理想气体典型例题

理想气体典型例题
理想气体典型例题

专题三:气体实验定律_理想气体的状态方程

专题三:气体实验定律 理想气体的状态方程 [基础回顾]: 一.气体的状态参量 1.温度:温度在宏观上表示物体的________;在微观上是________的标志. 温度有________和___________两种表示方法,它们之间的关系可以表示为:T = ________.而且ΔT =____(即两种单位制下每一度的间隔是相同的). 绝对零度为____0 C,即___K ,是低温的极限,它表示所有分子都停止了热运动.可以无限接近,但永远不能达到. 2.体积:气体的体积宏观上等于___________________________________,微观上则表示_______________________.1摩尔任何气体在标准状况下所占的体积均为_________. 3.压强:气体的压强在宏观上是___________;微观上则是_______________________产生的.压强的大小跟两个因素有关:①气体分子的__________,②分子的_________. 二.气体实验定律 1.玻意耳定律(等温变化) 一定质量的气体,在温度不变的情况下,它的压强跟体积成______;或者说,它的压强跟体积的________不变.其数学表达式为_______________或_____________. 2.查理定律(等容变化) (1)一定质量的气体,在体积不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的压强等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在体积不变的情况下,它的压强与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(P ,T )开始,发生一等容变化过程,其压强的变化量△P 与温度变化量△T 的关系为_____________. 3.盖·吕萨克定律(等压变化) (1)一定质量的气体,在压强不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的体积等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在压强不变的情况下,它的体积与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(V ,T )开始,发生一等压变化过程,其体积的变化量△V 与温度变化量△T 的关系为_____________. 三.理想气体状态方程 1.理想气体 能够严格遵守___________的气体叫做理想气体.从微观上看,分子的大小可忽略,除碰撞外分子间无___________,理想气体的内能由气体_____和_____决定,与气体_____无关.在___________、__________时,实际气体可看作理想气体. 2.一定质量的理想气体状态方程: 2 2 2111T V P T V P = 3.密度方程: 2 22111ρρT P T P = [重难点阐释]: 一.气体压强的计算

气体典型例题

气体典型例题连通管内同一高度的液面处压强相等 例1 如图所示,(a)、(b)、(c)、(d )图中各有被水银柱封闭的气体,若大气压强 cmHg,求各图中被封闭气体的压强. 分析:在图(a)中,根据连通管原理,与管外水银面齐平的管内液面处的压强等于大气压强,所以被封气体压强与大气压强相差5cmHg. 在图(b)中,与气体接触处液面比右管液面高10cm,可见气体压强比外界大气压强低10cmHg. 在图(c)中,管内水银柱产生的压强应由竖直方向的高度来计算,即水银柱压强. 在图(d)中,有上、下两部分被封闭气体,根据连通管原理,下部气体压强 等 于大气压强加上 水银柱产生的压强.而上部气体压强 比下部气体压强 低 cmHg. 解:(a) (cmHg) (b) (cmHg) (c) (cmHg) (d) 点评:本题的解析是根据连通管内同一高度的液面处压强相等和液体内部的压强跟深度成正比的原理若.采用研究水银柱的受力列平衡方程的方法,同样可以求解,只是需要注意单位制的统一. 水平横置气缸内气体压强的判断 例2 如图所示,固定在水平地面上的气缸内封闭着一定质量的气体,活塞与气缸内 塞的横截面积 ,受到 N水 壁接触光滑且不漏气,活 时,缸内气体对活塞的平均压力为 N, 平向左的推力而平衡,此则缸内气体的压强 Pa,缸外大气压强 Pa. 分析:选择活塞作为研究对象,分析受力,在竖直方向,活塞受重力和气缸的弹力平衡,在水平方向,活塞受到向左的外力 和大气压力 ,向右受到被封闭气体的压力 。根据压强的定义可求出缸内气体压强p;根据水平方向受力平衡可求出缸外大气压强 。 解:根据压强的定义, 缸内气体压强 Pa 由活塞受力平衡得 。 ∴大气压强 Pa. 点评:本题考查的内容是气体的压强与力学的综合问题,关键在于正确选择研究对象和正确分析受力。 连通管内封闭气体压强 例3 如图所示,一支两端开口,内径均匀的U形玻璃管,右边直管中 的水银柱被一段空气柱隔开,空气柱下端水银面与左管中水银面的高度差 为h,则下列叙述中正确的是() A、向左管中注入一些水银后,h将减小 B、向左管中注入一些水银后,h将不变 C、向右管中注入一些水银后,h将增大 D、向右管中注入一些水银后,h将不变 分析:被封空气柱下端的水银面与左管中水银面高度差反映了被封气体的压强,所以,右管内上方的水银柱长也应为h。当向左管内注入一些水银时,由于右管内空气柱上方的水银柱长不变,则空气柱的压强不变,因此,h不变.当向右管内注入一些水银时,气体压强增大,h增大. 解:B、C. 点评:U形管内被封闭气体的压强,利用左管或右管来计算是等价的. 封闭空气处于不同运动状态时的压强

