(精编资料推荐)费米-狄拉克分布函数、解析、图像和应用

(精编资料推荐)费米-狄拉克分布函数、解析、图像和应用
(精编资料推荐)费米-狄拉克分布函数、解析、图像和应用

各能级被电子占据的数目服从特定的统计规律这个规律就是费米-狄拉克分布规律。 一般而言,电子占据各个能级的几率是不等的。占据低能级的电子多而占据高能级的电子少。统计物理学指出,电子占据能级的几率遵循费米的统计规律:在热平衡...状态下,能量为E 的能级被一个电子占据的几率为: ]/)exp[(11)(kT E E E f F -+=

f(E) 称为电子的费米(费米-狄拉克)分布函数,k 、T 分别为波耳兹曼常数和绝对温度。E fermi 称为费米能级,它与物质的特性有关。

只要知道了费米能级E fermi 的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。

费米分布函数的一些特性: 【根据f(E)公式来理解】

第一, 费米能级E fermi 是一种用来描述电子的能级填充水平的假想能级....

, E f 越大,表示处于高能级的电子越多;

E f 越小,则表示高能级的电子越少。(E f 反映了整体平均水平)

第二,假定费米能级E f 为已知,则f(E)是能量E 与温度T 的函数。根据f(E)式可画出 f(E) 的曲线如图所示,但要注意 因变量f(E)不像普通习惯画在纵轴,而是破天荒的画在横轴。

0 1/2 1 f(E) E E f T 0 T 1 T 2 T 3 在T 不为绝对零度前提下,若E <E f ,则 f(E) >1/2;若E = E f ,则 f(E)=1/2;若 E >E f ,则 f(E) <1/2。上述结果文字描述,在系统的温度高于绝对零度前提下,如果某能级的能量比费米能级低E f ,则该能级(范围)被电子占据的几率大于50%;若能级的能量比费米能级E f 高,则该能级被电子占据的几率小于50%。而当能级的能量恰等于费米能级E f 时,该能级被电子占有的几率费米分布规律不适

用于非平衡状态

随着温度的升高,能量略低于E f的量子态被电子占据的概率降低,而略高于E f的

量子态被电子占据的概率增大。

在一定温度下(温度不变),费米能级附近的部分能量小于E f的电子会被激发到E f

以上,温度越高,被激发的概率越大。

第三,费米能级E f在能级图中的位置与材料掺杂情况有关。对于本征半导体,E f处于禁带E g的中央,在绝对零度时,在导带E c中E>E f,f(E)=0;在价带E v中E<E f,f(E)= =1,表明电子全部处于价带E v之中,因而此时半导体是完全不导电的。

第四,在T=0K处于绝对零度的前提下,若E<E f,exp→0,则f(E)=1;当T=0K时,若E>E f,则f(E)=0。可见,在绝对零度时,能量比E f小的能级被电子占据的几率是100%,而能量比E f大的能级被电子占据的几率为零。即所有低于E f的能级都被占满,而所有高于E f的能级都空着。因而费米能级E f是在绝对零度时电子所具有的最大能量,是能级在绝对零度时能否被占据的一个界限,因而它是一个很重要的参数。

第五,在T≠0K时即不处于绝对零度的前提下,若E-E f>5kT,则f(E)<0.007;在T≠0K前提下,若E-E f<-5kT,则f(E)>0.993。(k、T 分别为波耳兹曼常数和绝对温度) 可见,温度T高于绝对零度的前提下,能量比E f高5kT的能态被电子占据的几率只有0.7%,几率很小,能级几乎是空的;而能级比E f低5kT的能态被电子占据的几率是99.3%,几率很大,该能级范围几乎总有电子。一般可以认为,在T不为绝对零度但也不很高时,能量小于E f的能态基本上为电子所占据,能量大于E f的能态基本上没有被电子占据;而电子占据费米能级E f这个能级的概率是(不论任何温度下)都是1/2。所以

费米能级E f的位置,比较直观地标志了电子占据能态的情况,或者说E f标志了电子填充能级的水平,费米能级E f高说明在较高的能态上有电子(反映整体平均水平)。

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

由函数图像求解析式

由函数y =Asin(ωx +φ)+B 的 图象求解析式 一、知识回顾 1、五点作图:y =Asin(ωx +φ) 2、图像变换: y=sinx 到 y=Asin(ωx+?) 方法1:(按φ、ω、A 顺序变换) 方法1:(按ω、φ、A 顺序变换) 3. 巩固练习: 【练习1】已知函数 2sin(2x )3y π =+ (1)求它的振幅、周期、初相; (2)用“五点法”作出它在一个周期内的图象; (3) 3 2sin(2x )y π=+的图象可由y =sin x 的图象经过怎样的变换而得? 要得到y=cos2x 的图象,只需把函数y=sin(2x -π/3 ) 的图象向______平移______个单位得到. 二、探究新知: 例1、函数y =Asin(ωx +φ)(A ,ω,φ为常数,A>0,ω>0, 0<φ<π)的部分图象如图所示,则函数的解析式? 小结:知图求式的方法 (1)由最值确定A; (2)由T 确定ω; (3)由图象上的对应点确定φ. 变式训练 1、如图是函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π)的图象的一段,求其解析式. 例2 sin()(0,0,)2y A x B A πωφωφ=++>>< 如图是函数的部分图像,求它的解析式

