数学物理方程期末试卷

数学物理方程期末试卷
数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷

出卷人:欧峥

1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。(10分)

2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入,

设单位时间流入单位截面积的热量为q ,杆的初始温度分布是()

2

x l x -,试写出

其定解问题。(10分)

3、试用分离变量法求定解问题(10分):

.?

??

??

??

??===><

t u u u u t x x 2,0,00,40,040

22

4、分离变量法求定解问题(10分)

2

22sin cos ,(0,0)(0,)3,(,)64(,0)31,(,0)sin tt xx

t

u a u x x x l t l l u t u l t x u x u x x l l πππ?=+<<>???

==?????=+= ?????

5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

????

???==??=??=+=-).()(002

22

22x u

x u x u a t u at x at x ψ? ())0()0(ψ?=

6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)

?????=??=>+∞<<-∞+??=??==0

,2sin 0,,cos 0022

2

22t t t u x u t x x x u a t u

7、用积分变换法求解定解问题(10分):

????

???=+=>>=???==,1,10,0,1002y x u

y u y x y x u

8、用积分变换法求解定解问题(10分):

??

?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt

9、用格林函数法求解定解问题(10分):

22220

0, y 0, () , .y u u

x y u f x x =???+=

10、写出格林函数公式(三维)及满足的条件,并解释其物理意义。(10分)

考试内容分析

①用数理方程研究物理问题的一般步骤;数理方程的建立(导出),包括三类典型

方程的建立(导出)推导过程。这里的1,2两道题就是考察学生在实际物理背景下能否写出定解问题。这些定解问题并不复杂,主要就是让学生了解一下。

②3,4两道题主要考察分离变量法的精神、解题步骤和适用范围。第3题是最

基本的分离变量法的运用,分离变量法的主要思想:1、将方程中含有各个变量的项分离开来,从而原方程拆分成多个更简单的只含1个自变量的常微分方程;2、运用线性叠加原理,将非齐次方程拆分成多个齐次的或易于求解的方程;3、利用高数知识、级数求解知识、以及其他巧妙方法,求出各个方程的通解;4、最后将这些通解“组装”起来。第4题是非齐次方程,主要考察学生对非齐次方程的处理能力。

③5,6两道题是考察行波法。第5题就是书本中一维波动方程的D'Alembert

公式的推导,是最最基础的东西,在这里考察学生平时的基础,题目不难但是能很好的考察学生对行波法的理解。第6题考察了D'Alembert公式的应用,同时又因为方程式非齐次的,也考察了方程的齐次化。

④第7,8两道题是对积分变换法的考察。第7题是对拉普拉斯变换的考察拉普

拉斯变换的基本概念以及常见函数的拉普拉斯正变换;利用拉普拉斯变换的基本定理,拉普拉斯变换表以及部分分式展开法对常见函数进行拉普拉斯反变换。第8题主要考察傅里叶变换的基本定理及其性质。

⑤9,10两道题是考察格林函数法。第9题有些难度,是一道二维拉普拉斯的狄

利克雷问题,主要考察对第二格林公式的理解及其应用。第10题看似比较简单,但是也是大家比较容易忽略的问题,不一定能将其完整的解答。这里还要求你写出其物理意义,意图当然不言而喻了,就是想体现数学物理方程这门课的意义,将数学与物理结合起来,了解古典方程的类型,明白其物理意义和现象。

答案及分析

1、解: 这是弦的自由振动,其位移函数(,)u x t 满足

2,tt xx u a u = (2分) 其中2T

a ρ

=

.由于左端开始时自由,以后受到强度为sin A t ω的力的作用,所以

(0,0)0,

(0,)sin 0,0,x x u Tu t A t t ω=+=>

因此 sin (0,),0.x A t

u t t T

ω=-

≥ (2分) 又右端系在弹性系数为k 的弹性支承上面,所以

(,)(,)0,x Tu l t ku l t --= 即 (,)(,)0.x Tu l t ku l t += (2分) 而初始条件为 0

(),().t t

t u

x u x ?ψ==== (2分)

因此,相应的定解问题为

200,0,0,sin (0,),(,)(,)0,0.(),().tt xx x

x t t t u a u x l t A t u t Tu l t ku l t t T u x u x ω?ψ==?=<<>?

?

=-+=≥??