高一化学气体摩尔体积练习题及答案A

高一化学气体摩尔体积练习题及答案A 一、气体摩尔体积〔引入〕前面我们学习了物质的量的有关知识,请同学们回忆物质的量与质量、粒子数目之间有什么关系?物质的量是怎样把宏观质量与微观粒子数联系起来的?〔思考〕 1、物质的量(n)、微粒数(N)和阿伏加德罗常数(NA)之间有什么关系? 2、物质的量(n)、质量(m)和摩尔质量(M)之间有什么关系?(学生回答)〔讨论+计算〕在0℃、1、01105Pa时1mol 下列物质的体积为多少? 〔讨论〕由体积数据结合物质状态可得出什么结论?结论: 1、在相同条件下,1mol气体所占的体积比1mol固体或液体所占的体积大得多 2、在相同条件下,1mol固体或液体的体积各不相同,而 1mol气体的体积却几乎完全相同〔思考〕从微观角度分析,物质的体积由哪些因素决定? (一)决定物质的体积(V)的微观因素:〔思考〕 1、固体、液体体积的主要决定因素有哪些?〔思考〕 2、气体体积的主要决定因素有哪些?些?[实验启示] 气体分子间的平均距离要比固体和液体中粒子之间的平均距离大得多。〔思考〕分子间的平均距离受哪些条件影响?是怎样影响

的?〔讨论〕为什么在标准状况下1mol任何气体所占的体积都相同呢?其他的相同条件下,1mol任何气体所占的体积是否都相同呢? (二)气体摩尔体积定义:单位物质的量的气体所占的体积。符号:Vm单位:L/mol或m3/mol等公式:N对象:任何气体(纯净或混合气体)标准状况:温度:0℃、压强 1、01105Pa标准状况:Vm约 22、4L/mol思考:1mol气体在任何状况下所占的体积是不是都相等? 是不是都约为22 、4L?几点注意: 1、状态:气体 2、状况:一定温度和压强下,一般指标准状况 3、定量:1mol 4、数值:约为22 、4L 5、通常状况:20℃、1atm(与标准状况比较) 6、气体体积与微粒数目有关,与种类无关。 7、结论:在标准状况下,1mol任何气体所占的体积都约为22 、4L。 8、有关计算:(标准状况下) V=n 22、4L/mol(n—气体的物质的量) 二、例题 (一)、选择题:

气体实验定律及应用参考答案

第2节气体实验定律及应用 知识梳理 一、气体分子运动速率的统计分布气体实验定律理想气体 1.气体分子运动的特点 (1)分子很小,间距很大,除碰撞外不受力. (2)气体分子向各个方向运动的气体分子数目都相等. (3)分子做无规则运动,大量分子的速率按“中间多,两头少”的规律分布.(4)温度一定时,某种气体分子的速率分布是确定的,温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率增大,但不是每个分子的速率都增大. 2.气体的三个状态参量 (1)体积;(2)压强;(3)温度. 3.气体的压强 (1)产生原因:由于气体分子无规则的热运动,大量的分子频繁地碰撞器壁产生持续而稳定的压力. (2)大小:气体的压强在数值上等于气体作用在单位面积上的压力.公式:p=. (3)常用单位及换算关系: ①国际单位:帕斯卡,符号:Pa,1Pa=1N/m2. ②常用单位:标准大气压(atm);厘米汞柱(cmHg). ③换算关系:1atm=76cmHg= 1.013×105Pa≈1.0×105Pa. 4.气体实验定律 (1)等温变化——玻意耳定律: ①内容:一定质量的某种气体,在温度不变的情况下,压强p与体积V成反比. ②公式:p1V1=p2V2或pV=C(常量). (2)等容变化——查理定律: ①内容:一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T 成正比.②公式:=或=C(常量). ③推论式:Δp=·ΔT. (3)等压变化——盖—吕萨克定律: ①内容:一定质量的某种气体,在压强不变的情况下,其体积V与热力学温度T 成正比. ②公式:=或=C(常量). ③推论式:ΔV=·ΔT. 5.理想气体状态方程 (1)理想气体:在任何温度、任何压强下都遵从气体实验定律的气体. ①理想气体是一种经科学的抽象而建立的理想化模型,实际上不存在. ②理想气体不考虑分子间相互作用的分子力,不存在分子势能,内能取决于温度,与体积无关. ③实际气体特别是那些不易液化的气体在压强不太大,温度不太低时都可看作理想气体. (2)一定质量的理想气体状态方程: =或=C(常量). 典例突破 考点一气体压强的产生与计算1.产生的原因:由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强. 2.决定因素 (1)宏观上:决定于气体的温度和体积. (2)微观上:决定于分子的平均动能和分子的密集程度. 3.平衡状态下气体压强的求法 (1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程.求得气体的压强. (2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强.

理想气体典型例题

【答案】BD 【解析】A到B等温变化,膨胀体积变大,根据玻意耳定律压强p变小;B到C是等容变化,在p-T图象上为过原点的直线;C到A是等压变化,体积减小,根据盖-吕萨克定律知温度降低,故A错误,B正确;A到B是等温变化,体积变大;B到C是等容变化,压强变大,根据查理定律,温度升高;C到A是等压变化,体积变小,在V-T图象中为过原点的一条倾斜的直线,故C错误,D正确;故选BD。 点睛:本题要先根据P-V图线明确各个过程的变化规律,然后结合理想气体状态方程或气体实验定律分析P-T先和V-T线的形状. & 2.水平玻璃细管A与竖直玻璃管B、C底部连通,组成如图所示结构,各部分玻璃管内径相同。B管上端封有长20cm的理想气体,C管上端开口并与大气相通,此时两管左、右两侧水银面恰好相平,水银面距玻璃管底部为25cm.水平细管A内用小活塞封有长度10cm的理想气体.已知外界大气压强为75cmHg,忽略环境温度的变化.现将活塞缓慢向左拉,使B管内气体的气柱长度为25cm,求A管中理想气体的气柱长度。 【答案】 【解析】活塞被缓慢的左拉的过程中,气体A做等温变化 初态:压强p A1=(75+25)cmHg=100cmHg,体积V A1=10S, 末态:压强p A2=(75+5)cmHg=80cmHg,体积V A2=L A2S 根据玻意耳定律可得:p A1V A1=p A2V A2