例3 已知函数()sin(),0,0 2 f x A x x R π ω?ω? ?? =+∈><< ? ?? 的部分图象如图所示.求函 数的解析式; 三、课堂小结:谈谈你的收获! 四、课后思考: sin()(0,0,)2, 212 y A x A P Q PQ ππ ωφωφ =+>>< 设函数图像上一最高点的坐标为(,),且与它相邻的最低点又

求三角函数解析式的方法

求三角函数解析式常用的方法 三角函数是高中数学的一个重点,而三角函数图象与性质又是其中的难点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。现就几道例题谈谈常用的求解方法。 1 利用五点法,逆求函数解析式 例1.右图所示的曲线是)sin(?ω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式. 解:由22y -≤≤,得A=2 已知第二个点(,2)12π和第五个点5(,0)6π 35346124T πππ=-= T π∴= 2ω= 把(,2)12π代入,2122ππφ?+=得3π?= 所以y=)3 2sin(2π+x 点评:由图像确定解析式,观察图像的特征,形助数寻找“五点法”中的整体点,从而确定初相?。 2 利用图像平移,选准变换过程切入求解 例2下列函数中,图象的一部分如右图所示的是 ( ) A .sin 6y x π??=+ ??? B.sin 26y x π??=- ?? ? C.cos 43y x π??=- ??? D.cos 26y x π??=- ?? ? 解:从图象看出,41T =1264πππ+=,所以函数的最小正周期为π,函数应为y=sin 2x 向左平移了6 π个单位,即sin 2()6y x π=+=sin(2)cos(2)cos(2)3236x x x ππππ+=-++=-,故选择答案D 。 点评:数形结合,由图像确定周期和初相位后,选准图像平移变换过程切入, 如本题y=sin 2x 向左平移了6 π个单位进行验证化简是求解的关键。对于利用图象的变换来求解函数的解析式,一定要清楚每一种变换对,,A ω?的影响,注重整体变量观念的应用。 3 特殊化赋值法求解

1 、当 为 时,分别用费米分布函数和玻尔兹曼分布函数计算

1、当F E E ?为00015410.k T ,k T ,k T 时,分别用费米分布函数和玻尔兹曼分布函数计算电子占据各 该能级的几率。 2、利用表3-2中的n p m ,m ??数值, 计算Si ,Ge ,GaAs 在室温下的C V N ,N 以及本征载流子浓度。3、①室温下,Ge 的有效态密度19310510C N .cm ?=×;1835710v N .cm ?=×,求Ge 的载流子有效质 量n p m ,m ?? 。计算77k 时的C N 、V N 。已知300K 时,067g E .eV =,77K 时076g E .eV =。求这两个温度下Ge 的本征载流子浓度。②77K 时,Ge 的电子浓度为17310cm ?,假定受主浓度为零,而001C D E E .eV ?=,求Ge 中施主浓度D N 为多少? 4、计算施主杂质浓度分别为163183193101010cm ,cm ,cm ???的Si 在室温下的费米能级,并假定杂质是全部电离。再用算出的费米能级核对一下上述假定是否在每一种情况下都成立。计算时,取施主能级在导带底下面0.05eV 处。 5、计算含有施主杂质浓度153910D N cm ?=×及受主浓度为1631110A N .cm ?=×的Si 在300T K =时的 电子和空穴浓度以及费米能级的位置。 6、施主浓度为13310D N cm ?=的n 型硅,计算400K 时本征载流子浓度,多子浓度、少子浓度 和费米能级的位置。 7、制造晶体管一般是在高杂质浓度的n 型衬底上外延一层n 型外延层,再在外延层中扩散硼、磷而成。 ①设n 形硅单晶衬底是掺锑的,锑的电离能为0.039eV ,300K 时的F E 位于导带底下面0026.eV 处,计算锑的浓度和导带中电子浓度;(衬底) ②设n 型外延层杂质均匀分布,杂质浓度为1534610.cm ?×,计算300K 时F E 的位置及电子和空 穴浓度;(外延层) ③在外延层中扩散硼后,硼的浓度分布随样品深度变化。设扩散层某一深度处硼浓度为 1535210.cm ?×,计算300K 时F E 的位置及电子和空穴的浓度; (外延层中的扩散区)④如温度升高到500K ,计算③中电子和空穴的浓度(本征载流子浓度数值查图3-7) 8、计算掺磷的硅、锗在室温下开始发生弱简并时的杂质浓度为多少? 9、利用上题的结果,计算掺磷的硅、锗在室温下开始发生弱简并时有多少施主发生电离?导带中电子浓度为多少?