==?? (2分)

2、解:侧面绝热,方程为

2,0,0t xx u a u x l t =<<> (3分)

边界条件为 0

0,,0x x

x l

q

u u t k

====

>

(3分)

初始条件为

()

,02

t x l x u x l =-=<< (3分)

因此,相应的定解问题为:

(1分)

3、解 令)()(),(t T x X t x u =(2分),代入原方程中得到两个常微分方程:

0)()('=+t T t T λ,0)()(''=+x X x X λ(2分),由边界条件得到0)4()0(==X X ,

对λ的情况讨论,只有当0>λ时才有非零解,令2

βλ=,得到

22

22

4πβλn ==为特征值,特征函数4sin )(πn B x X n n =(1分),再解)(t T ,得到16

;22)(t n n n e C t T π-

=(2

分),于是

,

4sin

(),(16

1

22x

n e

C t x u t

n n n ππ-

=∑=(1分)再由初始条件得到

1

40)1(164sin 242+-==

?n n n xdx n x C ππ(1分),所以原定解问题的解为

,

4sin

)1(16

),(16

11

22x

n e n t x u t n n n ππ

π-+∞

=-=∑

(1分)

4、解:令(,)(,)()u x t V x t W x =+ (1分)

将其代入定解问题可以得到:

2,(0,0)(0,)0,(,)0

.....(1)4(,0)31(),(,0)sin tt xx t V a V x l t V t V l t x V x W x V x x l l π?

?=<<>??

==?????=+-= ?

????

(1分)

222()sin cos 0(2)(0)3,()6

a W x x x l l W W l ππ?''

+=?

?

?==?L (1分) (2)的解为:222

4()sin 3132l x W x x a

l l ππ?

?

=

++ ???

(2分) 对于(1),由分离变量法可得一般解为

1(,)cos sin sin n n n n at n at n x V x t a b l l l πππ+∞

=?

?=+ ?

?

?∑ (2分) 由初始条件可求得:

222

444(,)cos sin sin 324l a l at x

V x t t a l a l l πππππ??=-+ ??? (2分) 所以,原定解问题的解为:

222222

4444(,)cos sin sin sin 3132432l a l at x l x u x t t x a l a l l a l l πππππππ????

=-++++ ? ?????

(1分)

5、解:u(x,t)=F(x-at)+G(x+at)

(2分) 令 x-at=0 得 )(x ?=F (0)+G (2x ) (2分) 令 x+at=0 得 )(x ψ=F (2x )+G(0)

2

分)

所以 F(x)=)2(x ψ-G(0). G (x )=)2

(x

?-F(0).

(2分) 且 F (0)+G(0)=).0()0(ψ?= (1分) 所以 u(x,t)=(

?)2at x ++)2

(at

x -ψ-).0(?

(1分)

即为古尔沙问题的解。

6、解令)(),(),(x w t x v t x u +=(1分),代入原方程中,将方程齐次化,因此

x a x w x x w a x x w x v a t v cos 1)(0cos )(cos )]([2'

'2''22

222=?=+?++??=??(2分),再求

定解问题???

????

=??-=>??=??==,

0),(cos 12sin 0,0

2022

2

22t t t

v x xw a x t x

v a t v v (2分)由达朗贝尔公

at

x a at x at x a

at x at a a at x t x v cos cos 1

cos sin 0

)]cos(1

)(2sin )cos(1)(2[sin 21),(222-=+---++-+= (4分)

.cos 1cos cos 1cos sin ),(22x a at x a at x t x u +-

=

(1分)

7、解 对y 取拉普拉斯变换),()],([p x U y x u L =(1分),对方程和边界条件同时对

y 取拉普拉斯变换得到

p p U p

dx dU p

x 1

1,1

20

+

=

==(3分),解这个微分方程得到

p p x p p x U 111),(22++=

(3分),再取拉普拉斯逆变换有1),(++=y yx y x u (2分)

所以原问题的解为1),(++=y yx y x u .(1分) 8、解:对于初值问题关于x 作Fourier 变换,得:

?????==>∈+0)0,(?),(sin )0,(?0,),,(?d )

,(?d 222

2ωωωωωt u x F u t R x t u a t t u

(2分)

该方程变为带参数ω的常微分方程的初值问题。解得 t ja t ja e C e C t u

ωωω-+=21),(? (2分) 于是0)()0,(?,)(sin )0,(?2121=-=+==C C ja u C C x F u t ωωω

(2分)

则由)(sin 2121x F C C =

=,得:))((sin 2

1

),(?t ja t ja e e x F t u ωωω-+=。 (2分)

作像函数),(?t u

ω的Fourier 逆变换 []

at x at x at x e e x F F t u

F t x u t ja t ja cos sin )]sin()[sin(2

1

))((sin 21)],(?[),(11=++-=+===---ωωω

(2分)

9、解:设),(000y x M 为下半平面中任意一点。已知二维调和函数的积分表达式为

dS n

u

r r n M u M u MM MM )1ln )1(ln )((21)(000??-??-

=?Γπ (1分) 设v 为调和函数,则由第二格林公式知

0)()(2

2=??-??=?-????Γ

Ω

dS n

u

v n v u d u v v u σ (2) (1)+(2)可得

dS n u v r dS r n n v M u M u MM MM ])1ln 21(])1(ln 21)(

([)(000??Γ

Γ

??-+??-??=ππ (2分) 若能求得v 满足

???

?

??