解得理想气体A 的气柱长度:L A2= 点睛:本题考查气体实验定律的应用,以气体为研究对象,明确初末状态的参量,气体压强的求解是关键,应用气体实验定律应注意适用条件. 3.一热气球体积为V ,内部充有温度为T a 的热空气,气球外冷空气的温度为T b .已知空气在1个大气压、温度T 0时的密度为ρ0,该气球内、外的气压始终都为1个大气压,重力加速度大小为g. (i )求该热气球所受浮力的大小; (ii )求该热气球内空气所受的重力; (iii )设充气前热气球的质量为m 0,求充气后它还能托起的最大质量. $ 【答案】(i )00 b gVT f T ρ= (ⅱ)00 a T G Vg T ρ=(ⅲ)00000 b a VT VT m m T T ρρ=-- 【解析】(i )设1个大气压下质量为m 的空气在温度T 0时的体积为V 0,密度 为 00 m V ρ= ① 温度为T 时的体积为V T ,密度为: ()T m T V ρ= ② 由盖-吕萨克定律可得: 00T V V T T =③ 联立①②③解得: ()0 T T T ρρ=④ 气球所受的浮力为: ()b f T gV ρ=⑤ 联立④⑤解得: 00 b gVT f T ρ= ⑥ (ⅱ)气球内热空气所受的重力: ()a G T Vg ρ=⑦ 联立④⑦解得: 0 a T G Vg T ρ=⑧ ~ (ⅲ)设该气球还能托起的最大质量为m ,由力的平衡条件可知:mg =f –G –m 0g ⑨ 联立⑥⑧⑨可得: 00 00 0b a VT VT m m T T ρρ= - - 【名师点睛】此题是热学问题和力学问题的结合题;关键是知道阿基米德定律,知道温度不同时气体密度不同;能分析气球的受力情况列出平衡方程。 4.一种测量稀薄气体压强的仪器如图(a )所示,玻璃泡M 的上端和下端分别连通两竖直玻璃细管K 1和K 2。K 1长为l ,顶端封闭,K 2上端与待测气体连通;M 下端经橡皮软管与充有水银的容器R 连通。开始测量时,M 与K 2相通;逐渐提升R ,直到K 2中水银面与K 1顶端等高,此时水银已进入K 1,且K 1中水银面比顶端低h ,如图(b )所示。设

物质的量气体摩尔体积练习题及答案

物质的量气体摩尔体积 练习题及答案 Document number:PBGCG-0857-BTDO-0089-PTT1998

1.下列关于物质的量和摩尔质量的叙述,正确的是() A.水的摩尔质量是18 g B.0.012 kg 12C中含有×1023个碳原子 C.1 mol水中含有2 mol氢和1 mol氧 D.1 mol任何物质都含有×1023个分子 解析:选B。A选项,摩尔质量的单位是g·mol-1,A选项错误;B选项,碳是由原子构成的,根据规定,0.012 kg 12C中所含的碳原子数即为阿伏加德罗常数,近似为×1023mol-1,B选项正确;在使用“摩尔”作为物质的量的单位时,应该用化学式指明粒子的种类,而不使用该粒子的中文名称,而且选项C中表示水的组成时,氢、氧的含义也不具体,C选项错误;D选项,构成物质的基本粒子有分子、原子和离子,并非任何物质都是由分子构成的,D 选项错误。 2.下列关于阿伏加德罗常数的说法中正确的是() A.×1023叫做阿伏加德罗常数 B.12 g碳-12含有的碳原子数就是阿伏加德罗常数 C.含有阿伏加德罗常数个微粒的物质是1摩尔 D.1摩尔氯含有×1023个氯分子 解析:选BC。摩尔的基准是0.012 kg 12C所含碳原子数,每摩尔物质含有阿伏加德罗常数个微粒。阿伏加德罗常数为×1023mol-1,而不是×1023。用摩尔来表示粒子时应指明具体微粒。如1 mol Fe、1 mol H+、1 mol e-等,不能说1摩尔氯。 3.(2010年南充高一检测)在标准状况下,与12 g H2的体积相等的N2的() A.质量为12 g B.物质的量为6 mol C.体积为22.4 L D.物质的量为12 mol 解析:选B。12 g H2的物质的量为6 mol,因二者体积相等,所

应用气体实验定律解决“三类模型问题”

专题强化十四 应用气体实验定律解决“三类模型问题” 专题解读 1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题. 2.学好本专题可以帮助同学们熟练的选取研究对象和状态变化过程,掌握处理三类模型问题的基本思路和方法. 3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验定律等. 命题点一 “玻璃管液封”模型 1.三大气体实验定律 (1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数). (2)查理定律(等容变化):p 1T 1=p 2T 2或p T =C (常数). (3)盖—吕萨克定律(等压变化):V 1T 1=V 2T 2或V T =C (常数). 2.利用气体实验定律及气态方程解决问题的基本思路 3.玻璃管液封模型 求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意: (1)液体因重力产生的压强大小为p =ρgh (其中h 为至液面的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力; (3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等; (4)当液体为水银时,可灵活应用压强单位“cmHg ”等,使计算过程简捷.

