悬索桥结构计算理论

悬索桥结构计算理论

悬索桥结构计算理论

主要内容

?概述

?悬索桥的近似分析

?悬索桥主塔的计算

?悬索桥成桥状态和施工状态的精确计算

1.概述

1.1悬索桥的受力特征

悬索桥是由主缆、加劲梁、主塔、鞍座、锚碇、吊索等构件构成的柔性悬吊体系,其主要构成如下图所示。成桥时,主要由主缆和主塔承受结构自重,加劲梁受力由施工方法决定。成桥后,结构共同承受外荷作用,受力按刚度分配。

悬索桥各部分的作用

主缆是结构体系中的主要承重构件,受拉为主;

主塔是悬索桥抵抗竖向荷载的主要承重构件,受压为主;

加劲梁是悬索桥保证车辆行驶、提供结构刚度的二次结构,主要承受弯曲内力;

吊索是将加劲梁自重、外荷载传递到主缆的传力构件,是连系加劲梁和主缆的纽带,受拉。

锚碇是锚固主缆的结构,它将主缆中的拉力传递给地基。

1.概述(续)

?悬索桥计算理论的发展与悬索桥自身的发展有着密切联系

早期,结构分析采用线弹性理论(由于桥跨小,索自重较轻,结构刚度主要由加劲梁提供。

中期(1877), 随着跨度的增加,梁的刚度相对降低,采用考虑位移影响的挠度理论。

现代悬索桥分析采用有限位移理论的矩阵位移法。

?跨度不断增大的同时,加劲梁相对刚度不断减小,线性挠度理论引起的误差已不容忽略。因此,基于矩阵位移理论的有限元方法应运而生。应用有限位移理论的矩阵位移法,可综合考虑体系节点位移影响、轴力效应,把悬索桥结构非线性分析方法统一到一般非线性有限元法中,是目前普遍采用的方法。

?弹性理论

(1)悬索为完全柔性,吊索沿跨密布;

(2)悬索线性及座标受载后不变;

(3)加劲梁悬挂于主缆,截面特点不变;仅有二期恒载、活载、温度、风力等引起的内力。

计算结果:悬索内力及加劲梁弯距随跨经的增大而增大。

?挠度理论

与弹性理论不同之处仅在于:考虑悬索竖向变形对内力的影响(不考虑剪力变形、吊杆倾斜及伸缩变形,影响较小)。

线性挠度理论:忽略挠度理论中活载引起的主缆水平分力与竖向位移之间的非线性关系。

计算结果:加劲梁弯距铰弹性理论结果要小。

?有限位移理论

综合考虑各种非线性因素的影响,适于大跨径。

悬索桥设计的计算内容

精确合理地确定悬索桥成桥内力状态与构形;

合理确定悬索桥施工阶段的受力状态与构形,以期在成桥时满足设计要求;

精确分析悬索桥运营阶段在活载及其它附加荷载作用下的静力响应;

★悬索桥的设计计算要根据不同的结构形式、不同的设计阶段、不同的计算内容和要求来选用不同的力学模式和计算理论。基本上以计算主缆为主。

?悬索桥成桥状态的确定

小跨径悬索桥:确定桥成状态采用抛物线法。

由于主缆自重轻,成桥态主缆近似呈抛物线形。

大跨径悬索桥:主缆线型呈多段悬链线组成的索多边形,计算主缆线型主要有非线性循环迭代法和基于成桥状态的反算法。

2.悬索桥的近似分析

2.1成桥状态的近似计算法

什么是成桥状态计算?

成桥状态近似计算作如下基本假定:

1)主缆为柔性索,不计其弯曲刚度;

2)加劲梁恒载由主缆承担;

3)在主缆吊梁段,主缆、索夹、吊杆和加劲梁自重都

等效为沿桥长均布的荷载q;在无梁段,主缆自重沿索长均匀分布。

2.1成桥状态的近似计算法

主缆设计计算步骤:

1)导出主缆成桥态的线形、张力以及几何长度的计算公式;

2)扣除加劲梁恒载作用下主缆产生的弹性伸长量,得到主缆

自由悬挂态的缆长,即自重索长;

3)在索鞍两边无应力索长不变的情况下,用主缆在空挂状态

塔顶左、右水平力相等的条件求索鞍预偏量;

4)由自由悬挂状态下的缆长扣除主缆自重产生的弹性伸长,

得到主缆无应力长度。以中跨为例,说明成桥状态的计算。

2.2 加劲梁在竖向荷载作用下的近似分析 悬索桥加劲梁先铰接后固结的施工特点,决定了加劲梁在一期恒载作用下没有整体弯矩。

加劲梁竖向荷载主要指二期恒载和活载等.如图所示。 假定:忽略梁体剪切变形、吊杆的伸缩和倾斜变形对结构受力的影响,将离散的吊杆简化为一连续膜。微小索段的平衡方程为:

q dx

y d H 22q -=(18)

(19)

悬索桥计算模型

在成桥后竖向荷载p(x)作用下,荷载集度由q 变为q p ,外力作用下主缆和加劲梁产生挠度η,主缆挠度由y 变为(y+η),主缆水平拉力H q 变为(H p +H q ),根据式(18)有:

H d y dx H H d dx q H d y dx

p p q p q 222222++=--()η)q q (dx d )H H (dx y d H p 22q p 22p --=η++(20)

将(18)、(19)两式相减得:

(22)

以加劲梁为研究对象,在p(x)作用下加劲梁上的竖向荷载为:

(23)

加劲梁的弹性方程为:设EI 为常数,将(22)代入(20)整理得:式(23)就是挠度理论的基本微分方程。p 2222q q )x (p )x (q )dx

d EI (dx d -+==ηEI d dx H H d dx p x H d y dx

q p p 442222ηη-+=+()()q(x)=p(x)-(-q +q p )

(21)

(24)讨论:

(25)由于H p 是p(x)的函数,因此这一微分方程是非线性的。此外,方程中H q 、H p 和η均为未知,求解时还需要一个补充方程。

利用全桥主缆长度变化的水平投影为零这一边界条件:式中:L -两锚碇间的水平距离

式(25)中第三项进行分部积分,并利用x=0和x=L 时η=0的边界条件,有:

0=??L

dx H

E A dx t dx dy dx d dx dx p C C L L L cos cos 302000?α?η+-=???或

(28)

代入式(25)整理后得:

???=-=L L L

L

dx l f dx dx y d dx dy dx dx d dx dy 00222008ηηηη)1(0

t L p c c p tL dx L A E H αηγ-=????=-+L L L C C p

dx dx d dx dy dx t dx A E H 002030cos cos η?α?