确定一次函数表达式及图像的应用练习题

一、选择题(每小题4分,共28分) 1. 直线y=kx+b 的图象如图所示,则( ) A. k=-23,b=-2 B. k=23,b=2 C. k=-32,b=2 D. k=23,b=-2 2. 已知油箱中有油25升,每小时耗油5升,则剩油量P (升)与耗油时间t (小时)之间的函数关系式为( ) A. P=25+5t B. P=25-5t C. P=t 525 D. P=5t -25 3. 下列函数中,图象经过原点的有( ) ①y=2x ;②y=5x 2-4x ;③y=-x 2;④y= x 6 A. 1个 B. 2个 C. 3个 D. 4个 4. 已知正比例函数y=kx 的图象经过点(1,2),则k 的值为( ) A. 21 B. 1 C. 2 D. 4 5. 为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费元;(2)每户每月用水量超过20立方米,则超过部分每立方米水费2元,设某户一个月所交水费为y (元),用水量为x (立方米),则y 与x 的函数关系式用图象表示为( ) 6. 如图,OA 、BA 分别表示甲、乙两名学生运动的一次函数图象,图中S 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )

A. 2.5米 B. 2米 C. 1.5米 D. 1米 7. 某学生从家里去学校,开始匀速跑步前进,跑累了,再匀速步行余下的路程,下面图中,横坐标表示该生从家里出发后的时间,纵坐标表示离开家里的路程s ,则路程s 与时间t 之间的关系的函数图象大致是( ) 二、沉着冷静耐心填(每小题4分,共28分) 8. 若一次函数y=kx -3k+6的图象过原点,则k=_______,一次函数的解析式为________. 9. 若y -1与x 成正比例,且当x=-2时,y=4,那么y 与x 之间的函数关系式为________. 10. 如图:直线AB 是一次函数y=kx+b 的图象,若|AB|=5,则函数的表达式为________. 11. 已知直线经过原点和P (-3,2),那么它的解析式为______. 12. 随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系. 当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式 . 13. 当b=______时,直线y=x+b 与直线y=2x+3的交点在y 轴上. 14. 假定甲乙两人在一次赛跑中,路程s 与时间t 的关系如图所示,那么可以知道:这是一次______米赛跑;甲、乙两人中先到达终点的是______;乙在这次赛跑中的速度为______

三角函数图像求解析式

: 已知sin()cos()y A x B y A x B ω?ω?=++=++或图像求解析式 1. 利用最值求A ,B . 当 A>0时 =最大值=A+B 最小值-A+B 当 A<0时 =最大值=-A+B 最小值A+B 2. 利用最高点、最低点、零点中的两个点的横坐标之差求出周期,再利用2|| T π ω= 求ω。 3. 利用五个特殊点求?,或代入y 轴上的点求?. 例1、如图,直线 2230x y +-=经过函数 si ()()n f x x ω?=+(0ω>,||?π<)图象的最高点 M 和最低点 N ,则( ) A 、2 π ω= ,4 π ω= B 、ωπ=, 0?= C 、2 π ω=,4 π ?=- D 、ωπ=, 2 π ?= 例2、 1.【2015新课标1】8、函数()cos()f x x ω?=+的部分图像如图 所示,则()f x 的单调递减区间为( ) (A )13(,),44k k k Z ππ- +∈ (B )13 (2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13 (2,2),44 k k k Z -+∈ 2.(2016·全国卷2文)3函数y=Asin (ωx+φ)的部分图象如图所示,则 ( ) A.y=2sin π2x 6? ?- ??? B.y=2sin π2x 3?? - ?? ? C.y=2sin πx+6?? ?? ? D.y=2sin πx+3 ?? ?? ? 3.(2013 年高考大纲卷(文))若函数 ()()sin 0=y x ω?ωω=+>的部分图像如图,则 ( ) A .5 B .4 C .3 D .2 4. (2015·陕西高考理科·T3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin(x+φ)+k,据此函数可知,这段时间水深(单位:m)的最大值为( ) A.5 B.6 C.8 D.10 5.已知函数 ()()() 2sin 0,f x x ω?ω?π=+><的部分图象如图所示, 已知点 ( A , ,06B π?? ? ??,若将它的图象向右平移6 π个单位长度,得到函数 () g x 的图象,则函数()g x 的图象的一条对称轴方程为 ( )