类型1 单独气体问题 例1 (2017·全国卷Ⅲ·33(2))一种测量稀薄气体压强的仪器如图1(a)所示,玻璃泡M 的上端和下端分别连通两竖直玻璃细管K 1和K 2.K 1长为l ,顶端封闭,K 2上端与待测气体连通;M 下端经橡皮软管与充有水银的容器R 连通.开始测量时,M 与K 2相通;逐渐提升R ,直到K 2中水银面与K 1顶端等高,此时水银已进入K 1,且K 1中水银面比顶端低h ,如图(b)所示.设测量过程中温度、与K 2相通的待测气体的压强均保持不变.已知K 1和K 2的内径均为d ,M 的容积为V 0,水银的密度为ρ,重力加速度大小为g .求: 图1 (1)待测气体的压强; (2)该仪器能够测量的最大压强. 答案 (1)ρπgh 2d 24V 0+πd 2?l -h ? (2)πρgl 2d 24V 0 解析 (1)水银面上升至M 的下端使玻璃泡中气体恰好被封住,设此时被封闭的气体的体积为V ,压强等于待测气体的压强p .提升R ,直到K 2中水银面与K 1顶端等高时,K 1中水银面比顶端低h ;设此时封闭气体的压强为p 1,体积为V 1,则 V =V 0+1 4πd 2l ① V 1=1 4πd 2h ② 由力学平衡条件得 p 1=p +ρgh ③ 整个过程为等温过程,由玻意耳定律得 pV =p 1V 1 ④ 联立①②③④式得 p =ρπgh 2d 2 4V 0+πd 2?l -h ? ⑤ (2)由题意知 h ≤l ⑥ 联立⑤⑥式有 p ≤πρgl 2d 24V 0 ⑦ 该仪器能够测量的最大压强为

高一化学气体摩尔体积练习题及答案A

一、气体摩尔体积 〔引入〕前面我们学习了物质的量的有关知识,请同学们回忆物质的量与质量、粒子数目之间有什么关系?物质的量是怎样把宏观质量与微观粒子数联系起来的? 〔思考〕 1. 物质的量(n )、微粒数(N )和阿伏加德罗常数(N A )之间有什么关系? 2. 物质的量(n )、质量(m )和摩尔质量(M )之间有什么关系? (学生回答) 〔展示〕 粒子数 宏观 微观 体积 粒子数 〔讨论+计算〕在0℃、1.01×105 Pa 时1mol 下列物质的体积为多少? 〔讨论〕由体积数据结合物质状态可得出什么结论? 结论: 1. 在相同条件下,1mol 气体所占的体积比1mol 固体或液体所占的体积大得多 2. 在相同条件下,1mol 固体或液体的体积各不相同,而1mol 气体的体积却几乎完全相同 〔思考〕从微观角度分析,物质的体积由哪些因素决定? (一)决定物质的体积(V )的微观因素: 1. 粒子数目 2. 粒子大小 3. 粒子间距离

〔思考〕1. 固体、液体体积的主要决定因素有哪些? 粒子数目 固、液体体积 粒子大小 取决于 〔思考〕2. 气体体积的主要决定因素有哪些? [实验启示]气体分子间的平均距离要比固体和液体中粒子之间的平均距离大得多。 粒子数目 气体体积 粒子间平均距离(d) 取决于 〔思考〕分子间的平均距离受哪些条件影响?是怎样影响的? 〔讨论〕为什么在标准状况下1mol任何气体所占的体积都相同呢?其他的相同条件下,1mol 任何气体所占的体积是否都相同呢? (二)气体摩尔体积 定义:单位物质的量的气体所占的体积。 符号:V m 单位:L/mol或m3/mol等 公式:n V V m 对象:任何气体(纯净或混合气体) 标准状况:温度:0℃、压强1.01×105Pa 标准状况:Vm约22.4L/mol 思考:1mol气体在任何状况下所占的体积是不是都相等? 是不是都约为22 .4L? 几点注意: 1、状态:气体 2、状况:一定温度和压强下,一般指标准状况 3、定量:1mol

气体的等温变化、玻意耳定律典型例题

气体的等温变化、玻意耳定律典型例题 【例1】一个气泡从水底升到水面时,它的体积增大为原来的3倍,设水的密度为ρ=1×103kg/m3,大气压强p0=×105Pa,水底与水面的温度差不计,求水的深度。取g=10m/s2。 【分析】气泡在水底时,泡内气体的压强等于水面上大气压与水的静压强之和。气泡升到水面上时,泡内气体的压强减小为与大气压相等,因此其体积增大。由于水底与水面温度相同,泡内气体经历的是一个等温变化过程,故可用玻意耳定律计算。 【解答】设气泡在水底时的体积为V1、压强为:

p1=p0+ρgh 气泡升到水面时的体积为V2,则V2=3V1,压强为p2=p0。 由玻意耳定律 p1V1=p2V2,即 (p0+ρgh)V1=p0·3V1 得水深 【例2】如图1所示,圆柱形气缸活塞的横截面积为S,下表面与水平面的夹角为α,重量为G。当大气压为p0,为了使活塞下方密闭气体的体积减速为原来的1/2,必须在活塞上放置重量为多少的一个重物(气缸壁与活塞间的摩擦不计) 【误解】活塞下方气体原来的压强 设所加重物重为G′,则活塞下方气体的压强变为

∵气体体积减为原的1/2,则p2=2p1 【正确解答】据图2,设活塞下方气体原来的压强为p1,由活塞的平衡条件得 同理,加上重物G′后,活塞下方的气体压强变为 气体作等温变化,根据玻意耳定律:

得 p2=2p1 ∴ G′=p0S+G 【错因分析与解题指导】【误解】从压强角度解题本来也是可以的,但 免发生以上关于压强计算的错误,相似类型的题目从力的平衡入手解题比较好。在分析受力时必须注意由气体压强产生的气体压力应该垂直于接触面,气体压强乘上接触面积即为气体压力,情况就如【正确解答】所示。 【例3】一根两端开口、粗细均匀的细玻璃管,长L=30cm,竖直插入水银槽中深h0=10cm处,用手指按住上端,轻轻提出水银槽,并缓缓倒转,则此时管内封闭空气柱多长已知大气压P0=75cmHg。 【分析】插入水银槽中按住上端后,管内封闭了一定质量气体,空气柱长L1=L-h0=20cm,压强p1=p0=75cmHg。轻轻提出水银槽直立在空气中时,有一部分水银会流出,被封闭的空气柱长度和压强都会发生变化。设管中水银柱长h,被封闭气体柱长为L2=L-h。倒转后,水

理想气体状态方程典型例题解析

理想气体状态方程·典型例题解析 【例1】某房间的容积为20m 3,在温度为17℃,大气压强为74 cm Hg 时,室内空气质量为25kg ,则当温度升高到27℃,大气压强变为76 cm Hg 时,室内空气的质量为多少千克? 解析:以房间内的空气为研究对象,是属于变质量问题,应用克拉珀龙方程求解,设原质量为m ,变化后的质量为m ′,由克拉珀龙方程 pV RT =可得:m M m m m m 25kg 24.81kg =……①′=……②②÷①得:=∴′==×××=.MpV RT Mp V RT m m p T p T p T p T 122 211221127629074300 点拨:对于变质量的问题,应用克拉珀龙方程求解的比较简单. 【例2】向汽车轮胎充气,已知轮胎内原有空气的压强为1.5个大气压,温度为20℃,体积为20L ,充气后,轮胎内空气压强增大为7.5个大气压,温度升为25℃,若充入的空气温度为20℃,压强为1个大气压,则需充入多少升这样的空气(设轮胎体积不变). 解析:以充气后轮胎内的气体为研究对象,这些气体是由原有部分加上充入部分气体所混合构成. 轮胎内原有气体的状态为:p 1=1.5 atm ,T 1=293K ,V 1=20L . 需充入空气的状态为:p 2=1atm ,T 2=293K ,V 2=? 充气后混合气体状态为:p =7.5atm ,T =298K ,V =20L 由混合气体的状态方程:+=得:p V T p V T pV T 111222 V (pV T )(7.520298)117.5(L)2=-·=×-××=p V T T p 1112215302932931 . 点拨:凡遇到一定质量的气体由不同状态的几部分合成时,可考虑用混合气体的状态方程解决. 【例3】已知空气的平均摩尔质量为2.9×10-2 kg/mol ,试估算室温下,空气的密度. 点拨:利用克拉珀龙方程=及密度公式ρ=可得ρ=, pV RT m M m V pM RT

高中物理选修3-3优质学案:习题课 气体实验定律和理想气体状态方程的应用

习题课气体实验定律和理想气体状态方程 的应用

相关联的两部分气体的分析方法[要点归纳] 这类问题涉及两部分气体,它们之间虽然没有气体交换,但其压强或体积这些量间有一定的关系,分析清楚这些关系是解决问题的关键,解决这类问题的一般方法: (1)分别选取每部分气体为研究对象,确定初、末状态参量,根据状态方程列式求解。 (2)认真分析两部分气体的压强、体积之间的关系,并列出方程。 (3)多个方程联立求解。 [精典示例] [例1]用销钉固定的活塞把容器分成A、B两部分,其容积之比V A∶V B=2∶1,如图1所示,起初A中有温度为127 ℃、压强为1.8×105 Pa的空气,B中有温度为27 ℃、压强为1.2×105 Pa的空气,拔去销钉,使活塞可以无摩擦地移动且不漏气,由于容器壁缓慢导热,最后两部分空气都变成室温27 ℃,活塞也停住,求最后A、B中气体的压强。

图1 [解析] 对A 空气,初状态:p A =1.8×105 Pa ,V A =?,T A =400 K 。 末状态:p A ′=?,V A ′=?,T A ′=300 K , 由理想气体状态方程p A V A T A =p A ′V A ′T A ′得: 1.8×105V A 400 =p A ′V A ′300 对B 空气,初状态:p B =1.2×105 Pa ,V B =?T B =300 K 。 末状态:p B ′=?,V B ′=?,T B ′=300 K 。 由理想气体状态方程p B V B T B =p B ′V B ′T B ′得: 1.2×105V B 300 =p B ′V B ′300 又V A +V B =V A ′+V B ′, V A ∶V B =2∶1,p A ′=p B ′, 联立以上各式得p A ′=p B ′=1.3×105 Pa 。 [答案] 都为1.3×105 Pa

