电磁兼容与信号完整性设计规范

电磁兼容与信号完整性设计规范
电磁兼容与信号完整性设计规范

目录

0.修改记录 (3)

1.目的 (4)

2.适用范围 (4)

3.职责 (4)

3.1开发工程师 (4)

3.2开发管理部 (4)

4.工作程序 (4)

4.1新增备案 (4)

4.2更改程序 (14)

4.3通讯协议的调用 (14)

4.4通讯协议规范 (14)

5.相关文件 (18)

6.附件 (19)

7.记录 (26)

1) (30)

1.目的

本规范制定目的是为光迅公司内部的硬件系统研发、系统集成以及电磁兼容试验中的电磁兼容(EMC)与信号完整性(SI)的设计与改进实施提供技术参考。

2.适用范围

本规范适用于光迅公司所有的硬件研发项目。

3.职责

3.1 开发工程师

1)

2)

3)

3.2 开发管理部

1)

2)

4.工作程序

4.1 基本术语

EMC Electromagnetic Compatibility

EMI Electromagnetic Interference

ESD Electrostatic Discharge

(待补充)

4.2 电磁兼容基本概念

E MC 的定义

设备在共同的电磁环境中能一起执行各自功能的共存状态。

EMC 模型与抑制方法

EMC 设计的层次及主要工作

组成

抑制措施

评定指标

传导性耦合

辐射性耦合

CS 传导敏感度(传导抗扰度)CE 辐射敏感度(辐射抗扰度)

RS 传导发射(传导骚扰)RE 辐射发射(辐射骚扰)

· 材料特性

· 内部封装· 分布参数

· 屏蔽

· 电源滤波· 印制板布局· 部件布局· 接地

4.3 电磁兼容性的要求

通信产品类电磁兼容性标准要求

电快速瞬变脉冲群试验

静电放电试验

雷击浪涌试验

电磁发射试验

敏感度试验

(待细化)

4.4 电磁屏蔽设计技术

(待补充)

4.5 互连电缆设计技术

互连电缆的接地

屏蔽电缆一般分为低频电缆和高频电缆

对低频信号电缆屏蔽层应单点接地

对屏蔽的电力电缆和高频电缆的屏蔽层至少应在电缆两端接地。

当电缆长度L<0.15λ时,要求单点接地,一般均在输出端接地,不存在接地环路,磁屏蔽效果好,也可在输入端接地;

当电缆长度L>0.15λ时,采用多点接地,一般屏蔽层按0.05λ或0.1λ的间隔接地,以降低地线阻抗,减少地电位引起的干扰;

对于输入信号电缆的屏蔽层,不能在机壳内接地,只能在机壳的入口处接地,此时的屏蔽层上的外加干扰信号直接在机壳入口处入地,避免

屏蔽层上的外加干扰信号带入设备内的信号电路上;

对于高输入或高输出阻抗电路,尤其是在高静电环境下,可能需要双层屏蔽的电缆,此时内屏蔽层可以在信号源端接地,外屏蔽层则在负载

端接地。

4.6 印制板设计技术

4.6.1印制板设计的基本原则

减少设计带宽

通常办法

?电源输入端滤波

?IC芯片滤波

?存储型器件接去耦电容

基尔霍夫定律

?

差模/共模电流的耦合控制

印制线间距的准则(3-W原则)

?存在于PCB走线之间的串扰不仅与时钟或周期信号有关,而且与

系统中的其他重要走线有关。数据线、地址线、控制线和I/O都会

受到串扰和耦合的影响。

?3-W原则:走线间的距离间隔(走线中心间的距离)必须是单一走

线宽度的3倍。

5/5原则

?时钟频率超过5MHz或上升时间小于5ns时,需要使用多层板。

4.6.2信号完整性设计

信号完整性(SI)是指在信号线上的信号质量好坏;在要求的时间内,信号能以要求的时序、持续时间和电压幅度作出响应,不失真的从源端传递到接收端。

高速信号的电磁干扰以及传输线效应将导致信号完整性降低,出现串扰、数据丢失、判断出错等问题。

影响信号完整性的主要因素有:

电路与网络的阻抗不匹配所引起的反射。(线宽变化、信号层间转移、接插件与分支线、源端负载不匹配等)

电路与网络间的分布参数所引起的信号串扰。(分布电容、分布电感) 有源及功率器件开关所引起的电源及地的电位波动。

控制方法

反射的抑制

(待补充)