???????===-=??,sec ,sec ,810203222L t L p dx L dx L l

f dx y d ??γ式中:α为线胀系数;t 为温度变化;E C A C 为主缆轴向刚度。

(27)(26)

最后,非线性微分方程要通过(23)和(27)两式迭代才能求解,尚达不到实用计算的要求。针对大跨径悬索桥活载远比恒载为小的特点,Godard提出了在式(23)中只考虑恒载索力对竖向荷载的抗力,形成了线性挠度理论。此时线性叠加原理和影响线加载均可应用,使计算得到了简化。李国豪教授在此基础上于1941年提出了等代梁法和奇异影响线的概念,揭示了悬索桥受力的本质,使挠度理论变为实用计算成为可能。下面对等代梁法作一简要介绍。

应该指出:线性挠度理论忽略了竖向荷载本身引起的主缆水平力对加劲梁受力的影响,这将使计算结果绝对值增大。因而,用于设计加劲梁是偏安全的。

2.3 水平静风荷载作用下的实用计算

水平静风荷载作用下悬索桥的变形如图所示。风载荷在桥上的实际分布是相当复杂的,在静风计算中,一般假定风荷载为沿桥跨方向均布的已知荷载。这样,作用在悬索桥上的风载将分别通过主缆和加劲梁传

到基础。风荷在主缆与加劲梁之间的传递

是由吊索完成的,其受力根据刚度分配。

可见研究静风荷载的计算问题,首先必须

研究风载在主缆和加劲梁上的分配问题。

简单的计算方法有均等分配法。

水平静风荷载作用下的悬索桥

这种方法假定横向风荷在加劲梁和主缆间产生的重分配力(实质上就是吊杆沿梁长每延米的水平分力)为沿梁长的均布荷载q ,索面和梁体在位移时保持刚性转动。于是,加劲梁和主缆跨中的水平位移δd 和δc 可写成:

???????+=-=248)(3845l H q q EI l c c d d ωδωδ式中:ωc ,ωd 分别为索、梁横向风荷集度;l ,EI 分别为悬索桥跨径和梁横向抗弯刚度;H 为主索水平拉力。

(33)

根据索面刚性转动的假定,有:

式中:f ,h 分别为主缆的矢高,加劲梁形心到吊点距离。由式(33)、(34)得:

将式(35)得到的q 值代回式(33),就可算出加劲梁和主缆的横向静风响应。

EIh H fl EIh H fl q c d 6.96.922+-=ωωf h c d =δδ(35)

(34)

悬索桥计算

*第八节悬索 悬索有许多工程应用,常见的有高压输电线、架空索道、悬索桥等。悬索结构两端固定,它和梁的主要区别在于悬索不能抵抗弯曲,只能承受拉力。在初步的力学计算中,假设悬索具有充分的柔软性,故称为柔索。本节讨论的悬索均为柔索。对于已经处于平衡状态的悬索,根据刚化原理可知,作用在悬索上的力应该满足刚体的平衡条件。同时需要注意的是,绳索不是刚体,平衡方程表示绳索平衡的必要条件但非充分条件。 工程实际中经常碰到的问题是:在给定载荷作用下,求悬索的形状、索内拉力和绳索长度,以及它们与跨度、垂度、载荷之间的关系,以作为设计、校核悬索的根据。 悬索在工作中受到的载荷可以分为两类:(1)集中载荷;(2)分布载荷。其中分布载荷中最常见的是水平均布载荷、沿索均布载荷。当不计钢索自重时,旅游胜地高空缆车的索道受到车厢集中力(即重力)的作用(图8-39a);装有吊篮的架空索道,同样受吊篮的集中力(即重力)的作用。这些都是悬索受集中载荷作用的例子。悬索直拉桥主索上承受的载荷可看成是水平均布载荷(图8-39b)。高空输电线(图8-39c)和舰船的锚链上承受的载荷可看成是沿索均布载荷。 (a) (b) (c) 图8-39 当悬索两支座A和B高度相同时,两个支承点之间的水平距离称为跨度;在载荷作用下,悬索上每一点下垂的距离称为垂度,由悬挂点到最低点的垂直距离称为悬索的垂度。在悬索计算中,跨度和索上最低点的垂度通常是已知的。 一、集中载荷 设绳索(柔索)连接在两个固定点A和B并有n个垂直集中载荷P1、P2、…、P n,如图8—39(a)所示,绳索的重力与绳索承受的载荷相比可以忽略。因此当绳索系统处于平衡状态时,相邻载荷之间的绳索段AC1、C1C2、C2C3和C3B均被拉紧成直线段,即在集中载荷作用下,绳索成折线状。故绳索段AC1、C1C2、C2C3和C3B均可以当作二力杆,绳索中任

大跨极窄人行悬索桥动力特性及风振响应研究

第40卷第9期建 筑 结 构2010年9月 大跨极窄人行悬索桥动力特性及风振响应研究 熊耀清, 何云明, 吴小宾 (中国建筑西南设计研究院有限公司,成都610081) [摘要] 以一个跨度199m 、宽跨比仅1P 132,且地处峡谷的钢结构柔性悬索桥为工程背景,采用ANSYS 有限元软件进行了大跨极窄人行悬索桥动力特性及非线性风振响应研究。结果表明,该类桥的基本周期较通常的大型公路悬索桥明显偏短,采用抗风缆的抗风措施能够改变结构振型的排列顺序和改善结构抗风性能;采用基于线性滤波法的自回归(AR)模型应用MATLAB 模拟了考虑桥址风特性的水平及竖向脉动风时程,结果表明满足分析与设计需求;比较了水平及水平和竖向风工况下有无抗风措施时悬索桥的非线性风振响应,结果表明结构抗风性能满足安全要求。 [关键词] 大跨极窄悬索桥;动力特性;桥址风特性;非线性风振;抗风措施 Research on dynamic characteristics and wind vibration response of a pedestrian large -span and slender suspension bridge Xiong Yaoqing,He Yunming,Wu Xiaobin (Chi na South west Architectural Design and Research Institute Co.,Ltd.,Chengdu 610081,China) Abstract :Based on a steel truss flexible suspension bridge in mountainous area,which has the main span of 199m and the wide -span ratio of 1P 132,the dynamic characteristics and nonlinear wind vibration response of the pedestrian large -span and slender suspension bridge were analyzed by ANSYS.The resul ts indicate that the basic period of the bridge is shorter than that of general large high way suspension bridge obviously,and the wind fortification measures can change dynamic characteristic of the suspension brid ge and can increase its wind resistance performance.Considering the wind characteri stics of the bridge si te,the wind load history was simulated with AR model by MATLAB https://www.360docs.net/doc/652788883.html,pared the nonlinear wind vibration response with and wi thou t forti fication measures under horizontal and horizontal &vertical wind load,i t shows that the wind resistance performance of the brid ge is qualified when i t comes to safety requirement. Keywords :large -span and slender suspension bridge;dynamic characteristic;wind characteristics of the bridge site;nonlinear wind vibration;wind fortification measures 作者简介:熊耀清,博士,高级工程师,Emai l:xyq729730@https://www.360docs.net/doc/652788883.html, 。 0 引言 大跨度、窄桥面悬索桥造价低廉、施工方便,在我 国西部山区应用较多。因其上部结构刚度较小,对风敏感,且多建于风场复杂的峡谷、山口等特殊地形山区[1],导致结构所承受的风荷载不同于常规结构,从而对抗风设计提出了更高的要求。而现有的大跨悬索桥的风振响应分析都是基于大型公路桥梁[2,3],现行桥梁设计规范对于大跨极窄的人行悬索桥没有相关规定。为给该类悬索桥的抗风设计及施工提供基本数据,以某景区的人行悬索桥为工程背景,研究了其结构自身的动力特性及桥址处山区风特性,进行了详细的风荷载静力及非线性风振响应分析,并比较了采用加抗 风缆、栏杆、中央扣等抗风措施后悬索桥的抗风性能。1 工程概况 某悬索桥地处低山丘陵地带,山体呈V 形走廊,海拔高度650~700m,桥体横跨东、西两岸,桥面相对谷底的垂直高度约为100m 。该桥主要用于连接两岸,桥型 布置如图1所示。采用单跨钢结构柔性悬索桥形式,跨度199m,主缆间距115m,矢跨比1P 1312,宽跨比达1P 132,吊杆间距310m 。主缆为悬索桥主要承重结构,两端固定于锚碇,两岸桥塔为主缆提供中间支承(在塔顶设置主索鞍)。加劲梁及桥面系通过吊杆悬挂于主缆上,并在主塔处设置支座,提供支承,抗风缆通过抗风拉索与桥面横梁相连,并组成一个与铅垂面呈30b 夹角的平面。主缆采用2根7<38的平行钢丝束索,抗拉强度1770MPa;吊杆采用圆钢<40;抗风缆采用2根<44的钢丝束索,抗拉强度1770MPa 。桥面系包括加劲梁、桥面铺装、栏杆等,加劲梁为梁格体系,由纵、横梁及风联钢构(即桥面水平撑)焊接而成,纵、横梁分别采用工 字钢I14,I20,材质为Q345;桥面铺装为宽300mm 、厚80mm 松木板条,间缝10mm,木板采用锚栓与桥面纵梁连接,栏杆采用<50钢管,间距115m;桥塔为钢筋混凝 148

