln x?4e,(1)?000成 立。?22f(3e)?(3e?a)ln(3e)?4e,(2)??a2320??2ln x?1?)h(xx f1a?2ln x?xe ln4xx?4,注意到函1)得, 又(,知3)将(3)代入(0000000x0231p x?exx ln2x ln x?x在(1.+ +∞)。再由()内单调递增,故数3)以及函数内单调递增,可得在[1,+∞02e2e2e?a?3e??a?3e3e3e??e13p a?。所以的取值范围为)解得,综上,a。由(2ln(3e)ln(3e)ln(3e23ea??3?。

导数压轴题处理专题讲解

导数压轴题处理专题讲解(上) 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 -

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知(1)讨论的单调性 (2)设,求证:例2. 已知函数,。(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有 。 例3. 设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212 ,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m …函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m >, 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+'…,当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

导数中的零点问题(学生版)

专题2.3导数中的零点问题 解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。 一、能直接分离参数的零点题目 此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。 例1.已知函数(),()ln a f x x g x x x =+=,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x ==-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。所以21a e e =+(注意:有一个根转化为图像只有一个交点即可)二、不能直接分离参数的零点问题(包括零点个数问题) 这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。 在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间的个数,二是参数影响函数的极值或最值,而通过这两个方向就可以影响函数的趋势图像,进而影响零点的个数,因此分类讨论思想在此类问题中必不可少。例2.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 注意:如果不是的大题没必要分类讨论,做出符合题意的图像反推即可 例3.已知函数2()ln 2f x x x b x =++--在区间1[,]e e 上有两个不同零点,求实数b 的取值范围。

2018届高三数学基础专题练习:导数与零点(答案版)

导数与函数的零点专题 研究方程根或函数的零点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. 例题精讲 例1、已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. 解析:f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2,由题设得-2 a =-2,所以a =1. (2)证明 由(1)知,f (x )=x 3-3x 2+x +2,设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0. 当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4,则g (x )=h (x )+(1-k )x >h (x ). h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)单调递减,在(2,+∞)单调递增,所以g (x )>h (x )≥h (2)=0. 所以g (x )=0在(0,+∞)没有实根. 综上,g (x )=0在R 有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 例2、已知函数 . (I)讨论的单调性;(II)若 有两个零点,求a 的取值范围. 【解析】(Ⅰ)()(1)2(1)(1)(2)x x f x x e a x x e a '=-+-=-+. ( i )当0a ≥时,则当1x >时,()0f x '>;当1x <时,()0f x '< 故函数()f x 在(,1)-∞单调递减,在(1,)+∞单调递增. ( ii )当0a <时,由()0f x '=,解得:1x =或ln(2)x a =- ①若ln(2)1a -=,即2 e a =-,则x R ?∈,()(1)()0x f x x e e '=-+≥ 故()f x 在(,)-∞+∞单调递增.

函数与导数压轴题中零点问题

导数压轴题零点问题练习题 一、解答题 1.(2020·省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,数k 的取值围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

利用导数解决函数零点问题

利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 ④综上所述送1分. )(x f ' )(x f

(三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2 --=存在唯一 的极大值点0x ,且202 2)(--<

导数问题中虚设零点的三大策略分析

导数问题中虚设零点的三大策略 导数在高中数学中可谓“神通广大”,是解决函数单调性、极值、最值、不等式证明等问题的“利器”.因而近几年来与导数有关的数学问题往往成为高考函数压轴题.在面对这些压轴题时,我们经常会碰到导函数具有零点但求解相对比较繁杂甚至无法求解的问题.此时,我们不必正面强求,可以采用将这个零点只设出来而不必求出来,然后谋求一种整体的转换和过渡,再结合其他条件,从而最终获得问题的解决.我们称这种解题方法为“虚设零点”法.下面笔者就一些高考题,来说明导数问题中“虚设零点”法的具体解题方法和策略. 策略1整体代换将超越式化简为普通式 如果f′(x)是超越形式(对字母进行了有限次初等超越运算包括无理数次乘方、指数、对数、三角、反三角等运算的解析式,称为初等超越式,简称超越式),并且f′(x)的零点是存在的,但我们无法求出其零点,这时采用虚设零点法,逐步分析出“零点”所在的范围和满足的关系式,然后分析出相应函数的单调性,最后通过恰当运用函数的极值与零点所满足的“关系”推演出所要求的结果.通过这种形式化的合理代换或推理,谋求一种整体的转换和过渡,从而将超越式化简为普通式,有效破解求解或推理证明中的难点. 例1(2015年全国高考新课标Ⅰ卷文21)设函数f(x)=e2x-alnx. (1)讨论f(x)的导函数f′(x)的零点的个数;

(2)证明:当a>0时,f(x)≥2a+aln2a. 解(1)f(x)的定义域为(0,+∞),f′(x)=2e2x-ax(x>0).由f′(x)=0,得2xe2x=a.令g(x)=2xe2x,g′(x)=(4x+2)e2x>0(x>0),从而g(x)在(0,+∞)单调递增,所以g(x)>g(0)=0. 当a>0时,方程g(x)=a有一个根,即f′(x)存在唯一零点; 当a≤0时,方程g(x)=a没有根,即f′(x)没有零点. (2)由(1),可设f′(x)在(0,+∞)的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;

导数和函数零点问题

导数和函数零点问题 Prepared on 24 November 2020

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-=

导数专题零点问题教师版

导数专题零点问题教师版 Modified by JEEP on December 26th, 2020.