?=<=?==0

0201ln 210,0y MM y r

v y v π (3)

则定义格林函数v r M M G MM -=

1

ln 21),(0π,则有 dS n

G

M u M u ?Γ

??-=)

()(0 (2分)

由电象法可知,),(001y x M -为),(000y x M 的象点,故可取

1

1

ln

21MM r v π=

(1分)

显然其满足(3)。从而可得格林函数

))()()()()()((21

)1ln 1(ln 211

ln

211ln 21),(20200202000101

0y y x x y y y y x x y y r r y y G n G r r M M G MM MM MM MM ++-+-+-+---=-??=??=??-=ππππ (3分) 故而

ξξξπ

d f y x y dS n G M u M u ??+∞

∞-Γ

+--=??-=)()(1)

()(20200

0 (1分)

10、解:(1)格林函数公式(三维)为: G (M ,M 0)=

1

4MM r π— g (M ,M 0) M ∈Ω

(2

分)

其中函数g 满足的条件为:

00

1|4MM g M g r

πΓΓ?=∈Ω??

?

=??

式中Γ为区域Ω的边界曲面 (3

分)

(2)格林函数的物理意义:在某个闭合导电曲面Γ内M 0点处放一个单位正电荷,

则有它在该导电曲面内一点M 处产生的电势为

1

4MM r π(不考虑电介常数),

将此闭合导电曲面接地,又静电平衡理论,则M 0将在该导电曲面上产生负感应电荷,其在M 处的电势

— g (M ,M 0),并且导电面上的电势恒等于0,即有|g Γ=

1

4MM r πΓ

(5分)

最新数学物理方程期末试卷

最新数学物理方程期末试卷 出卷人:欧峥 1、长度为 l 数学物理方程期末试卷sin A t ω的力的作用,右端系在弹性系数为 k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题.(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进 入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2x l x -,试 写出其定解问题.(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???? ???==??=??=+=-).()(002 22 22x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 222200, y 0, () , .y u u x y u f x x =???+=

数学物理方程模拟试卷

数学物理方程模拟试卷 一、写出定解问题(10分) 设枢轴长为l ,建立枢轴纵振动在下列情形下的运动方程: (a ) 在x=0固定,在x=l 作用力F ,在t=0时刻作用力突然停止 (b ) 在x=l 一端是平衡位置,而从t=0时刻作用力 F(t) 解:(a )() ()()() ???? ?????≥='=≤≤==><<

,13c x y dx dy +-=→= 令???-=+=y x y x 3ηξ ???===-=======∴0,1,30,1,1yy xy xx y x yy xy xx y x ηηηηηξξξξξ (2) ??? ????++++=+++++=++++=+=+=yy yy y y y y yy xy xy y x x y y x y x xy xx xx x x x xx y y y x x x u u u u u u u u u u u u u u u u u u u u u u u u ηξηηξξηξηηηξηξξξηξηηξξηξηξηξηηξηξξηξηηξηξξηξηηξηξξηξηξ22222)(2, (3) 将(2)代入(3),可得 ?????????+-=-+=++=-=+=ηη ξηξξηηξηξξηηξηξξηξηξu u u u u u u u u u u u u u u u u u yy xy xx y 2329632 (4) 把(4)代入(1),可得 0666236364296=-+++-+--++++ηξηξηηξηξξηηξηξξηηξηξξu u u u u u u u u u u u u 0816=+∴ξξηu u 即 02 1=+ξξηu u 这就是我们所求的标准的双曲型方程。 三、(每小题10分,共20分) ①证明:)52()52(),(t x G t x F t x y -++=为方程2222254x y t y ??=??的通解。 ②求满足条件:0),(),0(==t y t y π,x x y 2sin )0,(=,0)0,(=x y t 的特解。 解:①设v t x u t x =-=+52,52,得 )()(v G u F y +=, )5()('5)('-?+?=????+????=??v G u F t v v G t u u F t y )('5)('5v G u F -=, (1)

数学物理方程期末考试试题(A)答案

孝感学院

解:设)()(t T x X u =代于方程得: 0''=+X X λ,0)1(''2=++T a T λ(8’) x C x C X λλsin cos 21+=,t a C t a C T 22211sin 1cos λλ+++= 由边值条件得: 22)( ,0l n C πλ== l x n t a A t a B u n n n πλλcos )1sin 1cos (221+++=∑∞= ?= l n dx l x n x l B 0cos )(2π?,?+=l n dx l x n x a l A 02cos )(12πψλ(15’) 证明:设代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。(15’)

解:设),(ηξp 是第一象限内一点,在该点放置单位点电荷,其对称点),(ηξ-p 格林函数: 22)()(1ln 21),,,(ηξπηξ-+-= y x y x G 22)()(1ln 21ηξπ++--y x (8’) ] )[(22220ηξπη+-=??-=??=x y G n G y 方程的解:dx x x f u ?+∞∞-+-=22)()(),(ηξπ ηηξ(15’) 五、证明下列初边值问题解的唯一性.(20分) ),,,()(2t z y x f u u u a u zz yy xx tt =++- ),,,(0z y x u t ?== ),,,(0 z y x u t t ψ== ).,,,(t z y x g u =Γ 其中,),,(,0Ω∈>z y x t Γ为Ω的边界. 解:设21,u u 都是方程的解设21u u u -=代入方程得: 0)(2=++-zz yy xx tt u u u a u 00==t u 00 ==t t u .0=Γu 设dxdydz u u u a u t E z y x t ])([21)(22222???Ω +++= =dt t dE )(dxdydz u u u u u u a u u zt z yt y xt x tt t ])([22???Ω +++ dxdydz u u u a u u zz yy xx tt t ])([[2 2??? Ω++-= 0=(10’)