悬索桥的计算方法及其历程1

悬索桥的计算方法及其发展 悬索桥是一种古老的桥梁结构形式,也是目前大跨度桥梁的主 要结构型式之一。悬索桥主要是由缆索、吊杆、加劲梁、主塔、锚 碇等构成。从结构形式上看,它是一种由索和梁所构成的组合体系,在受力本质上它是一种以柔性索为主要承重构件的悬挂结构。悬索 桥随着跨度的增大,柔性加大,在荷载作用下会呈现出较强的非线性,所以悬索桥宜采用非线性方法来进行结构分析。 考虑悬索桥非线性因素的结构分析方法主要有挠度理论和有限 位移理论。挠度理论考虑了悬索桥几何非线性的主要因素,可用比 较简便的数值方法来分析,又有影响线可资利用,故很适用于初步 设计阶段的结构设计计算。有限位移理论则全面地考虑了悬索桥几 何非线性因素,计算结果较挠度理论精确,但计算过程复杂,直接 用于设计计算有诸多不便和困难。 悬索桥挠度理论是一种古典的悬索桥结构分析理论。这种理论 主要考虑悬索和加劲梁变形对结构内力的影响,在中小跨度范围内 其计算结果比较接近结构的实际受力情况,具有较好的精度。悬索 桥挠度理论主要分为多塔悬索桥挠度理论和自锚式悬索桥挠度理论。 最初的悬索桥分析理论是弹性理论。弹性理论认为缆索完全柔性,缆索曲线形状及坐标取决于满跨均布荷载而不随外荷载的加载 而变化,吊杆受力后也不伸长,加劲梁在无活载时处于无应力状态。弹性理论用普通结构力学方法即可求解,计算简便,至今仍在跨径 小于200米的悬索桥设计中应用[1]。但弹性理论假定缆索形状在加 载前后不发生变化,显然与悬索桥的可挠性不符,因此发展出计入 变形影响的悬索桥挠度理论。

古典的挠度理论称为“膜理论”。它是将悬索桥的全部近视看成是一种连续的不变形的膜,当缆索产生挠度时,加劲梁也随之产生相同的挠度。由于根据作用于缆索单元上吊杆力与缆索拉力的垂直分力平衡以及作用于加劲梁单元上的外荷载及吊杆力与加劲梁弹性抗力平衡的条件建立力的平衡微分方程而求解。挠度理论和弹性理论的最大区别是摒弃了弹性理论中关于缆索形状不因外荷载介入而改变的假设,相应建立缆索在恒载下取得平衡的几何形状将因外荷载介入而改变及同时计入缆索因外荷载所增索力引起的伸长量的假设,极大的接近悬索桥主索的实际工作状态,对悬索桥的发展起到了很大的推动作用。 悬索桥的挠度理论也是一种非线性的分析方法,至今仍不失为分析悬索桥的较简单实用的手段。但挠度理论在基本假设中忽略了吊杆的变位影响及加劲梁的剪切变形影响等,使分析结果的精度受到限制。随着计算方法、计算手段的发展,悬索桥的计算理论也发展到将悬索桥作为大位移构架来分析的有限位移理论。有限位移理论将整个悬索桥包括缆索、吊杆、索塔、加劲梁全部考虑在内,分析时可以将各种二次影响包括进去,从而使悬索桥的分析精度达到新的水平。 有限位移理论是20世纪60年代提出的计算理论。它是一种精确的理论,不需挠度理论所作的那些假定。其计算值一般要小于挠度理论[3]。根据参考文献,主跨为380m时,用有限位移理论计算的内力、挠度值,比挠度理论小10﹪;主跨768m时,在半跨加均

桥梁动力分析

模拟环境对塔玛悬索桥动力特性的影响 摘要 为了达到结构健康监测的目的,结构在环境因素的影响下,去理解、模拟和补充环境变化对结构动力特性的影响是极其重要的。本文中,已经研究了从英国塔玛悬索桥中测得的加速度值,这些加速度值是用数据激励随机子空间系统识别方法处理的,并且用温度和风载对结构自振频率的影响进行了环境变量的模拟。本文应用了两种方法:1)基于有效识别环境效应所致的线性变化规律的主因子分析法(PCA) ;2)元模型法,这是一种通过多项式函数的组合变化来确定系统输入输出关系的纯数学方法。研究发现在所有环境因素中温度是影响桥梁自振频率最关键的因素。 引言 环境因素对土木结构自振频率的影响是导致结构健康监测技术只能应用于实验室而不能在实际工程结构中得到应用的主要原因。在实验室发展起来的损伤检测技术往往无法在具有实验室相同条件的现场发挥作用;作为衡量破坏敏感性的特征参数也通常对工作环境引起的结构动力反应变化很敏感,而这种情况在实验室是不会出现的。这一方面的研究在过去的几年中得到了很大的关注,处理这个问题的方法在Sohn的关于工作环境对结构健康监测的影响一文中有很好的阐述。 本文研究了环境因素对塔玛悬索桥自振频率的影响,尤其是温度和风速的影响。以前主要集中在温度变化对桥梁模态频率相关性的研究上,事实上,温度被认为是环境因素中对模态特性影响最主要的因素。进一步的研究已经转移到了风载对大跨度桥梁的影响。尤其是发现了日本的白鸟(Hakucho)悬索桥的自振频率随着风速的增加而降低,在此过程中没有考虑温度的影响。在文献[6]中对大跨悬索桥的重型车辆荷载的影响进行了研究,发现车辆荷载对大跨度桥梁的自振频率影响很小或者没有。 在本项研究中诸如交通荷载和湿度等环境因素被忽略,认为本论文所讨论的桥梁不会受到交通荷载的影响,由于桥址的原因,也认为湿度不作为考虑的因素。这篇文章的目的主要是确定促使所观察到的引起桥面日常自由振动的主要因素。 塔玛悬索桥 塔玛大桥(如图1)是一座跨度为643m的大跨度悬索桥,它跨越塔玛河,将康沃尔郡(Wornwall)的索尔塔什(Saltash)市与德文郡(Devon)的普利茅斯(Plymouth)连接在一起。自1961年建成后它成为两个地区的一个至关重要的交通纽带。这座桥具有对称几何形状的常规设计,主跨为335m,两个边跨为114m。钢筋混凝土主塔高达73m,采用沉井基础并直达岩面。主缆直径为350mm,每根主缆由31根钢丝捻成,并设置间距为9.1m的垂直钢索。加劲桁架为5.5米厚,由焊接的空腹箱梁组成。在2001年,按照欧盟指示对这座桥进行了加强和扩宽。尤其是采用了18根直径为100mm的预应力钢索对原来的悬索体系进行了补强,原来复合型的主桥面板被一个三车道的正交各向异性钢板代替,在桁架的每侧加上了单车道悬臂梁。 现在对塔玛悬索桥布置了几种监测系统。2007年菲尔德大学(the University of Sheffield)的振动工程科开始监测桥面板和缆索的动力响应。这个监测系统包括8个缆索