串扰的抑制

减小两根或多根信号线的平行长度;

尽可能加大两平行线的间距;

3-W原则代表的是逻辑电流中近70%的通量边界

?10-W原则代表的是逻辑电流中近98%的通量边界

距接地面的距离减小可以使串扰耦合迅速减小

?在PCB(尤其是高频电路PCB)的设计中,可以在装元件的一面用

铜箔作为地平面,使其串扰显著减小;

?对于微带传输线和带状传输线,将走线高度限制在高于地线平面

10mil以内,可以显著减小串扰。

?在串扰较严重的两条线之间插入一条地线,可以起到隔离的作

用,从而减少串扰。

4.6.3电源完整性设计

电路设计的结果是从信号完整性上表现出来的,但不能忽略电源完整性设计。因为电源完整性直接影响到PCB板的信号完整性。电源完整性和与信号完整性二者是密切相关的,而且很多情况下,影响信号畸变的主要原因是电源系统。例如,地反弹噪声太大、去耦电容的设计不合适、回路影响很严重、多电源/地平面的分割不好、地层设计不合理、电流不均匀等等。

(待补充)

4.6.4单层印制板设计技术参照PCB设计规范

4.6.5多层印制板设计技术参照PCB设计规范

4.7 EMI滤波设计技术

EMI滤波包括EMI电源滤波与EMI信号线滤波。其中

4.7.1电源滤波的工程应用必须考虑以下特性

●器件温度特性

●耐压及漏电流限制

●磁性材料的磁饱和问题

●安装及使用要求

●阻抗失配端接原则

按照阻抗失配端接原则采用的滤波电路结构如下图

EMI电源滤波器的安装应该注意

●减小接地阻抗,滤波器应安装在导电金属表面或通过编织接地带与接地点

就近相连,避免细长接地导线造成较大的接地阻抗。

●滤波器应尽量安装在设备的入口/出口处。

●为避免输入/输出互相耦合,应尽量做到输入/输出隔离,至少严格禁止滤波

器输入/输出线的相互交叉、路径平行等。若由于位置及空间的限制,无法满足上述要求的,则滤波器的输入/输出线必须采用屏蔽线或高频吸收线。

4.7.2 EMI信号滤波器

(待补充)

4.8 接地与搭接技术

(参照烽火通信《接地设计规范》)

4.9 瞬态干扰及抑制技术

(待补充)

1)

a)

b)

c)

d) 2)3)

1)2)3)4)5)

1)2)3)

1)2)

3)

A)

B)

C)

D)

E)

F)

A)

B)

C)

D)

E)

F)

G)

H)

I)

J)

1)2)

A)

B)

A)

B) 3)●

A)

B)

C)

D)

E)

F)

G)

H)

A)

B)

C)

D)

E)

F)

G)

1)

A)

B)

C)

D)

E)

a)

b)

i)

ii) 2)

1)

a)

b)

2)