导数专题(三)——零点问题 (2013昌平二模理)(18)(本小题满分13分)(零点问题) 已知函数2 1()ln (0).2 f x x a x a = -> (Ⅰ)若2,a =求()f x 在(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[1,e]上的最小值; (III )若()f x 在区间(1,e)上恰有两个零点,求a 的取值范围. (18)(本小题满分13分) 解:(I )2,a =212()2ln ,'(),2f x x x f x x x = -=- ()f x 在(1,(1))f 处的切线方程为2230.x y +-=………………………..3分 (Ⅱ)由2'().a x a f x x x x -=-= 由0a >及定义域为(0,)+∞,令'()0,f x x ==得 1,01,a ≤<≤即在(1,e)上,'()0f x >,)(x f 在[1,e]上单调递增, 因此,()f x 在区间[1,e]的最小值为1 (1)2 f = . ②若21e,1e ,a <<<<即在 (上,'()0f x <,)(x f 单调递减;在上, '()0f x >,)(x f 单调递增,因此()f x 在区间[1,e]上的最小值为1 (1ln ).2 f a a = - 2e,e ,a ≥≥即在(1,e)上,'()0f x <,)(x f 在[1,e]上单调递减, 因此,()f x 在区间[1,e]上的最小值为21 (e)e 2 f a =-. 综上,当01a <≤时,min 1()2f x =;当21e a <<时,min 1 ()(1ln )2 f x a a =-; 当2e a ≥时,2min 1 ()e 2 f x a =-. ……………………………….9分 (III) 由(II )可知当01a <≤或2e a ≥时,)(x f 在(1,e)上是单调递增或递减函数,不可能存在两个零点.

专题02导数与零点个数-2019年高考数学总复习之典型例题突破(压轴题系列)版含解析

专题02 导数与零点个数 导数与零点个数,对于考生来讲中等偏难,基本的思路是利用导数分析函数的单调性,确定函数的极值或最值,作出函数的大致图像,再数形结合可求得结果。 【题型示例】 1、设为实数,函数. (1)求的极值点; (2)如果曲线与轴仅有一个交点,求实数的取值范围. 【答案】 (1)的极大值点为,极小值点为.(2)或. 2、已知函数. (1)求的极值; (2)若函数的图象与函数的图象在区间上有公共点,求实数的取值范围. 【答案】 (1)极大值,无极小值; (2). 【解析】 (1)的定义域为, ,令得,

当时,,是增函数; 当时,,是减函数, 所以在处取得极大值, 无极小值. (2)①当时,即时, 由(1)知在上是增函数,在上是减函数, 所以, 因为的图象与的图象在上有公共点, 所以,解得,又,所以. ②当时,即时,在上是增函数, 所以在上最大值为, 所以原问题等价于,解得. 又,所以此时无解. 综上,实数的取值范围是. 3、设函数(其中). (Ⅰ)求函数的极值; (Ⅱ)求函数在上的最小值; (Ⅲ)若,判断函数零点个数.【答案】 (1)极小值,不存在极大值; (2) (3)1个. 【解析】 (Ⅰ), 由得,由得, 在单调递增,在单调递减. 极小值,不存在极大值.

(Ⅱ)由(Ⅰ)知,在单调递增,在单调递减. 当时,在单调递减,单调递增, ∴. 当时,在单调递增, ; (Ⅲ)由题意 求导得, 由得或,由得 所以在上单调递增,在上单调递减 当时,, 故函数只有一个零点. 4、已知函数. (I)若,求的极值; (II)若,函数有且只有一个零点,求实数的取值范围. 【答案】 (I)的极小值为;(II)或. 【解析】 (I)时,,其中 则得 当时,单调递减,当时,单调递增, 因而的极小值为; (II)若有且只有一个零点,即方程在上有且只有一个实数根,分离参数得,设,则, 又设,,而 因而当时,当时, 那么当时,单调递增,

(完整版)导数压轴题分类(6)---函数的隐零点问题(含答案)

导数压轴分类(6)---函数的隐零点问题 任务一、完成下面问题,总结隐零点问题的解题方法。 例1. [2013湖北理10] 已知a 为常数,函数)(ln )(ax x x x f -=有两个极值点21x x ,,且21x x <,则( ) A.)(1x f >0,)(2x f >21- B. )(1x f <0,)(2x f <2 1- C. )(1x f >0,)(2x f <21- D . )(1x f <0,)(2x f >21- 例2. [2012全国文21] 设函数2)(--=ax e x f x . (1)求函数)(x f 的单调区间; (2)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值。 k 的最大值=2 任务二、完成下面问题,体验隐零点问题的解题方法的应用。 2.1 [2015北京海淀二模理18] 设函数2ln 1)(x x x f -=. (Ⅰ)求函数)(x f 的零点及单调区间; (Ⅱ)求证:曲线x x y ln = 存在斜率为6的切线,且切点的纵坐标0y <1- 提示解析:(Ⅰ)函数)(x f 的零点为x e =,单调减区间32(0,)e ;单调增区间32(,)e +∞; (Ⅱ)x x y ln =存在斜率为6的切线即存在点000ln (,)x x x 处导数为6,于是020 1ln 6x x -=,即2001ln 60x x --=,令2()1ln 6f x x x =--为增函数,易判断所以01(,1)2x ∈,所以20000000 ln 1616x x y x x x x -===-为减函数,所以0001 2|231x y y =<=-=-

利用导数解决函数零点问题

1 利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上 面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 )(x f ' )(x f

2 (三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2--=存在唯一 的极大值点0x ,且2022)(--<

相关文档
最新文档