玻色分布和费米分布

玻色分布和费米分布 现对费米分布推导如下 : 对 ()∏-=Ωl l l l l D F a a !!! ..ωω 取对数得:()[] ∑---=Ωl l l l l D F a !ln !ln !ln ln ..εωω N>>1 , 若假设a l >>1 , ωl >>1可得到: ()()[]∑----=Ωl l l l l l l l l D F a a a a ωωωωln ln ln ln .. 约束条件: ∑=l l N a ; ∑=l l l E a ε 为求在此约束条件下的最大值,使用拉格朗日乘数法,取未定因子为α和β则拉格朗日函数为:l l l l l l D F a a a E N δβεαωβδαδδ∑??? ? ??++-- =--Ωln ln .. 若令上式为零,则有:0ln =++-l l l l a a βεαω , 即 上式给出了费米系统粒子的最概然分布,称为费米——狄拉克分布。 玻色分布的推导作为练习,请同学们课后自己推导. 6.8 三种分布的关系 1 、由 ∑=l l N a ∑=l l l E a ε确定拉氏乘子a 和β的值. 在许多实际问题中,也往往将β看作由实验确定的已知参量而由∑=l l l a εE 确定系统的内 能.或将a 和β都当作由实验确定的已知参量,而由 ∑=l l N a ∑=l l l E a ε确定系统的平均 总粒子数和内能. 2 、能级的εl 有ωl 个量子态处在其中任何一个量子态上的平均粒子数应该是相同的,因此处在能量为εS 的量子态S 上的平均粒子数为: s s s a f ω= 即: s s s a f ω= 定域系统 :s e βεα-- 费米系统:11++s e 玻色系统: 1 1 ++s e βεα 总粒子数和能量可分别表示为: N = ∑s s f 定域系统 = ∑--s S e βε α “+”费米系统 “-”玻色系统 = ∑±+s S e 1 1 βεα

费米

费米 费米(Enrico Fermi,1901~1954)美籍意大利物理学家。他在理论和实验方面都有第一流建树,这在现代物理学家中是屈指可数的。 1901年9月29日生于罗马,父亲是铁路职工,母亲是中学教师。中学时是模范学生,各方面名列前茅。从小对机械着迷,曾和哥哥一起设计与制造电动机,设计飞机引擎等。他酷爱数学和物理,10岁时听大人们谈论表示圆,就独自弄懂了这一表示式。独自钻研了大量代数、几何、分析题目。17岁时以第一名考入比萨大学师范学院。他的入学试卷“声音的特性”详细探讨了振动杆的实例,写出了振动杆偏微分方程,求得其本征值与本证函数并对杆的运动作傅里叶展开。主考教授对这一通篇无错的答卷惊讶万分,交口称赞,认为是意大利科学复兴的希望。图书馆里的书籍是他最好的老师。在比萨大学,他被认为是相对论和量子理论的最高权威。大学三年级就发表了两篇研究论文。 1922年获博士学位。1923年去格丁根大学随M.玻恩工作,1924年到荷兰的莱顿大学,随厄任费斯脱(Paul Ehrenfest,1880~1933)工作。同年回意大利,在罗马大学任教,1925年到佛罗伦萨大学任讲师。1926年起任罗马大学教授。此后10年,是他创造的黄金时代,并在他周围形成著名的罗马学派,1928年获诺贝尔物理学奖后移居美国。1939~1942年

任哥伦比亚大学教授。1942~1945年任芝加哥大学教授,1944~1945年任洛斯阿拉莫斯实验室主任。1946年起任芝加哥大学核物理研究所教授。 他主要从事统计物理、原子物理、原子核物理、粒子物理、天体物理和技术物理等方面的研究。1925年12月,与狄拉克各自独立地提出具有半整数自旋粒子的统计法(费米-狄拉克统计法)。1928年给出描述和计算多电子原子基态的近似方案(托马斯-费米原子模型)。 1934年,建立β衰变理论,从而奠定了弱相互作用的理论基础。 在实验物理方面,费米同样作出了重要贡献。1934年用中子代替α粒子对周期表上的元素逐一攻击直到铀,发现了中子引起的人工放射性,还观察了到中子慢化现象,并给出它的理论,为后来重核烈变的理论与实践打下基础,为此,于1938年获诺贝尔物理学奖。 1936年发现中子的选择吸收,他与他的同事们在这方面的工作,奠定了中子物理学的基础。 1939年,费米着手探索核裂变链式反应的可能性,并于1942年12月2日在芝加哥大学建成世界上第一座可控原子核裂变链式反应堆,使它达到临界状态,产生可控的核裂变链式反应。这一成就是原子能时代的一个重要里程碑。其后他参加了原子弹地研制工作。

由三角函数图象求解析式

已知函数()f x =Acos(x ω?+)的图象如图所示,2 ()2 3 f π =- ,则(0)f =( ) (A )23- (B) 23 (C)- 12 (D) 1 2 2π 3,于是f(0)【解析】选B.由图象可得最小正周期为 =f(2π3),注意到2π3与π2关于7π12对称, 所以f(2π3 ) =-f(π2)=23. 如果函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称,那么||?的最小值 为( ) (A ) 6π (B )4π (C )3π (D) 2 π 【解析】选A. 函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称w.w.w.k.s.5.u.c.o.m 4232k ππφπ∴? +=+13()6k k Z πφπ∴=-∈由此易得min ||6 π φ=. 已知函数y=sin (ωx+?)(ω>0, -π≤?<π)的图像如图所示,则 ?=________________ 【解析】由图可知, ()544,,2,1255T x πωπ??? = ∴=+ ??? 把代入y=sin 有: 89,510ππ???? +∴= ??? 1=sin 已知函数()2sin()f x x ωφ=+的图像如图所示,则712 f π ?? = ??? 。