5.相关文件

5.1 参考标准

EN55022 Electromagnetic Emissions Test Procedure

EN61000-3-2 Power Harmonics Test Procedure

EN61000-3-3 Flicker Test Procedure

EN61000-4-2 ESD Test Procedure

EN61000-4-3 Radiated RF Immunity Test Procedure

EN61000-4-4 Electrical Fast Transient Test Procedure

EN61000-4-5 Lightning Surge Test Procedure

EN61000-4-6 Conducted RF Immunity Test Procedure

EN61000-4-11 Power Interrupts, Variations, and Disturbances Test Procedure

5.2 参考企业规范

5.3 参考文章

关于SI信号完整性,你应该了解以下几点

关于SI信号完整性,你应该了解以下几点 1、什么是信号完整性(Singnal Integrity)?信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。主要的信号完整性问题包括反射、振荡、地弹、串扰等。常见信号完整性问题及解决方法:问题可能原因解决方法其他解决方法过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面过大的串扰线间耦合过大使用上升时间缓慢的发送驱动器使用能提供更大驱动电流的驱动源时延太大传输线距离太长替换或重新布线, 检查串行端接头使用阻抗匹配的驱动源, 变更布线策略振荡阻抗不匹配在发送端串接阻尼电阻 2、什么是串扰(crosstalk)?串扰(crosstalk)是指在两个不同的电性能之间的相互作用。产生串扰(crosstalk)被称为Aggressor,而另一个收到干扰的被称为Victim。通常,一个网络既是Aggressor(入侵者),又是Victim(受害者)。振铃和地弹都属于信号完整性问题中单信号线的现象(伴有地平面回路),串扰则是由同一PCB板上的两条信号线与地平面引起的,故也称为三线系统。串扰是两条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。 3、什么是电磁兼容(EMI)?电磁干扰(Ectromagnetioc Interference),或者电磁兼容性(EMI),是从一个传输线(transmission line)(例如电缆、导线或封装的管脚)得到的具有天线特性的结果。印制电路板、集成电路和许多电缆发射并影响电磁兼容性(EMI)的问题。FCC定义了对于一定的频率的最大发射的水平(例如应用于飞行控制器领域)。 4、在时域(time domain)和频域(frequency domain)之间又什么不同?时域(time domain)是一个波形的示波器观察,它通常用于找出管脚到管脚的延时(delays)、偏移(skew)、过冲(overshoot)、下冲(undershoot)以及设置时间(setting times)。频域

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

电磁兼容的设计方法介绍

电磁兼容的设计方法介绍(1—2) 一﹑前言 关于电磁兼容的要求﹐目前世界上大多的先进国家﹐都已经有管制的法规并有相关的符合要求的单位﹐若产品无法符合要求规定﹐往往无法销售到该地区的市场﹐因此多数的电子产品﹐在销售前都必须经过电磁兼容的测试﹐若无法通过则需要经过适当的修改﹐来符合相关的规定。 本文主要是说明﹐在电子产品设计的阶段﹐如何考虑避免电磁干扰的产生﹐和增加产品耐干扰的程度﹐从许多的经验得知﹐若能在设计开始的阶段﹐就能适当的做好电磁兼容的防制﹐往往可以节省事后大量的修改时间和金钱的﹐尤其在现代产品汰换期非常短﹐若不能快速的通过EMC的测试﹐很容易影响到市场上的高机。 目前市面上介绍EMI&EMC相关的书籍﹐也算是林林总总﹐但是在实务运用上﹐总是会感觉有一段的差距﹐许多的读者虽然将一些经典的书籍读的很彻底﹐但是一面临实际产品无法符合EMI要求﹐或开始作产品设计时﹐都会有一种不知从何下手的感觉。 太多的重点反而没有重点﹐太多的理论反而没有理论?,所谓执简御繁﹐?知其要者﹐一言以终﹐不知其要﹐流散无穷?,为使读者能有一清楚的认识﹐与实务上的充分掌握﹐笔者参考 Isidor 于1992年在Compliance Engineering 杂志所发个的Designing for Compliance文章﹐以讲义的方式作一详细的解说与应用的原则﹐期使读者能真正深入的了解一些EMI的设计原理与方法。 该文虽然距今已有八年多的历史了﹐在这八年的期间﹐个人计算机从286的时代已经进步到现在迈入GHz的时代﹐进步可以说非常的神速﹐但是我们回过头来看﹐一些处理电磁兼容的基本原则与方法还是没有变的。能够掌握住这些基本的原则与方向﹐往往