悬索桥迈达斯操作经验

在学**阶段的各种设计练**及实际工作中,可能会经常遇到悬索桥的设计计算。本文结合笔者自身体验,叙述Midas/Civil计算悬索桥的基本步骤及使用中的心得技巧和注意事项。注:本文以Midas/Civil 2012为参照版本。 Midas/Civil计算悬索桥中的关键问题在于初始成桥线性的确定,这是由于悬索桥为大变形二阶柔性结构决定的。其分析过程及每步中的要点如下: 1.建立新文件,为了便于区分和查找,建议命名时加入文件创建日期及文件主要特征等信息; 2.按照初步设计,定义主缆、桥塔、横梁、加劲梁、横隔板等部件的材料及截面特性值; 3.在结构-悬索桥按钮点出“悬索桥建模助手”,在其中输入相关信息,利用建模助手功能生 成初步模型以便后续修改。在此需指出,利用悬索桥建模助手可以确定索单元大致的初始内力,利于后面的精细分析。实际上也完全可以自行建立悬索桥的全部梁、索单元,再进行非线性分析控制和迭代,但该步骤比较繁琐,因此一般推荐采用悬索桥建模助手生成初步模型; 在建模助手中有几个要点和技巧: 1)建模助手采用的默认对象是双塔三跨悬索桥。当建立的模型为双塔单跨悬索桥时,可以在边跨长度框内输入一个很小的数值(如1e-6),一般在Midas/Civil中,距离小于1e-5的节点将被合并,从而达到实际只建立了中跨的效果; 2)桥面系宽度,在桥塔竖直、索面竖直时指的是桥塔间距,也即主缆间距、吊杆吊点间距,在索面倾斜或桥塔倾斜时,一般理解为吊杆在加劲梁上的吊点间距更加方便; 3)桥面系单位重量,此处输入的单位重量必须等于加劲梁的自重加上二期恒载等以梁单元均布荷载形式施加给加劲梁单元的梁单元荷载的和,否则后面难以计算收敛。另外,当建立的模型为双塔单跨悬索桥时,应勾选此处“详细”对话框,并在对话框中分别设置边、中跨桥面系荷载集度,为了便于收敛,可以将实际不存在的边跨设置一个非常小的集度,如1e-6; 4)其余各项按照对话框要求及初步设计填写即可,点击“实际形状”,会给出初步计算的主缆横向内力,该值应该记下,以便在后面悬索桥分析控制中使用; 5)填写完成后建议命名并保存该wzd文件,以便后面再修改或重复利用。 4.建模助手填写完毕后,点击“确定”,即开始进行第一轮悬索桥生成时的初步非线性分析 计算,根据悬索桥复杂程度不等,通常该过程会持续数秒到数十秒,此时宜耐心等待。该过程运行结束后,程序会自动生成几何刚度初始荷载,并自动生成“自重”荷载工况; 5.悬索桥建模助手生成的是程序默认形式的地锚式竖直索面悬索桥,此时我们需根据实际桥 梁情况进行修改:比如自锚式悬索桥、空间主缆悬索桥、单塔悬索桥等,修改的内容包括节

悬索桥挠度理论非线性分析计算方法

悬索桥挠度理论非线性分析计算方法 摘要:为配合大跨度悬索桥的设计,采用悬索桥挠度理论的实用计算方法,提出了通过初拟结构尺寸挠度理论分析改进和优化截面尺寸的反复计算来确定悬索桥各部分结构尺寸的计算方法。 关键词:悬索桥,挠度理论,结构设计,计算方法 悬索桥是一种传统的桥梁结构形式。由于它的跨越能力在各种桥梁结构形式中最大,故一直是大跨和特大跨桥梁的主要形式。悬索桥通常由承重缆索、支承缆索的索塔,锚固缆索的锚碇、直接承受交通荷载的加劲梁以及将加劲梁与缆索连在一起的吊杆组成,因而在理论上悬索桥应是索和梁的组合结构体系。但因悬索桥的跨度一般很大,加劲梁的刚度在全桥刚度中所占比重很小,故在受力本质上悬索桥属于柔性悬挂体系,它在外荷载作用下将产生相当大的变形,如仍按小变形理论进行线性分析,将不能反映实际结构的受力。因此,大跨度悬索桥的分析必须计入内力和结构变形的影响,否则将引起较大的误差。不过悬索桥和拱桥相反,不计入结构变形影响通常将导致缆索内力计算偏大而不是偏于不安全,这也是早期修建的一些悬索桥至今仍能使用的原因之一。 最初的悬索桥分析理论是弹性理论。弹性理论认为缆索完全柔性,缆索曲线形状及坐标取决于满跨均布荷载而不随外荷载的加载而变化,吊杆受力后也不伸长,加劲梁在无活载时处于无应力状态。弹性理论用普通结构力学方法即可求解,计算简便,至今仍在跨径小于200米的悬