【解析】由图象知最小正周期T = 32(445ππ-)= 32π=ωπ2,故ω=3,又x =4 π时,f (x )=0,即2φπ +? 4 3sin()=0,可得4 π φ= ,所以,712f π ?? = ? ?? 2)41273sin(ππ+?=0。 )已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的图象与x 轴的 交点中,相邻两个交点之间的距离为2 π ,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式; (Ⅱ)当[ ,]122 x ππ ∈,求()f x 的值域. 【解析】(1)由最低点为2(,2)3 M π -得A=2. 由x 轴上相邻的两个交点之间的距离为2π得2T =2 π ,即T π=,222T ππωπ=== 由点2(,2)3M π-在图像上得242sin(2)2,)133ππ ???+=-+=-即sin( 故42,32k k Z ππ?π+=-∈ 1126 k π?π∴=- 又(0, ),,()2sin(2)266f x x π ππ ??∈∴= =+故 (2)7[,],2[,]122636x x πππππ ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266 x ππ+= 即2 x π =时,()f x 取得最小值-1,故()f x 的值域为[-1,2]把函数y =cos(3x +4 π )的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( ) A.向右平移 4π B.向左平移4 π

几何图形中函数解析式的求法(学法指导)

几何图形中函数解析式的求法 函数是初中数学的重要容,也是初中数学和高中数学有相关联系的细节,在历年的中考试题中都占有重要的份量,而求函数的解析式则成为中考的热点。求函数的解析式的方法是多种多样的,但是学生往往把思维固定在用“待定系数法”去求函数的解析式。而使用待定系数法去求函数的解析式的大前提是必须根据题目的条件,选用恰当函数(如正、反比例函数,一次、二次函数)的表达式。如果题目中能根据直接条件或间接条件给出函数的类型,当然是选用待定系数法求函数的解析式。 但我们发现,在几何图形中求函数解析式却成为初中数学考试的常见题、压轴题。同时我们也发现,在几何图形中求函数解析式往往是无法确定所求函数的类型,因此用待定系数法进行解题是行不通的。我们知道,函数的解析式也是等式,要建立函数解析式,关键是运用已知条件在几何图形中找出等量关系,列出以变量有关的等式。下面以几个例子来探求在几何图形中建立函数解析式的常见类型和解题途径。 一、 用图形的面积公式确立等量关系 例1、如图1,正方形ABCD 的边长为2,有一点P 在 BC 上运动,设PB=x ,梯形APCD 的面积为y (1)求y 与x 的函数关系式; (2)如果S △ABP =S 体型APCD 请确定P 的位置。 分析:本题所给的变量y 是梯形的面积,因此可根据梯形面积公式 B C A D P 图1

A D C B E F G N 图2 S=2 1(上底+下底)×高 ,分别找出上底、下底、高问题可获解决。因为上底CP=x -2,下底AD=2,高CD=2,于是由梯形面积公式建立两个变量之间的等量关系,2)22(2 1 ?+-=x y ,整理得:22 2 +-=x y 。(2)略 例2、如图2,在直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,AD=a ,BC=2a ,CD=2,四边形EFCG 是矩形,点E 、G 分别在腰AB 、CD 上, 点F 在BC 上。设EF=x ,矩形EFCG 的面积为y 。(2002年中考题) (1)求y 与x 的函数关系式; (2)当矩形EFCG 的面积等于梯形ABCD 的面积的一半时,求x 的值; (3)当∠ABC=30°时,矩形EFCG 是否能成正方形,若能求其边长,若不能试说明理由。 分析:本题所给的变量y 值是矩形的面积,因此根据矩形面积公式S=长×宽,若能算出长FC 与宽EF ,或者用变量x 、y 表示FC 和EF ,则问题可获解决。其中宽EF=x ,问题归结为求出长FC ,从而两个变量x 、y 之间的关系通过矩形面积公式建立了。 解:(1)过点A 作AN ⊥BC 于N ,因为在矩形EFCG 中,EF ⊥BC , ∴EF ∥AN ∴ AN EF BN BF = 即 22x a a BF =-, 得BF=2 ax