数学物理方程试卷(B)

2011-2012 一、选择题(本题共5小题,每小题3分,共15分) 在下列每小题的4个备选项中,只有一项是最符合题意的,请将代码 (A 、B 、C 、D )填在题后相应的括号内。 1、偏微分方程与( )结合在一起,统称为定解问题. (A)定解条件; (B)初始条件; (C)边界条件; (D)以上均不正确. 2、下列偏微分方程中,属于二阶、线性、齐次的是( ). (A) 2260u u u u t x ??++-=??; (B) 2222cos 40?+-?-=?u t t u x x ; (C) 2 90???+-= ???? u xu t t ; (D) 22 60??+?-?=??t u u e xt u x t . 3、以下说法中错误的是( ). (A) Bessel 方程222'''()0x y xy x n y ++-=通解为()(),n n y AJ x BJ x -=+其中A, B 为任意常数; (B) n 阶Bessel 函数()x J n 的实零点关于原点是对称分布的; (C) 半奇数阶的第一类Bessel 函数都是初等函数; (D) 当0x =时,n 阶Bessel 函数()x J n 为有限值,而()x Y n 为无穷大. 4、定解问题的适定性是指解的( ). (A) 存在性、唯一性、收敛性; (B) 存在性、稳定性、收敛性; (C) 存在性、唯一性、稳定性; (D)唯一性、稳定性、收敛性. 5、设3 R Ω?为有界区域,边界Γ为光滑的封闭曲面,则下面说法错误的是( ). (A) 若2 ()()u C C ∈ΩΩ,则狄氏问题20,|u u f Γ??=Ω?=?在内 的解是唯一确定的; (B) 若2 1() ()u C C ∈ΩΩ,则2u u dV dS n Ω Γ??=?????? ; (C) 牛曼内问题20,|1u u n Γ??=Ω? ??=???在内有解且不唯一;

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

最新数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案 一、求解方程(15分) ?????===-=+=-. )()(0002x u x u u a u at x at x xx tt ψ? 其中)0()0(ψ?=。 解:设? ??+=-at x at x ηξ=则方程变为: 0=ξηu ,)()(at x G at x F u ++-=(8’)由边值条件可得: )()0()2(),()2()0(x G x F x x G F ψ?=+=+ 由)0()0(ψ?=即得: )0()2 ()2( ),(?ψ?--++=at x at x t x u 。 二、利用变量分离法求解方程。(15分) ?????==≥==∈=-====)(,)(, 0,0,),(,00002x u x u t u u Q t x u a u t t t l x x xx tt ψ? 其中l x ≤≤0。0>a 为常数 解:设)()(t T x X u =代于方程得: 0''=+X X λ,0''2=+T a T λ(8’) x C x C X λλsin cos 21+=,at C at C T λλsin cos 21+= 由边值条件得:

21)( ,0l n C πλ== l x n at A at B u n n n πλλsin )sin cos (1+=∑∞= ?=l n dx l x n x l B 0sin )(2π?,?=l n dx l x n x an A 0sin )(2πψπ 三.证明方程02=--cu u a u xx t )0(≥c 具有狄利克雷边界条件的初边值问题解的唯一性与 稳定性. (15分) 证明:设u e v ct -=代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。 四.求解二维调和方程在半平面上的狄利克雷问题(15分). ,0,0>=++=?z u u u u zz yy xx ).(0x f u z == 解:设),,(ζηξp 是上半平面内一点,在该点放置单位点电荷,其对称点 ),,(?ηξ-p 格林函数: 222)()()(141 ),,,(?ηξπ ηξ-+-+--=z y x y x G 222)()()(141 ?ηξπ++-+-+z y x

武汉大学2008级数学物理方程试题

武汉大学2009 —2010 学年度第 一 学期 《数学物理方法》试卷(A ) 学院 专业 班 学号 姓名 分数 一.求解下列各题(10分×4=40分) 1.一条弦绳被张紧于点(0,0)与(1,0)两端之间,固定其两端,把它拉成x A πsin 的形状之后,由静止状态被释放而作自由振动。写出此物理问题的定解问题,并写出本征值和本征函数。 2.写出一维无界波动问题的达朗贝尔公式,利用达朗贝尔公式求解一维无界波动问题 ???????==>+∞<<-∞=-==x u x u t x u u t t t xx tt sin cos )0,(0200 并画出t =2时的波形。 3.定解问题???????==+==><<=-====2 ,sin 1,)0,0(000202t t t l x x xx tt u x u t u t u t l x u a u ,若要使边界条件齐次化,求其辅助函数,并写出边界条件齐次化后相应的定解问题。 4.计算积分?-=1 12)(dx x P x I l 二.(本题15分)用分离变量法求定解问题 ???? ?????===><<=-===x l u u u t l x Du u t l x x x x xx t π2cos 0 )0,0(000 三.(本题15分)有一内半径为a ,外半径为2a 的均匀球壳,其内、外表面的温度分 布分别保持为零和θcos ,试求此均匀球壳的稳定温度分布。