索桥设计中应用[1]。但弹性理论假定缆索形状在加载前后不发生变化,显然与悬索桥的可挠性不符,因此发展出计入变形影响的悬索桥挠度理论。 古典的挠度理论称为膜理论。它是将悬索桥的全部近视看成是一种连续的不变形的膜,当缆索产生挠度时,加劲梁也随之产生相同的挠度。由于根据作用于缆索单元上吊杆力与缆索拉力的垂直分力平衡以及作用于加劲梁单元上的外荷载及吊杆力与加劲梁弹性抗力平衡的条件建立力的平衡微分方程而求解。挠度理论和弹性理论的最大区别是摒弃了弹性理论中关于缆索形状不因外荷载介入而改变的假设,相应建立缆索在恒载下取得平衡的几何形状将因外荷载介入而改变及同时计入缆索因外荷载所增索力引起的伸长量的假设,极大的接近悬索桥主索的实际工作状态,对悬索桥的发展起到了很大的推动作用[2]。 悬索桥的挠度理论也是一种非线性的分析方法,至今仍不失为分析悬索桥的较简单实用的手段。但挠度理论在基本假设中忽略了吊杆的变位影响及加劲梁的剪切变形影响等,使分析结果的精度受到限制。随着计算方法、计算手段的发展,悬索桥的计算理论也发展到将悬索桥作为大位移构架来分析的有限位移理论。有限位移理论将整个悬索桥包括缆索、吊杆、索塔、加劲梁全部考虑在内,分析时可以将各种二次影响包括进去,从而使悬索桥的分析精度达到新的水平。 有限位移理论是20世纪60年代提出的计算理论。它是一种精确的理论,不需挠度理论所作的那些假定。其计算值一般要小于挠度理论[3]。根据

Midas Civil悬索桥分析功能使用

MIDAS/Civil悬索桥分析功能使用说明 资料制作日期:2006-8-9 对应软件版本:Civil 2006 1.使用MIDAS/Civil分析悬索桥的基本操作步骤 A.定义主缆、主塔、主梁、吊杆等构件的材料和截面特性; B.打开主菜单“模型/结构建模助手/悬索桥”,输入相应参数(各参数意义请参考联 机帮助的说明以及下文中的一些内容); C.将建模助手的数据另存为“*.wzd”文件,以便以后修改或确认; D.运行建模助手后,程序会提供几何刚度初始荷载数据和初始单元内力数据,并自动 生成“自重”的荷载工况; E.对模型根据实际状况,对单元、边界条件和荷载进行一些必要的编辑后,将主缆上 的各节点定义为更新节点组,将塔顶节点和跨中最低点定义为垂点组; F.定义悬索桥分析控制数据后运行。运行过程中需确认是否最终收敛。运行完了后程 序会提供平衡单元节点内力数据; G.删除悬索桥分析控制数据,将所有结构、边界条件和荷载都定义为相应的结构组、 边界组和荷载组,定义一个一次成桥的施工阶段,在施工阶段对话框中选择“考虑 非线性分析/独立模型”,并勾选“包含平衡单元节点内力”; H.运行分析后查看该施工阶段的位移是否接近于0以及一些构件的内力是否与几何刚 度初始荷载表格或者平衡单元节点内力表格的数据相同; I.各项结果都满足要求后即可进行倒拆施工阶段分析或者成桥状态的各种分析; J.详细计算原理请参考技术资料《用MIDAS做悬索桥分析》。 2.建模助手中选择三维和不选择三维的区别? A.选择三维就是指按空间双索面来计算悬索桥,需要输入桥面的宽度,输入的桥面系 荷载将由两个索面来承担; B.不选择三维时,程序将给建立单索面的空间模型,不需输入桥面的宽度,输入的桥 面系荷载将由单索面来承担。 3.建模助手中主梁和主塔的材料、截面以及重量是如何考虑的? A.因为索单元必须考虑自重,因此建模助手分析中对于主缆和吊杆的自重,程序会自 动考虑; B.但在建模助手中主梁和主塔的材料和截面并不介入分析,程序只是根据输入的几何 数据,给建立几何模型,以便进行下一步的悬索桥精密分析。即,程序不会根据定

自锚式与地锚式悬索桥动力特性对比分析

文章编号:1671-2579(2010)04-0156-04 自锚式与地锚式悬索桥动力特性对比分析 王立峰,孙勇,王子强 (东北林业大学土木工程学院,黑龙江哈尔滨 150040) 摘 要:以朝阳市黄河路自锚式悬索桥主桥为研究对象,采用有限元软件M idas/Civ il 建立该桥的有限元动力计算模型。考虑重力刚度的影响,对该桥的动力特性进行计算分析,得到结构的自振频率和振型,同时建立与该桥结构参数完全相同的地锚式悬索桥模型进行对比分析,结合计算结果对自锚式、地锚式悬索桥的动力特性和刚度特点进行讨论。最后,在保证初始刚度不变的情况下,考虑不同结构参数变化对自锚式、地锚式悬索桥固有频率的影响,对结果进行分析。 关键词:自锚式悬索桥;动力特性;结构分析 收稿日期:2010-04-10 作者简介:王立峰,男,博士研究生,副教授.E-mail:co mputerw lf@126.co m 1 工程概况 朝阳市黄河路大桥位于朝阳市黄河路东段,向东跨越大凌河,与凤凰组团开发区相连。大桥全长508.32m,主桥为跨径326m 的预应力混凝土自锚式悬索桥,桥跨布置为73+180+73m ,设计荷载为城市 -A 级,人群荷载4.0kN/m 2,地震动峰值加速度为0.1g ,相当于7度,按8度设防,设计洪水频率1/100, 最高水位164.7m 。 2 有限元模型建立 利用有限元法分析桥梁结构时,有多种离散模型,常用的有空间梁单元法、板壳法、三维实体单元法及梁格法。综合考虑自锚式悬索桥的几何非线性影响,根据各构件的形式和受力特点,结构可离散为两种单元:索单元和梁单元。 3 结论 (1)第一次设计中腹板主拉应力虽然符合有关规范要求,但主拉应力较大,最大达2.44MPa,经过优化设计后,最大主拉应力已降至1.77M Pa,降低了27%。效果明显。成桥试验结果也证明了此点。(2)箱梁截面在中跨支点处顶板截面存在较大的剪力滞效应,剪力滞系数 t =1.61,在设计中应注意。(3)纵向预应力钢束尽量布置在靠近腹板的位置,可减小剪力滞效应带来的应力分布不均匀的影响。参考文献: [1] JT J 023-85 公路钢筋混凝土及预应力混凝土桥涵设 计规范[S]. [2] 长沙市规则设计院.长沙市三汊矶湘江大桥结构施工图设计图纸[Z],2004. [3] 张士铎,邓小华,王文州.箱形薄壁梁剪力滞效应[M ].北 京:人民交通出版社,1998. [4] 张士铎,王文州.桥梁工程结构中的负剪力滞效应[M ]. 北京:人民交通出版社,2004. [5] 贺拴海.桥梁结构理论与计算方法[M ].北京:人民交通 出版社,2003. [6] 王焕定,吴德伦.有限单元法及计算程序[M ].北京:中国 建筑工业出版社,2004. [7] 张德锋,茅振伟,吕志涛.预应力混凝土结构裂缝控制及 其可靠性分析[J].工业建筑,2003(4). [8] 袁承斌,张德锋,刘桂荣,等.裂缝对预应力混凝土结构耐 久性影响的试验研究[J].工业建筑,2003(3). [9] 任明飞,胡迎新,郑机.东海大桥近岛段工程预应力混凝 土顶推连续梁的设计与施工[J].桥梁建设,2005(6).[10] 李承君,周世军.顶推法施工的曲线连续梁桥截面实测 应力分析[J].铁道工程学报,2005(2). 156 中 外 公 路 第30卷 第4期2010年8月