基于信号完整性与电源完整性的PCB电磁兼容协同仿真方法研究

基于信号完整性与电源完整性的PCB电磁兼容协同仿真方法 研究 摘要:基于数字样机的多学科协同设计,是应对传统的印制电路板(PCB:PrintedCircuitBoard)设计周期长、成本高和一次设计成功率低等不足的重要技术 手段,已被广泛地应用于电子产品的研发设计中。PCB协同设计主要是对其功能、性能和可靠性等方面进行评估和改进,涉及到多物理场、多学科的仿真软件工具集。针对日益复杂的电子设备电磁兼容设计,提出基于信号完整性与电源完整性 的PCB电磁兼容协同仿真方法。 关键词:信号完整性;电源完整性;PCB;电磁兼容;协同仿真;方法研究 1、前言 随着电子设备高速化、低功耗、小型化的飞速发展,PCB(PrintedCircuitBoard,印刷电路板)设计人员面临的信号完整性、电源完整性与电磁兼容性问题日益突出,已成为高可靠性PCB设计的瓶颈之一。信号完整性、电源完整性与电磁兼容 性问题不是独立的现象,核心都是电磁场问题,它们之间相互影响,1个方面的 改善可促进另2个方面的改善,割裂、单一地进行分析不能全面解决问题,只有 对三者进行整体的分析研究才能解决高性能、高可靠PCB设计所面临的难题,从 根本上提高PCB的电磁兼容性能。 2、基于信号完整性与电源完整性的PCB电磁兼容协同仿真方法 针对目前日益突出的SI,PI和EMC问题及它们之间紧密的联系,本文提出基 于信号完整性与电源完整性的PCB电磁兼容协同仿真方法,其核心是基于电磁场 和电路仿真结合的方法从SI,PI和EMC这3个方面对PCB进行整体的、全流程 的仿真,从3个方面来提高PCB设计的电磁兼容性,仿真方法与流程如图1所示。 图1 PCB 电磁兼容的协同仿真方法与流程 PCB的电源平面与地平面相当于一个谐振腔,具有谐振特性,利用电磁场仿 真分析方法分析PCB电源平面与地平面谐振,查看谐振频率点及谐振电压分布, 避免PCB的工作频率落到谐振频率附近,避免关键芯片的布局位置位于谐振电压 峰值处,从而减少噪声的耦合和辐射发射。 稳定干净的电源是PCB正常工作的基本保证,进行电源平面阻抗仿真分析, 查看所关注电源平面的阻抗是否低于目标阻抗值,若平面阻抗高于目标阻抗,添 加去耦电容或优化PCB叠层设计降低电源与地平面之间的阻抗,以减少电压波动 对芯片工作的影响。过大的直流电压压降会引起芯片工作异常,通过分析电源平 面电流及电压分布,减少不合理的电源平面分割所造成电流分布密度过大和电压 压降过大的问题。 信号完整性分析主要从信号的时序、电压等方面考察信号质量,确保信号能 正常到达接收端,同时减少噪声的产生和传播,利用电磁场仿真方法提取PCB上 关键信号网络的参数模型,结合芯片模型搭建仿真电路进行电路仿真,查看关键 信号网络的信号质量,通过调整布线等手段优化信号质量较差的电路网络。PCB 辐射仿真分析有助于掌握单板各部分的辐射情况,将关键芯片驱动端输出作为辐 射源放置到PCB上芯片实际管脚位置,进行辐射仿真,查看PCB单板辐射,对于 辐射较大处可以通过抑制手段来降低单板辐射。 基于信号完整性与电源完整性的PCB电磁兼容协同仿真方法通过电磁场仿真 与电路仿真相结合从SI,PI和EMC这3个方面进行全流程的协同仿真,全面解决

于博士信号完整性分析入门-初稿

于博士信号完整性分析入门 于争博士 https://www.360docs.net/doc/656919694.html, 整理:runnphoenix

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

华为PCB设计规范标准

华为PCB设计规范 I. 术语 1..1 PCB(Print circuit Board):印刷电路板。 1..2 原理图:电路原理图,用原理图设计工具绘制的、表达硬件电路中各种器件之间的连接关系的图。 1..3 网络表:由原理图设计工具自动生成的、表达元器件电气连接关系的文本文件,一般包含元器件封装、网络列表和属性定义等组成部分。 1..4 布局:PCB设计过程中,按照设计要求,把元器件放置到板上的过程。深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。 1..5 仿真:在器件的IBIS MODEL或SPICE MODEL支持下,利用EDA设计工具对PCB的布局、布线效果进行仿真分析,从而在单板的物理实现之前发现设计中存在的EMC问题、时序问题和信号完整性问题,并找出适当的解决方案。深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。 II. 目的 A. 本规范归定了我司PCB设计的流程和设计原则,主要目的是为PCB设计者提供必须遵循的规则和约定。 B. 提高PCB设计质量和设计效率。 提高PCB的可生产性、可测试、可维护性。 III. 设计任务受理 A. PCB设计申请流程 当硬件项目人员需要进行PCB设计时,须在《PCB设计投板申请表》中提出投板申请,并经其项目经理和计划处批准后,流程状态到达指定的PCB设计部门审批,此时硬件项目人员须准备好以下资料: ⒈经过评审的,完全正确的原理图,包括纸面文件和电子件; ⒉带有MRPII元件编码的正式的BOM; ⒊PCB结构图,应标明外形尺寸、安装孔大小及定位尺寸、接插件定位尺寸、禁止布线区等相关尺寸; ⒋对于新器件,即无MRPII编码的器件,需要提供封装资料; 以上资料经指定的PCB设计部门审批合格并指定PCB设计者后方可开始PCB设