四.(本题15分)计算和证明下列各题: (1) (10分) dx x J x I ?=)(03 (将计算结果中的贝塞尔函数化为零阶和一阶的,因为工程上有零阶、一阶贝塞尔函数表可查。) (2) (5分)利用递推关系证明: )(1)()('0''02x J x x J x J -= 五.(本题15分)设有一长为l 的圆柱,其半径为R 。若圆柱的侧面及下底面(0=z )接地,而上底面(l z =)保持电势分布为f (ρ)。1)写出该圆柱的电势分布的定解问题;2)本征值和本征值函数;3)定解问题的通解。 参考公式 .

数学物理方程与特殊函数-模拟试题及参考答案(1)

《数学物理方程》模拟试题 一、填空题(3分?10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u n u S =+??)(σ是第( )类边界条件,其中S 为边 界. 5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程2 2 222x u a t u ??=??的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有 =)(0x J dx d ( ) . 7.根据勒让德多项式的表达式有)(3 1)(3202x P x P += ( ). 8.计算积分 =? -dx x P 2 1 1 2)]([( ) . 9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) . 二、试用分离变量法求以下定解问题(30分): 1.??? ? ? ????<<=??===><

2.???? ? ?? ??===><<<+??=??====20,0,8,00,20,16200202 2 2 22x t u t x x u t u t t x x u u u 三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?? ???=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 四、用积分变换法求解下列定解问题(10分): ??? ? ???=+=>>=???==, 1, 10,0,1002y x u y u y x y x u 五、利用贝赛尔函数的递推公式证明下式(10分): )(1)()(' 0' '02x J x x J x J -= 六、在半径为1的球内求调和函数u ,使它在球面上满足 θ21cos ==r u ,即所提问题归结为以下定解问题(10分):

数学物理方法试卷(全答案).doc

嘉应学院物理系《数学物理方法》B课程考试题 一、简答题(共70 分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一( 6 分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数 相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F( z)的洛朗级数,或则没有负幂项,或则 只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数 F( z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性( 6 分) 1,定解问题有解; 2,其解是唯一的; 3,解是稳定的。满足以上三个条件,则称为定解问题 的适定性。 4、什么是解析函数其特征有哪些( 6 分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数 . u x, y C1 2)这两曲线族在区域上正交。 v x, y C2 3)u x, y 和 v x, y 都满足二维拉普拉斯方程。(称为共轭调和函数 ) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型( 6 分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出 (x) 挑选性的表达式( 6 分) f x x x 0 dx f x 0 f x x dx f 0 f (r ) ( r R 0 ) dv f ( R 0 ) 、写出复数 1 i 3 的三角形式和指数形式( 8 分) 6 2 cos isin 1 3 2 i 2 三角形式: 2 sin 2 cos 2 1 i 3 cos i sin 2 3 3 1 指数形式:由三角形式得: 3 i z e 3 、求函数 z 在奇点的留数( 8 分) 7 1)( z 2) 2 (z 解: 奇点:一阶奇点 z=1;二阶奇点: z=2 Re sf (1) lim (z 1) z 1 ( z 1)( z 2) 2 z 1

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2 x l x -,试写出其定解问题。(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???????==??=??=+=-).()(002 22 2 2x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 22220 0, y 0, () , .y u u x y u f x x =???+=

高等数学物理方程

高等数学物理方程 一、课程编码:1800005 课内学时: 64 学分: 4 二、适用学科专业:理论物理、凝聚态物理 三、先修课程:常微分方程、复变函数、数学物理方法 四、教学目标 通过本课程的学习使研究生 1. 了解数学物理方程的物理基础; 2. 了解数学物理方程的基本内容和最新发展概况; 3. 了解数学物理的基本方法和一些必要的技巧; 4. 掌握求解最重要的边值或边值初值问题的关键步骤和方法以及对解的检验。 五、教学方式 课堂讲授。 六、主要内容及学时分配 1. 偏微分方程的分类 10 学时1.1 一般概念 1.2 柯西问题、柯西-柯娃列夫斯卡娅定理 1.3 柯西问题的推广、特征的概念(*) 1.4 含一个未知函数的二阶方程在一点的标准型及其分类 1.5 两个自变量的二阶偏微分方程在一点的邻域内的标准型 2. 双曲型方程 20 学时2.1 (一维)波动方程的导出(物理起源)及定解条件 2.2 其他双曲型方程(*) 2.3 (一维)波动方程的柯西问题及其传播波法 2.4 (一维)波动方程的混合问题及其分离变量法 2.5 高维波动方程的柯西问题 3. 椭圆型方程 21 学时3.1 拉普拉斯方程(包括物理起源、定解条件、曲线坐标系下的拉氏方程等) 3.2 调和函数的一般性质(包括格林公式、极值原理、解的唯一性与稳定性等) 3.3 最简单区域的边界问题的分离变量法 3.4 源函数 3.5 势论与积分方程 3.6 双调和方程(*) 4. 抛物型方程 8 学时4.1 热传导方程的物理起源 4.2 定解问题的提法 4.3 热传导方程的求解 4.4 极值原理、定解问题解的唯一性与稳定性 5. 特殊函数与正交多项式 5 学时5.1 特殊函数的方程及边界问题的提法 5.2 柱函数(*)