斜拉桥与悬索桥计算理论简析

斜拉桥与悬索桥计算理论简析 以前忘记在哪里看到这篇文章了,感觉就像是研究生交的作业一样,呵呵,不过深入浅出,讲的挺明白,把斜拉桥和悬索桥基本的东西都写出来了。我把它修改了一下贴出来,大家可以当科普性的东西看看。 正文:斜拉桥与悬索桥是桥梁结构中跨越能力最大的两种桥型,随着桥梁建造向大跨径方向发展,它们越来越成为人们研究的热点。通过大跨径桥梁理论的学习,我对斜拉桥与悬索桥的计算理论有了较为系统的了解。在本文中,我想从一个设计者的角度,在概念层次上,对斜拉桥与悬索桥的计算理论做个总结,以加深自己对这些计算理论的理解。 一、斜拉桥的计算理论斜拉桥诞生于十七世纪,在最近的五十年间,斜拉桥有了飞速的发展,成为200米到800米跨径范围内最具竞争力的桥梁结构形式之一。有理由相信,在大江河口的软土地基上或不适合建造悬索桥的地区,有可能修建超过1200米的斜拉桥。斜拉桥是塔、梁、索三种基本结构组成的缆索承重结构体系,一般表现为柔性的受力特性。 (一)、斜拉桥的静力设计过程 1、方案设计阶段此阶段也称为概念设计。本阶段的主要任务是凭借设计者的经验,参考别的斜拉桥的设计,结合自己的分析计算,来完成结构的总体布置,初拟构件尺寸。根据此设计文件,设计者或甲方(有些地方领导说了算)进行

方案比选。 2、初步设计阶段本阶段在前一阶段工作的基础上进一步细化。主要任务是:通过反复计算比较以确定恒活载集度、恒载分析、调索初定恒载索力、修正斜拉索截面积、活载及附加荷载计算、荷载组合及梁体配索、索力优化以及强度刚度验算等。 3、施工图设计阶段此阶段要对斜拉桥的每一部位以及每一施工阶段进行计算,确保结构安全。主要计算内容有:构件无应力尺寸计算、对施工阶段循环倒退分析、计算斜拉索初张力、预拱度计算、强度刚度稳定性验算以及前进分析验算等。 (二)、斜拉桥的计算模式 1、平面杆系加横分系数此模式用在概念设计阶段研究结构的设计参数,以求获得理想的结构布置。还可用于技术设计阶段,仅仅计算恒载作用下的内力。 2、空间杆系计算模式此模式用在空间荷载(风载、地震荷载以及局部温差等)作用下的静力响应分析。此模式按照主梁可分为三种:“鱼骨”模式、双梁式模式与三梁式模型。 3、空间板壳、块体和梁单元计算模式此模式用在计算全桥构件的应力分布特性,这类模式要特别注意不同单元结合部的节点位移协调性。 4、从整体结构中取出的特殊构件此模式主要是为了研究斜拉索锚固区等的应力集中现象。根据圣维南原理,对结构进行二次分析。 (三)、斜拉桥的计算理论根据线性与非线性将其分为三类。 1、微小变形理论,即弹性理论这种计算方法将拉索简化为桁单元,其余部分用梁单元进行模拟,不考虑非线性影响。此计算方法适用于中小跨径的斜拉桥,或用于方案设计阶段。 2、准非线性计算理论包

自锚式悬索桥的受力原理及优缺点

自锚式悬索桥的受力原理及优缺点 自锚式悬索桥的上部结构包括:主梁、主缆、吊杆、主塔四部分。传力路径为:桥面重量、车辆荷载等竖向荷载通过吊杆传至主缆承受,主缆承受拉力,而主缆锚固在梁端,将水平力传递给主梁。由于悬索桥水平力的大小与主缆的矢跨比有关,所以可以通过矢跨比的调整来调节主梁内水平力的大小,一般来讲,跨度较大时,可以适当增加其矢跨比,以减小主梁内的压力,跨度较小时,可以适当减小其矢跨比,使混凝土主梁内的预压力适当提高。由于主缆在塔顶锚固,为了尽量减少主塔承受的水平力,必须保证边跨主缆内的水平力与中跨主缆产生的水平力基本相等,这可以通过合理的跨径比来调节,也可以通过改变主缆的线形来调节。另外,自锚式悬索桥中的恒载由主缆来承受,而活载还需要由主梁来承受,所以主梁必须有一定的抗弯刚度,主梁的形式以采用具有一定抗弯刚度的箱形断面较为合适。 自锚式悬索桥有以下的优点:

①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。 ②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,也可做成单塔双跨的悬索桥。 ③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。 ④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。 ⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。 ⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。 自锚式悬索桥也不可避免地有其自身的缺点:

悬索桥结构计算理论

悬索桥结构计算理论

悬索桥结构计算理论 主要内容 ?概述 ?悬索桥的近似分析 ?悬索桥主塔的计算 ?悬索桥成桥状态和施工状态的精确计算

1.概述 1.1悬索桥的受力特征 悬索桥是由主缆、加劲梁、主塔、鞍座、锚碇、吊索等构件构成的柔性悬吊体系,其主要构成如下图所示。成桥时,主要由主缆和主塔承受结构自重,加劲梁受力由施工方法决定。成桥后,结构共同承受外荷作用,受力按刚度分配。

悬索桥各部分的作用 主缆是结构体系中的主要承重构件,受拉为主; 主塔是悬索桥抵抗竖向荷载的主要承重构件,受压为主; 加劲梁是悬索桥保证车辆行驶、提供结构刚度的二次结构,主要承受弯曲内力; 吊索是将加劲梁自重、外荷载传递到主缆的传力构件,是连系加劲梁和主缆的纽带,受拉。 锚碇是锚固主缆的结构,它将主缆中的拉力传递给地基。

1.概述(续) ?悬索桥计算理论的发展与悬索桥自身的发展有着密切联系 早期,结构分析采用线弹性理论(由于桥跨小,索自重较轻,结构刚度主要由加劲梁提供。 中期(1877), 随着跨度的增加,梁的刚度相对降低,采用考虑位移影响的挠度理论。 现代悬索桥分析采用有限位移理论的矩阵位移法。 ?跨度不断增大的同时,加劲梁相对刚度不断减小,线性挠度理论引起的误差已不容忽略。因此,基于矩阵位移理论的有限元方法应运而生。应用有限位移理论的矩阵位移法,可综合考虑体系节点位移影响、轴力效应,把悬索桥结构非线性分析方法统一到一般非线性有限元法中,是目前普遍采用的方法。

?弹性理论 (1)悬索为完全柔性,吊索沿跨密布; (2)悬索线性及座标受载后不变; (3)加劲梁悬挂于主缆,截面特点不变;仅有二期恒载、活载、温度、风力等引起的内力。 计算结果:悬索内力及加劲梁弯距随跨经的增大而增大。