费米能级的相关知识

费米能级是绝对零度时电子的最高能级. 自由粒子的波函数是平面波,波动方程是f(r)=(1/V^0.5)*Exp(i k*r) k是平面波波矢,电子能量是E=(hk)^2/2m (这个h是除以2PI后的那个普朗克常数,原来表示此量的符号太不好找了) 可以看出,电子对于取不同的k时,可以处在不同能量状态. 下面引入k空间,尽量理解. 一般用周期性边界条件,f(x y z)=f(x+L y z)=f(x y+L z)=f(x y z+L )确定k的取值kx=(2PI/L)Nx ky=(2PI/L)Ny kz=(2PI/L)Nz Nx Ny Nz是整数,因此把k看作空间矢量,在k空间中,k只能取一个个分立的点.你可以想象以kx ky kz3个方向建立坐标系,因为Nx Ny Nz是整数,kx ky kz只能取到一个个点.就比如Nx是整数,永远不会有kx=(2PI/L)*0.4处被取到. 每个点代表一种k的取值,前面有说过,每个k都对应电子的不同能量状 态,E=(hk)^2/2m ,这些能量状态也因为k的分立取值而只能分立出现,就是能级. 把电子放在k空间的各个点上,代表电子处在那个k值的状态,也对应一个能量状态,即处在该能级上. 因为泡利不相容原理,每个态上只可以放2个电子,(自旋相反)不会有第3个跟他们在同一个状态(k空间的各个点)上. 现在有一个总共有N个电子的体系,各个电子都处于什么状态哪?粒子总是先占据能量小的能级,从kx=0ky=0kz=0开始(显然这时候能量最小,不过这个模型有点局限,你不必理了)kx=0ky=0kz=1.....kx=33 ky=34 kz=34.....反正越来越大,越来越往能量更大的高能级上添.最后第N个电子会处在最高能级上(能量最大),这个能级就是费米能级.(我的问题:这个意思也就是说一个原子最外层电子所在的能级就是费米能级?要是能级没有被填满呢? 注意: 1 不在绝对零度的话,电子填充能级不是仅仅由泡利不相容原理决定,因此费米能级是绝对零度时,电子的最高能级. 2 通常宏观体系的电子数N很大,电子填充能级时,在k空间的占据态,也就是可以处在的那N/2的点,会形成一个球形,称为费米球.这很好想象,粒子总是先占据能量小的能级,离(0 0 0)越近的能级(哪个点)先占据,最后被占据的点肯定不会有"支出去"的,而是程球形.这个球面叫费米面,有时也说费米面上的能级是费米能级.我前面说"第N个电子会处在最高能级上(能量最大),这个能级就是费米能级"是为了理解方便,实际上第N个电子,不见得比N-1的能级高了,简单的看 kx=0ky=0kz=1和kx=0ky=1kz=0和kx=1ky=0kz=0不是能量一样吗?当离(0 0 0)很远后,这种k不同但能量一样或近似一样的点会更多,形成一个近似的球面--费米面.一般就认为费米面上的能级就是最高能级--费米能级. 3 从费米分布函数角度解释也可以,费米分布函数给出了不在绝对0度的情况下各个能级被占据的几率,费米能级是本征态占据几率1/2的态对应能级在绝对0度的极限.你可以看黄昆先生的固体物理. 4 对于f(x y z)=f(x+L y z)=f(x y+L z)=f(x y z+L )确定k的取值,可以自己计算一下.波动方程只是为了得出能级概念,并不需要注意,解法可以去看量子力学.

三角函数的图像和性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型 1 已知函数解析式确定函数性质 【思路提示】一般所给函数为 y =A sin( ω x +φ)或y =A cos( ω x +φ),A>0,ω>0,要根 据 y = sin x ,y = cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin (x )(0≤ < )是R 上的偶函数,则 等于( ) B . C . D . 42 A 充分不必要条件 B .必要不充分条 C .充要条件 变式 3.设f (x) sin( x ),其中 0,则 f (x)是偶函数的充要条件是( ) A. f (0) 1 B . f (0) 0 C . f '(0) 1 D . f '(0) 0 例2.设f (x) sin(2 x )(x R),则 f(x)是( ) 2 A. 最小正周期为 的奇函数 B . 最小正周期为 的偶函数 C .最小正周期为 的奇函数 D . 最小正周期为 的偶函数 22 结论: (1) 若y Asin( x )是奇函数,则 k (k Z); (2) 若 y Asin( x )是偶函数,则 k + (k 2 Z); (3) 若 y Acos(x )是奇函数,则 k 2(k Z); (4) 若 y Acos( x )是偶函数,则 k (k Z); (5) 若 y A tan(x )是奇函数,则 k 2 (k Z). 变式 1.已知 a R , 函数 f (x) sin x | a | 为奇函数, 则 a 等 于 B . 1 C . 1 D . 1 【评注】由 y sin x 是奇函数, y cosx 是偶函数可拓展得到关于三角函数奇偶性的重要 变式 2.设 R ,则 “ 0”是“f(x) cos(x )(x R)为偶函数 ” 的( ) D .无关条件