数学物理方程与特殊函数-模拟试题及参考答案

成都理工大学 《数学物理方程》模拟试题 一、填空题(3分?10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u n u S =+??)(σ是第( )类边界条件,其中S 为边 界. 5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22 222x u a t u ??=??的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有 =)(0x J dx d ( ) . 7.根据勒让德多项式的表达式有)(3 1)(3 202x P x P += ( ). 8.计算积分 =? -dx x P 2 1 1 2)]([( ) . 9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) . 二、试用分离变量法求以下定解问题(30分): 1.??? ? ? ????<<=??===><

2.???? ? ?? ??===><<<+??=??====20,0,8,00,20,16200202 2 2 22x t u t x x u t u t t x x u u u 三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?? ???=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 四、用积分变换法求解下列定解问题(10分): ??? ? ???=+=>>=???==, 1, 10,0,1002y x u y u y x y x u 五、利用贝赛尔函数的递推公式证明下式(10分): )(1)()(' 0' '02x J x x J x J -= 六、在半径为1的球内求调和函数u ,使它在球面上满足 θ21cos ==r u ,即所提问题归结为以下定解问题(10分):

《数学物理方程讲义》课程教学大纲

《数学物理方程讲义》课程教学大纲第一部分大纲说明 一、课程的作用与任务 本课程教材采用的是由高等教育出版社出版第二版的《数学物理方程讲义》由姜礼尚、陈亚浙、刘西垣、易法槐编写 《数学物理方程讲义》课程是中央广播电视大学数学与应用数学专业的一门限选课。数学物理方程是工科类及应用理科类有关专业的一门基础课。通过本课程的学习,要求学生了解一些典型方程描述的物理现象,使学生掌握三类典型方程定解问题的解法,重点介绍一些典型的求解方法,如分离变量法、积分变换法、格林函数法等。本课程涉及的内容在流体力学、热力学、电磁学、声学等许多学科中有着广泛的应用。为学习有关后继课程和进一步扩大数学知识面奠定必要的数学基础。该课程所涉内容,不仅为其后续课程所必需,而且也为理论和实际研究工作广为应用。它将直接影响到学生对后续课的学习效果,以及对学生分析问题和解决问题的能力的培养。数学物理方程又是一门公认的难度大的理论课程。 二、课程的目的与教学要求 1 了解下列基本概念: 1) 三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。 2) 偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念,线性问 题的叠加原理。 3) 调和函数的概念及其基本性质(极值原理、边界性质、平均值定理)。 2 掌握下列基本解法

1) 会用分离变量法解有界弦自由振动问题、有限长杆上热传导问题以及矩形域、 圆形域内拉普拉斯方程狄利克雷问题;会用固有函数法解非齐次方程的定值问题,会用辅助函数和叠加原理处理非齐次边值问题; 2) 会用行波法(达郎贝尔法)解无界弦自由振动问题,了解达郎贝尔解的物理 意义;了解齐次化原理及其在解无界弦强迫振动问题中的应用; 3) 会用傅立叶变换法及拉普拉斯变换法解无界域上的热传导问题及弦振动问 题; 4) 了解格林函数的概念及其在求解半空间域和球性域上位势方程狄利克雷问题中的应用; 5)掌握二阶线性偏微分方程的分类 二、课程的教学要求层次 教学要求层次:有关定义、定理、性质等概念的内容按“知道、了解、理解”三个层次要求;有关计算、解法、公式和法则等方法的内容按“会、掌握、熟练掌握” 三个层次要求。 第二部分学时、教材与教学安排一、学时分配 本课程共3学分,讲授54学时(包括习题课)学时分配如下: 项目内容学时电视学时 IP课学时 第一章方程的导出和定解条件 6 第二章波动方程 14 第三章热传导方程 14 第四章位势方程 14 第五章二阶线性偏微分方程的分类 6 合计 54 二、教学安排

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 、长度为 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。 分 、长为l 的均匀杆,侧面绝热,一端温度为 度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是 ()2 x l x -,试写出其定解问题。 分 、试用分离变量法求定解问题 分 : ?????????===><