(完整word版)高中物理选修3-3《气体》重点题型.doc

选修 3-3 《气体》复习一、气体压强的计算 (一) .液体封闭的静止容器中气体的压强 1.知识要点 ( 1)液体在距液面深度为h 处产生的压强:P h gh (式中表示液体的密度)。 (2)连通器原理:在连通器中,同种液体的同一水平面上的压强相等; 2.典型 例 1如图1、2、3、4玻璃管中都灌有水银,分别求出四种情况下被封闭气体 A 的压强P A(设 大气压强P 76cmHg )。 练习 :1 如图所示,粗细均匀的竖直倒置的U 型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱 1 和 2 。已知 h 1 2 =12cm ,外界大气压强 =15cm , h p 0=76cmHg ,求空气柱 1 和 2 的压强。 2 . 有一段 12cm 长汞柱,在均匀玻璃管中封住了一定质量的气体。如 图所示。若管中向上将玻璃管放置在一个倾角为30°的光滑斜面上。在下滑过程中被封闭气体的压强(设大气压强为P0=76cmHg )为() A. 76cmHg B. 82cmHg C. 88cmHg D. 70cmHg (二) .活塞封闭的静止容器中气体的压强 1.解题的基本思路 (1)对活塞(或气缸)进行受力分析,画出受力示意图; (2)列出活塞(或气缸)的平衡方程,求出未知量。 注意:不要忘记气缸底部和活塞外面的大气压。 2.典例 例 2 如图 5 所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板 A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为 M 。 不计圆板与容器内壁之间的摩擦。若大气压强为P0,则被圆板封闭在容器 中的气体压强 P 等于() P0 Mg cos P0 Mg S B. cos Scos A . P0 Mg cos2 0 Mg C. S D. P S 练习 :3 如图所示,活塞质量为m ,缸套质量为M,通过弹簧吊在天花板上,气缸内封住了一 定质量的空气,而活塞与缸套间无摩擦,活塞面积为S,则下列说法正确的是()(P 0 为大气压强 ) A、内外空气对缸套的总作用力方向向上,大小为Mg B、内外空气对缸套的总作用力方向向下,大小为mg C、气缸内空气压强为P0-Mg/S D、气缸内空气压强为P0+mg/S 4 . 如图 7 ,气缸由两个横截面不同的圆筒连接而成。活塞A、B被轻刚性细杆连接在一起, 可无摩擦移动。 A、B 的质量分别为 m A=12kg ,m B =8.0kg ,横截面积分别为 S A=4.0 ×10 -2m2, S B=2.0 ×10 -2 m2。一定质量的理想气体被封闭在两活塞之间。活塞外侧大气压强 P0=1.0 ×10 5 Pa 。 ( 1)气缸水平放置达到如图7 所示的平衡状态,求气体的压强。 ( 2)现将气缸竖直放置,达到平衡后。求此时气体的压强。取重力加速度g=10m/s 2。 1 / 3

气体实验定律

气体实验定律 专题一:密闭气体压强的计算 一、平衡态下液体封闭气体压强的计算 1. 理论依据 ① 液体压强的计算公式 gh p ρ=。 ② 液面与外界大气相接触。则液面下h 处的压强为 gh + p = p 0ρ 帕斯卡定律:加在密闭静止液体(或气体)上的压强能够大小不变地由液体(或气体)向各个方向传递(注意:适用于密闭静止的液体或气体) ③ 连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平面上的压强 是相等的。 2、计算的方法步骤(液体密封气体) ① 选取假想的一个液体薄片(其自重不计)为研究对象 ② 分析液体两侧受力情况,建立力的平衡方程,消去横截面积,得到液片两面侧的压 强平衡方程 ③ 解方程,求得气体压强 例1:试计算下述几种情况下各封闭气体的压强,已知大气压P 0,水银的密度为ρ,管中 水银柱的长度均为h 。均处于静止状态 练1:计算下图中各种情况下,被封闭气体的压强。(标准大气压强0p =76cmHg ,图中液体为水银 θ θ

练2、如图二所示,在一端封闭的U 形管内,三段水银柱将空气柱A 、B 、C 封在管中,在竖直放置时,AB 两气柱的下表面在同一水平面上,另两端的水银柱长度分别是h 1和h 2,外界大气的压强为0p ,则A 、B 、C 三段气体的压强分别是多少? 练3、 如图三所示,粗细均匀的竖直倒置的U 型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1和2。已知12cm Hg =h 1,15cm Hg =h 2,外界大气压强76cm Hg =p 0,求空气柱1和2的压强。 二、平衡态下活塞、气缸密闭气体压强的计算 1. 解题的基本思路 (1)对活塞(或气缸)进行受力分析,画出受力示意图; (2)列出活塞(或气缸)的平衡方程,求出未知量。 注意:不要忘记气缸底部和活塞外面的大气压。 例2 如下图所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M 。不计圆板与容器内壁之间的摩擦。若大气压强为P 0,则被圆板封闭在容器中的气体压强P 等于( ) A B. C. D. P Mg S 0+ cos θP Mg S 0cos cos θθ + P Mg S 02+ cos θ P Mg S 0+