费米狄拉克分布函数解析、图像和应用

各能级被电子占据的数目服从特定的统计规律这个规律就是费米-狄拉克分布规律。 一般而言,电子占据各个能级的几率是不等的。占据低能级的电子多而占据高能级的电子少。统计物理学指出,电子占据能级的几率遵循费米的统计规律:在热平衡...状态下,能量为E 的能级被一个电子占据的几率为: f(E) 称为电子的费米(费米-狄拉克)分布函数,k 、T 分别为波耳兹曼常数和绝对温度。E fermi 称为费米能级,它与物质的特性有关。 只要知道了费米能级E fermi 的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。 费米分布函数的一些特性: 【根据f(E)公式来理解】 第一, 费米能级E fermi 是一种用来描述电子的能级填充水平的假想能级...., E f 越大,表示处于高能级的电子越多; E f 越小,则表示高能级的电子越少。(E f 反映了整体平均水平) 第二,假定费米能级E f 为已知,则f(E)是能量E 与温度T 的函数。根据f(E)式可画出 f(E) 的曲线如图所示,但要注意 因变量f(E)不像普通习惯画在纵轴,而是破天荒的画在横轴。 第三,费米能级E f 在能级图中的位置与材料掺杂情况有关。对于本征半导体,E f 处于禁带E g 的中央,在绝对零度时,在导带E c 中E >E f ,f(E)=0;在价带E v 中E <E f ,f(E)= =1,表明电子全部处于价带E v 之中,因而此时 半导体是完全不导电的。 0 1/2 1 f(E) E E f T 0 T 1 T 2 T 3 费米分布函数变化曲线 T 3 >T 2 >T 1 >T 0 在T 不为绝对零度前提下,若E <E f ,则 f(E) >1/2;若E = E f ,则 f(E)=1/2;若 E >E f ,则 f(E) <1/2。上述结果文字描述,在系统的温度高于绝对零度前提下,如果某能级的能量比费米能级低E f ,则该能级(范 围)被电子占据的几率大于50%;若能级的能量比费米能级E f 高,则该能级被电子占据的几率小于50%。而当能级的能量恰等于费米能级E f 时,该能级被电子占随着温度的升高,能量略低于E f 的量子态被电子占据的概率降低,而略高于E f 的量子态被电子占据的概率增大。 在一定温度下(温度不变),费米能级附近的部分能量小于E f 的电子会被激发到E f 以上,温度越高,被激发的概率越大。 费米分布规律不适用于非平衡状态

由三角函数的图像求解析式

由B x A y ++=)sin(?ω的图像求解析式 知识点归纳: 1. 利用“五点法”作sin()y A x ω?=+图像,设X x ω?=+,令X =30,,, ,2 2 2 π π ππ 求出相应的x 值,计算得出五点的坐标,描点后得出图象 特 征 图像上升时与x 轴的交点 图像上的“峰点” 图像下降时与x 轴的交点 图像上的“谷点” 图像上升时与x 轴的交点 x 1x 2x 3x 4x 5x ?ω+x 0 2π π 2 3π π2 sin()A x ω?+ A A - 注: 1x 、2x 、3x 、4x 、5x 分别为所给图像上的五个关键点(第一个点至第五个点),要注意x 和?ω+x 之间的对应系 2.函数B x A y ++=)sin(?ω表达式的确定:A (B )由最值确定;ω由周期确定;?由图象上的特殊点(上面的关键点)确定 ①由图像观察最高点、最低点,B A y +=max 、B A y +-=min ,解这个关于A 和B 的二元一次方程组即得A 和B ②由图像观察周期,再利用T π ω2= ,求得ω 【由图像观察周期时,常见形式有: 1x 与5x 之间是一个周期T ;1x 与3x 、2x 与4x 之间是半个周期 2T ;1x 、2x 、3x 、4x 、5x 中相邻两个之间是四分之一的周期4 T .】 ③?的确定,一般要用图像的关键点来求,但要注意该关键点是“五点法”中的第几个点,如01=+?ωx ,2 2π ?ω= +x ,π?ω=+3x ,2 34π ?ω= +x ,从而根据以上等式,解出

? 考点 确定函数解析式问题 例1.⑴若函数sin()y A x ω?=+的图像(部分)如下图所示,则ω和?的取值是( ) A 、1,3 π ω?== B 、1,3 π ω?==- C 、1,26πω?== D 、1,6 πω?==- ⑵已知函数sin(),y A x x R ω?=+∈(其中0,0A ω>>)的图像在y 轴右侧的第一个最高点(函数取最大值的点)为() 2,22M ,与x 轴在原点右侧的第一个交点为()6,0N ,则这个函数的解析式是 . ⑶若函数()2sin()f x x ω?=+,x ∈R (其中0ω>,2 ?π < )的最小正周期是π,且(0)3f =,则( ) A .126 ω?π ==, B .123 ω?π= =, C .26 ω?π ==, D .23 ω?π ==, 例2.⑴某港口水的深度y (米)是时间t (240≤≤t ,单位:时)的函数,记作()y f t =, 下面是某日水深的数据: t/h 0 3 6 9 12 15 18 21 24 y/m 经常期观察,()y f t =的曲线可以近似的看成函数b t A y +=ωsin 的图象,根据以上的数据,可得函数()y f t =的近似表达式为 . ⑵一个大风车的半径为8m ,每12min 旋转一周,最低点离地面2m ,风车翼片的一个端点P 离地面的距离()h m 与时间()min t 之间的函数关系式是()sin h A t B ω?=++,0t =时端