华为电磁兼容性结构设计规范_第三版

华为技术有限公司企业技术规范 DKBA0.400.0022 REV.3.0 电磁兼容性结构设计规范 2003-11-30发布2003-11-30实施 华为技术有限公司

内部公开 前言 本规范于1999年12月25日首次发布。 本规范于2001年7月30日第一次修订。 本规范于2003年10月30日第二次修订。 本规范起草单位:华为技术有限公司结构造型设计部 本规范授予解释单位:华为技术有限公司结构造型设计部本 华为机密,未经许可不得扩散 第1页,共1页

内部公开 目录 1 范围 ... ....................................................................................................................................................... ..4 2 引用标准 ... . (4) 3 术语 ... ....................................................................................................................................................... ..4 4 电磁兼容基本概念... (5) 4.1 电磁兼容定义 ... .............................................................................................................................. ..5 4.2 电磁兼容三要素 ... ........................................................................................................................... .5 4.3 通讯产品电磁兼容一般要求 ... ..................................................................................................... ..6 5 电磁屏蔽基本理论... (7) 5.1 屏蔽效能 ... ....................................................................................................................................... .7 5.2 屏蔽体的缺陷 ... .............................................................................................................................. ..7 5.2.1缝隙屏蔽 ... (7) 5.2.2开孔屏蔽 ... (8) 5.2.3电缆穿透 ... . (10) 6 屏蔽设计 ... .. (12) 6.1 结构屏蔽效能 ... .......................................................................................................................... (12) 6.2 屏蔽方案与成本 ... ....................................................................................................................... ..12 6.3 缝隙屏蔽设计 ... .......................................................................................................................... (13) 6.3.1紧固点连接缝隙 ... . (13) A. 减小缝隙的最大尺寸 ... ........................................................................................................................... .. 13 B. 增加缝隙深度 ... ........................................................................................................................................ .. 14 C. 紧固点间距 ... ........................................................................................................................................... (15) 6.3.2安装屏蔽材料 ... ....................................................................................................................... ..17 6.3.3屏蔽材料的选用 ... . (18) A. 常用屏蔽材料................................................................... .. 18 B. 常用屏蔽材料性能参数 ... ........................................................................................................................ . 24 6.4 开孔屏蔽设计 ... .......................................................................................................................... (25) 6.4.1通风孔屏蔽 ... .......................................................................................................................... (25) 6.4.2局部开孔屏蔽 ... ....................................................................................................................... ..26 6.5 塑胶件屏蔽 ... . (27) 6.6 单板局部屏蔽 ... .......................................................................................................................... (28) 6.6.1盒体式屏蔽盒 ... ....................................................................................................................... ..28

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一 ——关于眼图测量(上) 汪进进美国力科公司深圳代表处 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基 于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基 于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是 可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”, 看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然 没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰 对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元 定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两 只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码

安全可靠办公信息系统软硬件集成适配关键技术研发及应用规范书(附件一)

附件一 电子信息产业发展基金招标项目 安全可靠办公信息系统软硬件集成适配 关键技术研发及应用 规范书 中华人民共和国工业和信息化部 二〇一二年三月

目录 1.总则 (3) 1.1一般要求 (4) 1.2建议书要求 (4) 2. 项目的目标和主要内容 (6) 2.1项目的目标 (6) 2.2主要内容 (6) 3.技术要求 (9) 3.1总体要求 (10) 3.2功能要求 (10) 3.3性能要求 (14) 3.4安全性要求 (15) 4、主要经济指标 (17) 5.产业化要求 (17) 6.项目进度考核要求 (17) 7. 资金要求 (18) 8. 附录 (18)

1.总则 基于安全可靠CPU/OS的信息系统是保障国家信息安全,促进信息产业发展的重要基础,具有十分重要的战略意义。目前,安全可靠CPU、整机、操作系统、数据库、中间件及办公套件等已基本实现与国外同比软硬件的功能。但在基于安全可靠CPU/OS的办公信息系统建设过程中,国产软硬件之间尚存在部分兼容性适配问题,表现在整机性能、扩展能力以及系统运行效率、可用性、易用性、稳定性等诸多方面。 电子信息产业发展基金设立《安全可靠办公信息系统软硬件集成适配关键技术研发及应用》项目,着力推动系统集成商与CPU、整机、操作系统、办公软件等基础软硬件企业对面向办公领域应用中急需解决的关键问题进行联合攻关,解决安全可靠CPU/OS平台上的国产基础软硬件间的适配问题,解决混合环境下的应用系统支撑问题,解决Java插件运行环境和Flash应用以及替代技术问题,解决安全可靠环境综合管理工具问题,解决基于安全可靠CPU的主板设计、整机研发问题,保障基于国产CPU/OS办公信息系统的实际应用。 本规范书由项目招标方工业和信息化部编写,用于提出项目的技术和进度等具体要求,供项目投标单位编写项目建议书及报价之用。项目投标方应在建议书中详细提出实现本规范书所描述各项技术要求的技术实现方案,并满足本规范书提出的各项要求。项目招标方保留对本规范书的解释和修改的权利。