222sin cos ,(0,0)(0,)3,(,)6 4(,0)31,(,0)sin tt xx t u a u x x x l t l l u t u l t x u x u x x l l πππ?=+<<>???==?????=+= ????? 、利用行波法,求解波动方程的特征问题(又称古尔沙问题) 分 : ???????==??=??=+=-). ()(0022222x u x u x u a t u at x at x ψ? ())0()0(ψ?= 、用达朗贝尔公式求解下列一维波动方程的初值问题( 分) ?????=??=>+∞<<-∞+??=??==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u 、用积分变换法求解定解问题( 分): ???????=+=>>=???==,1, 10 ,0,1002y x u y u y x y x u 、用积分变换法求解定解问题 分 :

物理书籍整理

科普: 《定性与半定量物理学》赵凯华 《边缘奇迹:相变和临界现象》于渌 《QED: A Strange Theory about Light and Matter》Feynman 《大宇之形》丘成桐 《Gauge Fields, Knots and Gravity》Baez 《趣味力学》别莱利曼 《趣味刚体力学》刘延柱(小书,挺有意思) 考研习题集用超星图书里的那本清华大学编写的普通物理学考研辅导教材(大约这个名字) 数学分析: 书目: 《数学分析教程》常庚哲 《数学分析新讲》张筑生 《数学分析》卓里奇 《数学分析八讲》辛钦 《数学分析讲义》陈天权 《数学分析习题课讲义》谢惠民等 《数学分析习题集》北大版? 《特殊函数概论》王竹溪 线性代数Linear Algebra 内容:行列式、矩阵代数、线性方程组、线性空间、线性变换、欧几里得空间、n元实二次型等。 书目: 《高等代数简明教程》蓝以中 《Linear Algebra and Its Applications》Gilbert Strang 《Linear Algebra and Its Applications》Peter D. Lax 《Linear Algebra and Its Applications》David C. Lay 力学Mechanics 先修课程:高等数学 内容:质点运动学、质点动力学、动量定理和动量守恒定律、功和能及碰撞问题、角动量、刚体力学、固体的弹性、振动、波动和声、流体力学、相对论简介。 书目: 《力学》赵凯华 《力学》舒幼生 《经典力学》朗道 《An Introduction To Mechanics》Daniel Kleppner、Robert Kolenkow 狭义相对论:《狭义相对论》刘辽 《The Principle of Relativity》Einstein 广义相对论:《Einstein Gravity in a Nutshell》Zee 《Spacetime and Geometry》Carroll

数理方程试卷A

一. (10分)填空题 1.初始位移为)(x ?,初始速度为)(x ψ的无界弦的自由振动可表述为定解问题: ?????==>+∞<<∞-===).(),(0,,00 2 x u x u t x u a u t t t xx tt ψ? 2.为使定解问题 ???? ???=======0 ,000 02t l x x x xx t u u u u u a u (0u 为常数) 中的边界条件齐次化,而设)(),(),(x w t x v t x u +=,则可选=)(x w x u 0 3.方程0=xy u 的通解为)()(),(y G x F y x u += 4.只有初始条件而无边界条件的定解问题,称为柯西问题. 5.方程y x u xy 2=满足条件1cos ),0(,)0,(2-==y y u x x u 的特解为 1cos 6 1),(22 3-++= y x y x y x u 二. (10分)判断方程 02=+yy xx u y u 的类型,并化成标准形式. 解:因为)0(02≠<-=?y y ,所以除x 轴外方程处处是椭圆型的。 ……2分 它的特征方程是 022 =+??? ??y dx dy …… 5分

即iy dx dy ±= 特征线为 21ln ,ln c ix y c ix y =+=- 作变换:???==x y ηξln …… 7分 求偏导数 ????? ???? ??-====)(1 1 2ξξξξ ηηηu u y u u y u u u u u yy y xx x 将二阶偏导数代入原方程,便可得到标准形式 ξηηξξu u u =+ …… 10分 三. (10分)求解初值问题 ?????==>+∞<<∞-===x u x u t x u u t t t xx tt cos ,0,,4020 解:x x x x a cos )(,)(,22===ψ? 利用达朗贝尔公式 ?+-+-++=at x at x d a at x at x t x u ξξψ??)(21)]()([21),( … …5分 得

模拟试题及参考答案_数学物理方程

《数学物理方程》模拟试题 一、填空题(3分?10=30分) 1.说明物理现象初始状态的条件叫(),说明边界上的约束情况的条件叫(),二者统称为(). 2.三维热传导齐次方程的一般形式是:(). 3 .在平面极坐标系下,拉普拉斯方程算符为() . 4.边界条件 f u n u S = + ? ? ) (σ 是第()类边界条件,其中S为边界. 5.设函数 ), (t x u的傅立叶变换式为), (t Uω,则方程2 2 2 2 2 x u a t u ? ? = ? ? 的傅立叶变换 为(). 6.由贝塞尔函数的递推公式有 = ) ( x J dx d () . 7.根据勒让德多项式的表达式有 ) ( 3 1 ) ( 3 2 2 x P x P+ = (). 8.计算积分 = ?-dx x P 2 1 12 )] ( [ (). 9.勒让德多项式 ) ( 1 x P的微分表达式为() . 10.二维拉普拉斯方程的基本解是() . 二、试用分离变量法求以下定解问题(30分): 1.? ? ? ? ?? ? ? ? < < = ? ? = = = > < < ? ? = ? ? = = = = 3 0,0 , 3 ,0 0 ,3 0, 2 3 2 2 2 2 2 ,0 x t u x x t x x u t u t t x u u u 2.? ? ? ? ?? ? ? ? = = = > < < ? ? = ? ? = = = x t x x u t u u u u t x x 2 ,0 ,0 ,4 0, 4 2 2