高考物理复习三道题经典专练5气体及热力学定律

气体及热力学定律 内壁光滑且厚度不计的汽缸通过活塞封闭有压强为1.0×105 Pa 、温度为27 ℃ 的气体,初始活塞到汽缸底部的距离为50 cm ,现对汽缸加热,气体膨胀而活塞右移。已知汽缸横截面积为200 cm 2,总长为100 cm , 大气压强为1.0×105 Pa 。 (ⅰ)当温度升高到927 ℃时,求缸内封闭气体的压强; (ⅱ)若在此过程中封闭气体共吸收了800 J 的热量,试计算气体增加的内能。 【答案】(ⅰ)2×105 Pa (ⅱ)-200 J 【解析】(ⅰ)由题意可知,在活塞移动到汽缸口的过程中,气体发生的是等压变化。设活塞未移动时封闭气体的温度为T 1,当活塞恰好移动到汽缸口时,封闭气体的温度为T 2,则由盖—吕萨克定律可知: L 1S T 1=L 2S T 2 ,又T 1=300 K 解得:T 2=600 K ,即327 ℃,因为327 ℃<927 ℃,所以气体接着发生等容变化, 设当气体温度达到927 ℃时,封闭气体的压强为p ,由查理定律可以得到: 1.0×105 Pa T 2=p (927+273)K , 解得:p =2×105 Pa 。 (ⅱ)由题意可知,气体膨胀过程中活塞移动的距离Δx =L 2-L 1=0.5 m , 故大气压力对封闭气体所做的功为W =-p 0S Δx , 解得:W =-1 000 J , 由热力学第一定律ΔU =W +Q 解得:ΔU =-200 J 。 如图所示汽缸内壁光滑,敞口端通过一个质量为m 、横截面积为S 的活塞密闭一定质量 气体,通电后汽缸内的电热丝缓慢加热气体,由于汽缸绝热,使得汽缸内的气体吸收热量Q 后温度由T 1升高到T 2,加热前活塞到汽缸底部距离为h 。大气压强用p 0表示,求: (ⅰ)活塞上升的高度; (ⅱ)加热过程中气体的内能增加量。 【答案】(ⅰ)T 2-T 1T 1h (ⅱ)Q -(p 0S +mg )T 2-T 1T 1 h 【解析】(ⅰ)由题意可知,气体发生等压变化,由盖—吕萨克定律可知hS T 1=(h +Δh )S T 2 一、(2018届高三·第一次全国大联考Ⅱ卷) 二、(2018届高三·第二次全国大联考Ⅱ卷)

气体摩尔体积习题及答案详解

气体摩尔体积 1.四种因素:①温度和压强 ②所含微粒数 ③微粒本身大小 ④微粒间的距离,其中对气态物质体积有显著影响的是 ( ) A .②③④ B .②④ C .①③④ D .①②④ 2.下列有关气体体积的叙述中,正确的是 ( ) A .一定温度和压强下,各种气态物质体积的大小由构成气体的分子大小决定 B .一定温度和压强下,各种气态物质体积的大小由构成气体的质量大小决定 C .不同的气体,若体积不同,则它们所含的分子数也不同 D .一定的温度和压强下,各种气体的物质的量决定它们的体积 3.当温度和压强一定时,决定气体体积大小的主要因素是( ) A .分子直径的大小 B .分子间距离的大小 C .分子间引力的大小 D .分子数目的多少 4.在标准状况下,与12 g H 2的体积相等的N 2( ) A .质量为12 g B .物质的量为6 mol C .体积为22.4 L D .分子数为6.02×1023 5.如果a g 某气体中含有的分子数为b ,则c g 该气体在标准状况下的体积是(式中N A 为阿伏加德罗常数的值)( ) A.22.4ab cN A L B.22.4bc aN A L C.22.4ac bN A L D.22.4b acN A L

6.在标准状况下,由0.5 g H2、11 g CO2和4 g O2组成的混合气体,其体积约为() A.8.4 L B.11.2 L C.14.0 L D.16.8 L 7.同温同压下,用等质量的CH4、CO2、O2、SO2四种气体分别吹出四个气球,其中气体为CH4的是() 8.在一定条件下,1体积气体A2和3体积气体B2完全反应生成了2体积气体X(体积在相同条件下测定),则X的化学式是() A.AB2B.A2B3 C.AB3D.AB2 9.在两个密闭容器中,分别充有质量相同的甲、乙两种气体,若两容器的温度和压强均相同,且甲的密度大于乙的密度,则下列说法正确的是() A.甲的分子数比乙的分子数多 B.甲的物质的量比乙的物质的量少 C.甲的摩尔体积比乙的摩尔体积小 D.甲的相对分子质量比乙的相对分子质量小 10.下列两种气体的分子数一定相等的是() A.质量相等的N2和CO B.体积相等的CO和C2H4 C.等温、等体积的O2和N2 D.等压、等体积的N2和CO2 11.标准状况下的甲烷和一氧化碳的混合气体8.96 L,其质量为7.60 g,则混合气体平均相对分子质量为________;混合气体中甲烷的体积为________;一氧化碳的质量为________。

高中物理选修3-3导学案:8-5气体实验定律习题课教学内容

高中物理选修3-3导学案:8-5气体实验定律习题课

习题课:理想气体状态方程与气体实验定律的应用 1.理想气体状态方程与气体实验定律的关系: p 1V 1T 1=p 2V 2T 2? ???? T 不变:p 1V 1=p 2V 2(玻意耳定律) V 不变:p 1T 1=p 2 T 2(查理定律) P 不变:V 1T 1=V 2 T 2 (盖—吕萨克定律) 题型1: 玻璃管 2.几个重要的推论: ? ??? ?(1)查理定律推论:Δp =p 1T 1 ΔT (2)盖—吕萨克定律推论:ΔV =V 1T 1 ΔT (3)理想气体状态方程推论:p 0V 0T 0=p 1V 1T 1+ 1.一U 形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管 内汞柱及空气柱长度如图所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p 0=75.0 cmHg.环境温度不变. 2.如图所示,一粗细均匀的U 形管竖直放置,A 侧上端封闭,B 侧上端与大气相通,下端开口处开关K 关闭;A 侧空气柱的长度l =10.0 cm ,B 侧水银面比A 侧的高h = 3.0 cm 。现将开关K 打开,从U 形管中放出部分水银,当两侧水银面的高度差为h 1=10.0 cm 时将开关K 关闭。已知大气压强p 0=75.0 cmHg 。 (1)求放出部分水银后A 侧空气柱的长度; (2)此后再向B 侧注入水银,使A 、B 两侧的水银面达到同一高度,求注入的水银在管内的长度。

气体实验定律-理想气体的状态方程

气体实验定律-理想气体的状态方程

[课堂练习] 1.一定质量的理想气体处于某一初始状态,现要使它的温度经过状态变化后,回到初始状态的温度,用下列哪个过程可以实现( ) A .先保持压强不变而使体积膨胀,接着保持体积不变而减小压强 B .先保持压强不变而使体积减小,接着保持体积不变而减小压强 C .先保持体积不变而增大压强,接着保持压强不变而使体积膨胀 D . 先保持体积不变而减少压强,接着保持压强不变而使体积减小 2.如图为 0.2mol 某 种气体的压强与 温度关系.图中 p 0为标准大气压.气体在B 状态时的体积是_____L .