信号完整性名词解释

信号完整性名词解释 1、什么是信号完整性(Singnal Integrity)? 信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。主要的信号完整性问题包括反射、振荡、地弹、串扰等。常见信号完整性问题及解决方法: 问题可能原因解决方法其他解决方法 过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源 直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面 过大的串扰线间耦合过大使用上升时间缓慢的发送驱动器使用能提供更大驱动电流的驱动源 时延太大传输线距离太长替换或重新布线, 检查串行端接头使用阻抗匹配的驱动源, 变更布线策略 振荡阻抗不匹配在发送端串接阻尼电阻 2、什么是串扰(crosstalk)? 串扰(crosstalk)是指在两个不同的电性能之间的相互作用。产生串扰(crosstalk)被称为Aggressor,而另一个收到干扰的被称为Victim。通常,一个网络既是Aggressor(入侵者),又是Victim(受害者)。振铃和地弹都属于信号完整性问题中单信号线的现象(伴有地平面回路),串扰则是由同一PCB板上的两条信号线与地平面引起的,故也称为三线系统。串扰是两条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。 3、什么是电磁兼容(EMI)? 电磁干扰(Ectromagnetioc Interference),或者电磁兼容性(EMI),是从一个传输线(transmission line)(例如电缆、导线或封装的管脚)得到的具有天线特性的结果。印制电路板、集成电路和许多电缆发射并影响电磁兼容性(EMI)的问题。FCC定义了对于一定的频率的最大发射的水平(例如应用于飞行控制器领域)。 4、在时域(time domain)和频域(frequency domain)之间又什么不同? 时域(time domain)是一个波形的示波器观察,它通常用于找出管脚到管脚的延时(delays)、偏移(skew)、过冲(overshoot)、下冲(undershoot)以及设置时间(setting times)。频域(frequency domain)是一个波形的频谱分析议的观察,它通常用于波形与频谱分析议的观察、它通常用

PCB设计与信号完整性仿真

本人技术屌丝一枚,从事PCB相关工作已达8年有余,现供职于世界闻名的首屈一指的芯片设计公司,从苦逼的板厂制板实习,到初入Pcblayout,再到各种仿真的实战,再到今天的销售工作,一步一步一路兢兢业业诚诚恳恳,有一些相关领悟和大家分享。买卖不成也可交流。 1.谈起硬件工作,是原理图,pcb,码农的结合体,如果你开始了苦逼的pcblayout工作,那么将是漫长的迷茫之路,日复一日年复一年,永远搞不完的布局,拉线。眼冒金星不是梦。最多你可以懂得各种模块的不同处理方式,各种高速信号的设计,但永远只能按照别人的意见进行,毫无乐趣。 2.谈起EDA相关软件,形象的说,就普通的PROTEL/AD来说你可能只有3-6K,对于pads 可能你有5-8K,对于ALLEGRO你可能6-10K,你会哀叹做的东西一样,却同工不同酬,没办法这就是市场,我们来不得无意义的抱怨。 3.众所周知,一个PCB从业者最好的后路就是仿真工作,为什么呢?一;你可以懂得各种模块的设计原则,可以优化不准确的部分,可以改善SI/PI可以做很多,这往往是至关重要的,你可以最大化节约成本,减少器件却功效相同;二;从一个pcblayout到仿真算是水到渠成,让路走的更远; 三:现实的说薪资可以到达11-15K or more,却更轻松,更有价值,发言权,你不愿意吗? 现在由于本人已技术转销售,现在就是生意人了哈哈,我也查询过各种仿真资料我发现很少,最多不过是Mentor Graphics 的HyperLynx ,candense的si工具,