3. ????? ????<<=??===><<+??=??====20,0,8,00,20,1620020 22 222x t u t x x u t u t t x x u u u 三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 四、用积分变换法求解下列定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 五、利用贝赛尔函数的递推公式证明下式(10分): ) (1)()(' 0' '02x J x x J x J -= 六、在半径为1的球内求调和函数u ,使它在球面上满足θ2 1 cos ==r u ,即所提问题归 结为以下定解问题(10分): . 0,12cos 3,0,10,0)(sin sin 1)(11222 πθθπθθθθ θ≤≤+=≤≤<<=????+????=r u r u r r u r r r (本题的u 只与θ,r 有关,与?无关) 《数学物理方程》模拟试题参考答案

数学物理方程考试试题及解答

数学物理方程试题(一) 一、填空题(每小题5分,共20分) 1.长为π的两端固定的弦的自由振动,如果初始位移为x x 2sin ,初始速度为 x 2cos 。则其定解条件是 2. 方程 03=??-??x u t u 的通解为 3.已知边值问题???===+0 )()0(0 )()('"πλX X x X x X ,则其固有函数)(x X n = 4.方程0)(222'"2=-++y n x xy y x α的通解为 二.单项选择题(每小题5分,共15分) 1. 拉普拉斯方程02222=??+??y u x u 的一个解是( ) (A )xy e y x u x sin ),(= (B )22),(y x y x u += (C )2 21),(y x y x u += (D )22ln ),(y x y x u += 2. 一细杆中每点都在发散热量,其热流密度为),(t x F ,热传导系数为k ,侧面绝热,体密度为ρ,比热为c ,则热传导方程是 ( ) (A )ρc t x F x u a t u ),(222 22+??=?? (B )ρc t x F x u a t u ),(222+??=?? (C ) ρc t x u x F a t F ),(22222+??=?? (D) ρc t x u x F a t F ),(22 2+??=?? (其中ρc k a =2) 3. 理想传输线上电压问题??? ??? ?=??=??=??=x aA t u x A x u x u a t u t ωωωsin ,cos )0,(0 2 2 222 ( 其中C L a 1 2 = )的解为( ) (A ))(cos ),(at x A t x u +=ω (B )t a x A t x u ωωcos cos ),(= (C )t a x A t x u ωωsin cos ),(= (D ))(cos ),(t a x A t x u -=ω

2015级数学物理方程期末试题A-2015

武汉大学2015—2016 学年度第 一 学期 《数学物理方法》试卷(A ) 学院 专业 班 学号 姓名 分数 一、(本题10分)写出下列物理问题的定解问题 1. 一散热片的横截面为矩形,边长分别为a 和b 。它的一边处于较高的温度0T ,其它三边处于绝热状态,初始温度分布为220(,,)t u x y t x y ==-,写出该横截面上的温度分布满足的定解问题。 2. 一内外半径分别为1R 和2R 的薄圆环,若圆环的上下面绝热,圆盘边缘的温度分布为, 1 2(,) cos R u ρρ??==,2 (,) cos R u ρρ??==,试写出圆环上稳定的温度分布的定解问题。 二、(本题10分)定解问题 00()(0,0),0()t xx x x l t u Du f x x l t u At u u x ?===?-=<<>? ==?? =?,若要使边界条件齐次化, 求其辅助函数,并写出边界条件齐次化后相应的定解问题。 三、(本题10分)求解一维无界波动问题 001(,0)2sin 2cos tt xx t t t u u x t u x u x ==?-=-∞<<+∞>?? =??=-?? 四、(本题15分)利用分离变量法求解下列定解问题:两端固定弦的波动问题。 ????? ??====><<=-====x u u u u t x u u t t t x x xx tt 2sin 200 ) 0,0(04000ππ 五、(本题15分)1.(5分)证明:若),(t x u 是方程0=-xx t u u 的解,则) ,(2 βα++t k kx u (其中βα,,k 为任意常数)仍然是方程0=-xx t u u 的解。 2.(10分) 设a 为常数,求解下列定解问题 1) 00(,0)()t x t u au x t u x ?=-=-∞<<∞>??=? 2)0 (,)(,0)()t x t u au f x t x t u x φ=+=-∞<<∞>??=?

相关文档
最新文档