3.竖直平面内有右图所示的均匀玻 璃管,内用两段水银柱封闭两段空气 柱a、b,各段水银柱高度如图所示.大 气压为p0,求空气柱a、b的压强各多大? 4.一根两端封闭,粗细均匀的玻璃管,内有一小段水银柱把管内空气柱分成a、b两 部分,倾斜放置时,上、下两段空气 柱长度之比L a/L b=2.当两部分气体的 温度同时升高时,水银柱将如何移 动? 5.如图所示,内径均匀的U型玻璃管竖直放置,截面积为5cm2,管右侧上端封闭,左侧上端开口,内有用细线栓住的活塞.两管中分别封入L=11cm 的空气柱A和B,活塞上、下气体压强相等为76cm 水银柱产生的压强,这时两管内的水银面的高度

差h=6cm,现将活塞用细线缓慢地向上拉,使两管内水银面相平.求: (1)活塞向上移动的距离是多少? (2)需用多大拉力才能使活塞静止在这个位置上? 6、一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系正确的是() A.p1 =p2,V1=2V2,T1= 21T2 B.p1 =p2,V1=21V2,T1= 2T2 C.p1=2p2,V1=2V2,T1= 2T2 D.p1 =2p2,V1=V2,T1= 2T2 7、A、B两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银 槽组成,除玻璃泡在管上的位置

高考化学二轮复习(讲解+典型例题分析)4.3常见无机气体的鉴别

常见无机气体的鉴别 两酸遇氨冒白烟, 氨遇酚酞即变红。 氧使烬木重再燃, 一氧化氮变红踪。 臭蛋气味硫化氢, 硝酸铅纸黑物生。 二氧化氮溴蒸气, 硝酸银中自分清。 二氧硫碳石灰水, 品红退色热复红。 黄绿氯气可漂白, 淀粉碘化钾纸蓝。 硫氢甲烷一氧碳, 五者燃烧火焰蓝。 然后再加石灰水, 现象明显不难辨。 解释: 1、氨遇酚酞即变红:意思是说氨气能使湿润的酚酞试纸变红色。 2、一氧化氮变红踪:意思是说无色的一氧化氮在空气中迅速氧化变为红棕色(生成了二氧化氮)。

3、臭蛋气味硫化氢,硝酸铅纸黑物生:意思是说硫化氢具有腐败的臭鸡蛋气味,还能使湿润的硝酸铅试纸变黑色(因生成了硫化铅)。 4、二氧化氮溴蒸气,硝酸银中自分清:意思是说二氧化氮和溴蒸气都是红棕色气体,而且都能使湿润的淀粉碘化钾试纸变蓝色,但加入硝酸银溶液,能产生黄色沉淀者则是溴蒸气。 5、二氧硫碳石灰水,品红退色热复红:“二氧硫碳”意指二氧化硫和二氧化碳。意思是说二氧化硫和二氧化碳都能使澄清的石灰水变混浊,但是二氧化硫还有漂白作用,使品红溶液退色,加热后又恢复红色。 6、黄绿氯气可漂白,淀粉碘化钾纸蓝:意思是说黄绿色的氯气具有漂白作用(使品红溶液退色,加热后不复原),而且可使湿润的淀粉碘化钾试纸变蓝色。 【典型例题1】鉴别二氧化碳的正确方法是() A.将气体通入紫色的石蕊试液 B.使人感到气喘、头疼 C.将燃着的木条伸入集气瓶中,火焰熄灭 D.将气体通入澄清石灰水中 【考点】二氧化碳的检验和验满. 【分析】二氧化碳的验满和检验方法和操作都不相同.检验二氧化碳是将气体通入澄清的石灰水,观察到石灰水变浑浊,即可证明该气体是二氧化碳;而检验二氧化碳气体是否收集满的方法是将燃着的木条放在瓶口,观察到木条熄灭,证明已满. 【解析】A、将气体通入紫色石蕊试液充分震荡,石蕊溶液变红只能证明瓶内有酸性气体,而酸性气体不一定是二氧化碳,此项错误;B、使人感到气喘、头疼的气体可能还是其它有毒气体,如一氧化碳,故此项错误;C、把燃着的木条放入瓶内,出现木条熄灭现象也只能证明瓶内有不支持燃烧的气体,不能证明是二氧化碳气体,还可能是氮气,此项错误;D、加入石灰水后震荡石灰水变浑浊,说明瓶内气体是二氧化碳,此项正确.故选D. 【点评】本题重点考查二氧化碳的检验方法,要根据实验目的不同进行对比记忆. 【典型例题2】鉴别空气、氧气、二氧化碳的最好方法是() A.带火星的木条 B.燃着的木条 C.紫色石蕊试液

相关文档
最新文档