但是他们真的太low了,精确度和完整性根本不能保证,最多是定性的能力,无法定量。真正的仿真是完整的die到die的仿真,是完整的系统的,是需要更高级的仿真软件,被收购的xxsigrity,xx ansys,hspicexx,adxx等等,这些软件才是真正的仿真。 本人提供各种软件及实战代码,例子,从基本入门到高级仿真,从电源仿真,到ddr仿真到高速串行仿真,应有尽有,,完全可以使用,想想以后的高薪,这点投入算什么呢?舍不得孩子套不住狼哦。 所有软件全兼容32位和64位系统。 切记本人还提供学习手册,你懂的,完全快速进入仿真领域。你懂的! 希望各位好好斟酌,自己的路是哪个方向,是否想更好的发展,舍得是哲学范畴,投资看得是利润的最大化,学会投资吧,因为他值得拥有,骚年! 注:本人也可提供培训服务,面面俱到,形象具体,包会! 有购买和学习培训兴趣的请联系 QQ:2941392162

于博士信号完整性分析入门(修改)

于博士信号完整性分析入门 于争 博士 https://www.360docs.net/doc/656919694.html, for more information,please refer to https://www.360docs.net/doc/656919694.html, 电设计网欢迎您

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

信号完整性分析基础系列之二十四

信号完整性分析基础系列之二十四——关于抖动(上) 美国力科公司深圳代表处汪进进 写在前面的话 抖动话题是示波器测量的最高境界,也是最风云变换的一个话题,这是因为抖动是示波器测量的诸多功能中最和“数学”相关的。玩数学似乎是需要一定境界的。 “力科示波器是怎么测量抖动的?”,“这台示波器抖动测量准不准?”,“时钟抖动和数据抖动测量方法为什么不一样?”,“总体抖动和峰峰值抖动有什么区别? ”,“余辉方法测量抖动不是最方便吗?”,“抖动和眼图,浴盆曲线之间是什么?”,…… 关于抖动的问题层出不穷。这么多年来,在完成了“关于触发(上)、(下)”和“关于眼图(上)、(下)”,“关于S参数(上)(下)”等三篇拙作后,我一直希望有一篇“关于抖动”的文章问世,但每每下笔又忐忑而止,怕有谬误遗毒。今天,当我鼓起勇气来写关于抖动的时候,我需要特别说明,这是未定稿,恳请斧正。 抖动和波形余辉的关系 有一种比较传统的测量抖动的方法,就是利用余辉来查看信号边沿的变化,然后再用光标测量变化的大小(如图1所示),后来更进了一步,可以利用示波器的“余辉直方图”和相关参数自动测量出余辉的变化范围,这样测量的结果就被称为“抖动”。这个方法是在示波器还没有“测量统计”功能之前的方法,但在90年代初力科发明了测量统计功能之后,这个方法就逐渐被淘汰了。 图1 传统的抖动测量方法 这种传统的方法有下面这些缺点:(1)总会引入触发抖动,因此测量的结果很不准确。(2)只能测量某种参数的抖动,譬如触发上升沿,测量下降沿的余辉变化,反应了宽度的抖动,触发上升沿,测量相邻的上升沿的余辉变化,反应了周期的抖动。显然还有很多类型的抖动特别是最重要的TIE抖动无法测量出来。(3)抖动产生的因果关系的信息也无从得知。 定义抖动的四个维度 和抖动相关的名词非常多:时钟抖动,数据抖动; 周期抖动,TIE抖动,相位抖动,cycle-cycle抖动; 峰峰值抖动(pk-pk jitter),有效值抖动(rms jitter);总体抖动(Tj),随机抖动(Rj),固有抖动(Dj);周期性抖动,DCD抖动,ISI抖动,数据相关性抖动; 定时抖动,基于误码率的抖动; 水平线以上的抖动和水平线以下的抖动…… 这些名词反应了定义抖动的不同维度。 回到“什么是抖动”的定义吧。其实抖动的定义一直没有统一,这可能也是因为需要表达清楚这个概念的维度比较多的原因。目前引用得比较多的定义是: Jitter is defined as the short-term variations of a digital signal’s significant instants from their ideal positions in time. 就是说抖动是信号在电平转换时,其边沿与理想位置之间的偏移量。如图2所示,红色的是表示理想信号,实际信号的边沿和红色信号边沿之间的偏差就是抖动。什么是“理想位置”,“理想位置”是怎么得到的?这是被问到后最不好回答的问题。