悬索桥构造简介

11.4 悬索桥构造简介 1. 桥塔 桥塔也称主塔,它是支承主缆的主要构件,分担主缆所受的竖向荷载,并传递到下部的塔墩和基础。另外,在风荷载和地震荷载的作用下,还可对全桥的总体稳定提供安全保证。 按采用材料分,桥塔有混凝土塔和钢塔,因混凝土塔价格较低,一般都采用混凝土桥塔。 按桥塔外形分,在横桥向一般有刚构式、桁架式和混合式三种结构形式,如图11.6所示。刚构式简洁明快,可用于钢桥塔或混凝土 桥塔,桁架式和混合式由于交叉斜杆的施工对 混凝土桥墩有较大困难,只能用于钢桥塔。 (a). 桁架式;(b) 刚构式;(c). 混合式 图11.6 桥塔横桥向示意图 在顺桥向,按力学性质可分刚性塔、柔性 塔和摇柱塔三种结构形式。刚性塔可做成单柱 形或A 字形,一般多用于多塔悬索桥中,可 提高结构纵向刚度,减小纵向变位,从而减小 梁内应力;柔性塔允许塔顶有较大的变位,是 现代悬索桥中最常用的桥塔结构,一般为塔柱 下端做成固结的单柱形式;摇柱塔为下端做成 铰接的单柱形式,一般只用于跨度较小的悬索 桥。 2. 主缆 主缆通过塔顶的鞍座悬挂于主塔上并锚固于两端锚固体中。主缆的布置形式一般是采用每桥两根,平行布置于加劲梁两侧吊点之上。 现代大跨度悬索桥多采用平行钢丝主缆,它是由平行的高强、冷拔、镀锌钢丝组成。钢丝直径大都在5mm 左右。视缆力大小,每根主缆可以包含几千乃至几万根钢丝。为便于施工安装和锚固,主缆通常被分成束股编制架设(一般每根主缆可分成几十乃至几百股,每股内的丝数大致相等),并在两端锚碇处分别锚固。为了保护钢丝,并使主缆的形状明确,主缆的其余区段则挤紧成规则的圆形,然后缠以软质钢丝捆扎并进行外部涂装防腐。 对一座具体的桥梁而言,如果钢丝直径已经选定,主缆所含钢丝总数n 就是确定的。但组成具有n 根钢丝的主缆应编制成多少股钢束n l 和每股钢束含多少根钢丝n 2,则根据主缆的编制方法确定。钢丝束股的编织方法通常有空中编丝组缆(Air Spinning )法和预制平行钢丝束股(Prefabricated Parallel Strands )法。前者简称AS 法, 后者简称PS 法或PWS (Parallel Wire Strands )法。AS 法每缆 所含总股数较少,约30~90股,但每股所含丝数n 2多达 400~500根以上。因而其单股锚固吨位大,锚固空间相对集 中。PWS 法束股通常按正六边形平行排列定型,其主缆空 隙率可以最小,故现用钢丝束股的钢丝数为61、91、127、 169等,图11.7所示为钢丝数为127的排列形式。PWS 法每 缆总股数n l 多达100~300股,锚固空间相对较大。由于采用工厂预制,故现场架索施工时间相对缩短,气候因素影响小,成缆工效提高。这种成缆方法在目前大跨悬索桥施工中常用。 PWS —127 图11.7 预制束股截面形式

自锚式悬索桥的计算

自锚式悬索桥的计算 北京迈达斯技术有限公司 2004.12

目 录 1.使用精确分析方法确定自锚式悬索桥三维形状 2.三维悬索桥建模助手(索体系平衡状态) 2.1简化的索体系平衡状态分析方法(Ohtsuki方法) 2.1.1竖向平面内分析 2.1.2水平面内分析 2.2精确的索体系平衡状态分析方法 3.悬索桥分析控制(整体结构体系平衡状态)

1. 使用精确分析方法确定自锚式悬索桥三维形状 决定自锚式悬索桥形状的精确分析一般分为两个阶段。如下列流程图所示,第一个阶段确定整体结构形成前状态(无应力索长状态),第二个阶段确定包含加劲梁、索塔墩等全部结构体系形成后的状态。

2. 三维悬索桥建模助手(索体系平衡状态) 图1. 悬索桥建模助手 MIDAS/Civil的悬索桥建模助手用于前面所述的确定整体结构形成前状态(无应力索长状态)的程序,建模助手内部又经历了两个步骤的分析过程。第一个步骤使用Ohtsuki博士的简化计算方法进行简化的初始平衡分析,在此阶段通过输入的加劲梁的均布荷载和Y、Z方向的垂度确定主缆的水平力和其三维坐标。第二个步骤为精确的初始平衡分析阶段,是使用前一步骤得到的主缆坐标和水平张力,通过非线性分析计算准确的索无应力长状态。 图2. 悬索桥建模助手

2.1 简化的索体系平衡状态分析方法(Ohtsuki方法) 下面介绍悬索桥建模助手的第一个步骤中使用的Ohtsuki方法。 该方法采用了日本Ohtsuki博士使用的计算索平衡状态方程式,其基本假定如下: (1) 吊杆仅在横桥向倾斜,始终垂直于顺桥向。 (2) 主缆张力沿顺桥向分量在全跨相同。 (3) 主缆与吊杆的连接节点之间的索呈直线形状,而非抛物线形状。 (4) 主缆两端坐标、跨中垂度、吊杆在加劲梁上的吊点位置、加劲梁的恒荷载等为已 知量。 吊杆间主缆的张力分布如下图所示。 图3. 主缆张力 一般来说将索分别投影在竖向和水平面上,利用在各自平面上张力和恒荷载的平衡关系进行分析,下面分别介绍竖向和水平面的分析过程。

悬索桥的构造组成

(1)悬索桥的构造组成: 悬索桥是由主缆、加劲梁、桥塔、鞍座、锚固构造、吊索等构件构成的柔性悬吊组合体系。成桥后,主要由主缆和桥塔承受结构的自重,结构共同承受外荷载作用,受力按刚度分配。 (2) 主缆:主缆是悬索桥的主要承重构件,除承受自身恒载外,缆索本身通过 索夹和吊索承受活载和加劲梁(包括桥面系)的荷载。除此以外主缆还承担一部 分横向风荷载,并将它传递到桥塔顶部。主缆不仅可以通过自身弹性变形,而且 可以通过其几何形状的改变来影响体系平衡,表现出大位移非线性的力学特征, 这是悬索桥区别于其他桥梁结构的重要特征之一。主缆在恒载作用下具有很大的 初始张拉力,对后续结构形状提供强大的“重力刚度”,这是悬索桥跨径得以不断增大、加劲梁高跨比得以减小的根本原因。 主索鞍:主索鞍在桥塔上,用来支承和固定主缆,通过它可以使主缆的拉 力以垂直力和不平衡力的方式均匀地传递到塔顶。 (2)悬索桥的结构特点 ①主缆是几何可变体,只承受拉力作用。主缆通过自身的弹性变形和几何形 状的改变来影响体系的平衡。所以悬索桥的平衡应建立在变形后的状态上。 ②主缆在初始恒载作用下,具有较大的初拉力,使主缆保持着一定的几何形 状。当外荷载作用时,缆索发生几何形状的改变。初拉力对在外荷载作用下产生 的位移存在着抗力,它和位移有关,反映出缆索几何非线性的特性。 ③改变主缆的垂跨比将影响结构的受力和刚度。垂跨比增大,则主缆的拉力 减小,刚度减小,恒、活载作用产生的挠度增大。 ④悬索桥的跨度越大,加劲梁所受竖向活载的影响越小,竖向活载引起的变 形也越小。 ⑤增大加劲梁的抗弯刚度对减小悬索桥竖向变形的作用不大,这是因为竖向变形是悬索桥整体变形的结果。加劲梁的挠度受到主缆变形的影响,跨度增大时 加劲梁在承受竖向荷载方面的功能逐渐减小到只能将活荷载传递给主缆,其自身 刚度的贡献较小。这一点和其他桥型中主要构件截面面积总是随着跨径的增大而 显著增大不同。 ⑥边跨的不同形式对悬索桥有很大的影响,通常悬索桥边跨与中跨跨径比对 悬索桥的挠度和内力有影响,当边跨与中跨跨径比减小时,其中跨的跨中和L/4 处的挠度和弯矩值减小,而主缆拉力有所增加。 缆索腐蚀一般发生在钢绞线裸露的并且存在交变 应力的部位,主要存在以下几种腐蚀类型。 (1)应力腐蚀。应力腐蚀存在3个必要的条件: 1)存在产生腐蚀倾向的材料处于应力状态;2)存在 产生腐蚀倾向的材料处于电解质环境里;3)电解质里 有处于应力状态下的材料敏感的元素或物质。材料同 时具有上述3种条件就会发生应力腐蚀。比如处于高 应力状态下的钢丝在水环境或含氯离子的环境中极易 发生应力腐蚀。应力水平的高低与应力腐蚀产生的强 度存在一定的比例关系。 (2)微动磨耗腐蚀。在桥梁缆索的锚固区,由于 车辆运行产生振动,使得钢丝之间发生微小的振动和 往复的摩擦。在高应力状态下,紧邻的钢丝之间发生