五款信号完整性仿真分析工具

SI 五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB 设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,An soft公司的仿真工具能够从三维场求解的角度出发,对PCB 设计的信号完整性问题进行动态仿真。 Ansoft 的信号完整性工具采用一个仿真可解决全部设计问题: Slwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何 数量的过孔和信号引线条构成。仿真结果采用先进的3D 图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿 (二)SPECCTRAQuest Cade nee的工具采用Sun的电源层分析模块: Cade nee Design System 的SpeeetraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI 。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer 可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

电磁兼容EMC设计指南

EDP电磁兼容设计平台专注EMC解决方案,规范EMC设计流程; 打造智能化的EMC设计平台。 1、企业面临的EMC设计应用现状 ?投入成本高,解决问题周期长;为解决产品EMC问题,不断进行测试验证, 反复的进行改版设计。 ?企业设计人员EMC知识储备不全面;解决EMC问题往往靠设计人员过去的 工作经验。 ?EMC设计流程不规范,EMC设计没有参透于电子产品开发过程各个阶段(总 体方案阶段、设计阶段、开发阶段、测试阶段、认证阶段等)。 ?公司技术文献和多年积累的产品开发经验不能良好的共享、消化,没有一个 系统将公司无形的技术经验转化为有形的产品开发技术要求。 2、企业面临的EMC问题 ?激烈的产品竞争要求企业开发的产品有更高的品质。 ?快速的市场变化要求企业有更高的产品开发效率。 ?高规格的EMC认证和EMC设计技术要求企业有更高的产品开发能力。 ?规范化的企业文化要求有更高效的产品开发流程。 3、EDP电磁兼容设计平台优势 ?赛盛技术多位专家10多年的经验融合荟萃; ?赛盛技术多项产品电磁兼容设计专利技术; ?智能化标准化项目管理设计平台 ?几十种典型接口电磁兼容解决方案; ?上百种PCB层叠电磁兼容设计方案; ?完整的电磁兼容布线设计规则; ?完整的结构屏蔽电磁兼容设计方案; ?多行业电缆与连接器电磁兼容解决方案; ?多行业、近百个产品实际电磁兼容设计验证与经验总结;

4、EMC设计平台介绍 利用计算机技术,整合人工智能、数据库、互联网等开发手段,对于现有的电磁兼容技术资源(包括各种设计规则,解决方案等)以及企业产品研发积累的技术检验等进行全面的管理和应用,实现现阶段对于企业电磁兼容的研发流程规范化和研发工程师电磁兼容设计的技术支持和辅助开发;未来电磁兼容专家系统一提供智能化技术支持(包括产品开发电磁兼容风险评估功能,自动检查和纠正电磁兼容设计功能、产品设计系统仿真和功能电路仿真等)为主要目标和发展方向。 电磁兼容设计平台:主要包括PCB设计、原理图设计、结构设计、电缆设计等四部分组成;系统依据用户设计要求和EMC设计要素,智能化输出相应的产品PCB设计方案、产品原理图设计方案、产品结构设计方案、产品电缆设计方案,然后用户依据产品信息保存方案(方案为标准技术设计模板,内容依据设计内容自动生成格式化的文件)。 使用电磁兼容设计(EDP)软件,会让我们很轻松的完成这些复杂困难的工作,用户输入产品产品设计的相关要素,软件就能够智能化输出产品EMC设计方案。 不管企业之前是否有电磁兼容设计经验?是否有电磁兼容设计规范?是否有电磁兼容标准化设计流程?是否有电磁兼容技术专家?企业在应用EDP软件后,EDP软件能够快速帮助企业解决以下方面问题: 1、快速提升企业产品电磁兼容性能:系统一旦使用上就能够快速地指导企业产品进行电磁兼容有效的设计工作,迅速提升企业产品的电磁兼容性能; 2、能够解决企业多型号产品同时开发,技术专家资源不够使用的情况:智能化的软件可以同时多款多个型号产品,不用设计阶段并行进行开发;能够在很短的时间内给出相应的设计方案,结合产品设计要求指导设计人员进行设计,不耽误产品由于专家资源不足而造成正常设计进度延误; 3、提高产品研发人员EMC技术设计水平:由于有规范化、标准化的方案输出,设计人员在进行新产品开发的时候,能够参考、学习标准化的技术方案;提升自身EMC设计知识水平,减少后期类似设计问题; EDP软件在手,EMC设计得心应手!

相关文档
最新文档