悬索桥的发展与设计计算理论

悬索桥的发展与设计计算理论 摘要:本文先介绍了现代悬索桥的发展历史,而后主要从悬索桥理论发展入手,介绍了弹性理论、挠度理论、有限位移理论的基本原理,并通过对三者的比较分析,说明了在现今计算机高速发展和应用的背景下,有限位移理论是对悬索桥结构进行分析的最适合的理论。 关键词:悬索桥;弹性理论;挠度理论;有限位移理论 我国四川省的灌县早在前年之前就出现了竹索桥。17世纪出现铁链作悬索的桥梁,我国四川省大渡河上由9条铁链组成的泸定桥是在1 706年建成的。19世纪时又发展为采用眼杆与销铰作悬链的桥梁。英国1826年建成的跨度为177m的麦地海峡桥;1864年建成的跨度为214m的克利夫顿桥都是属于这种形式,这两座古老的悬索桥至今尚在使用。利用钢缆绳、钢铰线秘钢丝等现代钢材来制造的悬索桥则基本上是进入20世纪后才开始出现的。 现代悬索桥的发展迄今出现了四次高峰。在第一次与第二次高峰之间的20世纪40年代.因美国塔科马老桥的风毁事故.夫跨度悬索桥的修建停顿了约有10年之久。但在此期间由手悬索桥的抗风设计,引入了风洞试验雨使悬索桥的发展在20世纪50年代得到复苏,并分别在60年代与80年代进式第二次与第三次高峰。进入90年代之后,在全球范围随又出现新的建设高峰。即目前的第四次高峰。以下对四次高峰,包括挫折期与复苏期.分别作概略的叙述。 1883年在纽约建成的主跨为486m的布鲁克林桥是美国,也是世界首座跨度较大的悬索桥。此桥除了具备现代悬索桥的缆索体系外.还混有若干加强的斜拉索。因此,严格地说,它不是一座纯粹的悬索桥。首先是1903年建成的主跨为488m 的威廉姆斯堡,其次是1909年建成的主跨为448m的曼哈顿桥。这两座桥都是纽约市区跨越东河.并且都是在空中甩编丝轮将钢丝编拉后组成主缆的。这种在空中编丝成缆的方法被称为空中编缆法.简称AS法。 而悬索桥的发展又离不开与其密切相关的计算理论的发展。悬索桥的计算理论也已有上百年的历史,它随着时代的发展与科学技术的进步,特别是二次世大战以后的电子计算机技术的发展,有着非常大的演变与发展。19 世纪末至上世纪初的悬索桥早期的计算是采用弹性理论来进行的。当时世界上跨度最大的布

悬索桥基本理论知识

悬索桥基本理论知识: 1)众所周知,悬索桥是由主缆、加劲梁、主塔、鞍座、锚碇、吊索等构件组成 的柔性悬吊组合体系。主缆是结构体系中的主要承重构件,是几何可变体系,主 要靠恒载产生的初始拉力以及几何形状的改变来获得结构刚度,以抵抗荷载产生 的变形’因而使得大跨度悬索桥在施工阶段具有强烈的几何非线性。 2)在以往的地震反应分析中,惯用的方法是对几 何非线性进行近似考虑,即只考虑缆索的弹性模量的修正和恒载静力平衡时的重 力刚度 Fleming和Eqesli 15】早在1982年就采用线性分析方法和考虑结构几何非线性 的分析方法对跨度200m左右的斜拉桥进行了地震反应分析。Fleming研究的几 何非线性分析计算理论对斜拉桥、悬索桥的非线性研究工作是一个巨大的贡献, 其分析方法至今被人借鉴。他们研究的结论是:线性分析方法和非线性分析方法 所得到的斜拉桥地震反应结果非常相近。 结构几何非线性的影响对地震反应并不显著,但随着跨度增大, 非线性影响将会增大,其趋势是减小结构的反 1LJ.Tuladhar和W.H.Dilg盯18J分别采用等效弹性模量、几何刚度矩阵、u.L.列式考虑结构的几何非线性建立了动力增量方程,分析了跨度从300m到450m 的四座斜拉桥的几何非线性对其静力和地震反应的影响。他们指出对于大跨度斜 拉桥考虑几何非线性后,结构的静力和地震反应都有比较明显的增加。 朱稀和王克海H采用有限位移理论,考虑斜拉索的垂度、结构的梁柱效应和 结构的大位移引起的结构几何非线性,研究大跨度斜拉桥在自重和拉索的初张力 作用下的平面和空间静力、动力分析方法。分析了主跨分别为335m和671m 的三跨斜拉桥,认为斜拉桥结构考虑几何非线性后结构的整体刚度有所提高。 邓育林【”J利用ANSYS软件对主跨460m的重庆市奉节长江公路大桥(斜拉 桥)进行了线性和几何非线性地震时程分析,认为非线性对大跨度斜拉桥动力反 应影响很大,考虑几何非线性后地震反应结果增大。 文献11lI报道林同炎国际咨询公司考虑应力和位移对刚度的影响,利用牛顿 一拉夫森切线刚度迭代法求解结构变形后的平衡方程组,对金门大桥(悬索桥) 的非线性研究结论是:非线性分析计算预计的位移大约比传统的线性结果小18 倍。这样一个结论,几乎可否定传统的线性分析。没有任何文献报道斜拉桥地震 反应的线性分析结果和非线性分析结果具有如此大的差异。

相关文档
最新文档