根据三角函数图像求解析式经典题型分析

根据三角函数图像求解析式经典20题 1是函数π 2sin()2 y x ω???? =+< ?? ?的图象上的一段,则( ) A.10π 116ω?==, B.10π116 ω?= =-, C.π 26 ω?==, D.π 26 ω?==-, 2、若函数k x A y ++=)sin(?ω的最大值为5,最小值为-1,则函数A =____k =_______。 3、下列函数中,图像的一部分如右图所示的是( ) (A )sin()6y x π=+ (B )cos(2)6y x π=- (C )cos(4)3y x π =- (D )sin(2)6y x π=- 4、已知函数()?? ? ? ? <>+=2,0sin π?ω?ωx y 的部分图象如右上图所示,则( ) A. 6 ,1π ?ω== B. 6 ,1π ?ω- == C. 6 ,2π ?ω== D. 6 ,2π ?ω- == 5、将函数sin (0)y x ωω=>的图象向左平移 6 π 个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( ) A .sin()6 y x π =+ B .sin()6 y x π =- C .sin(2)3y x π =+ D .sin(2)3 y x π =- .6、设函数)(x f = )2sin(?+x (0<<-?π),)(x f 图像的一条对称轴是直线8 π = x , 则? 的值为( )A .2π B .π C .2π D .4 π 7、函数)20,0,)(sin(π?ω?ω<≤>∈+=R x x y 的部分图象如图,则

A .4 ,2 π ?π ω= = B .6 ,3 π ?π ω= = C .4,4π?πω== D .4 5,4π ?πω== 8、函数),2 ,0)(sin(R x x A y ∈π ω?+ω=的部分图象如图 所示,则函数表达式为) (A ))48sin(4π+π-=x y (B ))48sin(4π -π=x y (C ))48sin(4π-π-=x y (D ))4 8sin(4π +π=x y 9、函数()?ω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。(其中 π?πω<<->>,0,0A ) 10、已知函数k x A y ++=)sin(?ω (A >0,ω>0,|?|<π)在同一周期内,当9 π =x 时取 得最大值1,当9 4π =x 时,取得最小值0,求函数的表达式。 11、已知函数)sin(?ω+=x A y (A >0,ω>0,|?|<π) 的图象的一段如图,求它的解析式。 12、已知函数)sin(?ω+=x A y (A >0,ω>0,|?|< 2 π )的图象如图,求函数的解析式。 y x π 6 - 2 3 π 3 2 y x 2 1 -1 -2 π 12 11 O

函数图像中求函数的解析式

一、应用勾股定理建立函数解析式 例1 )如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G. (1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH,GP,求关于的函数解析式,并写出函数的定义域(即自变量的取值范围). (3)如果△PGH是等腰三角形,试求出线段PH的长. 解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=NH=OP=2. (2)在Rt△POH中, , ∴. 在Rt△MPH中, . ∴=GP=MP= (0<<6). (3)△PGH是等腰三角形有三种可能情况: ①GP=PH时,,解得. 经检验, 是原方程的根,且符合题意. ②GP=GH时, ,解得. 经检验, 是原方程的根,但不符合题意. ③PH=GH时,. 综上所述,如果△PGH是等腰三角形,那么线段PH的长为或2 二、应用比例式建立函数解析式 例2 如图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=. (1)如果∠BAC=30°,∠DAE=105°,试确定与之间的函数解析式; (2)如果∠BAC的度数为,∠DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由. 解:(1)在△ABC中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB, ∴△ADB∽△EAC, ∴, ∴, ∴. (2)由于∠DAB+∠CAE=,又∠DAB+∠ADB=∠ABC=,且函数关系式成立, ∴=, 整理得. 当时,函数解析式成立. 例3(2005年·上海)如图3(1),在△ABC中,∠ABC=90°,AB=4,BC=3. 点O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E.作EP⊥ED,交射线AB于点P,交射线CB于点F. (1)求证: △ADE∽△AEP. (2)设OA=,AP=,求关于的函数解析式,并写出它的定义域. (3)当BF=1时,求线段AP的长. 解:(1)连结OD. 根据题意,得OD⊥AB,∴∠ODA=90°,∠ODA=∠DEP. 又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE∽△AEP.

费米狄拉克统计

费米–狄拉克统计[编辑] 维基百科,自由的百科全书 (重定向自费米-狄拉克统计) 费米–狄拉克统计(英语:Fermi–Dirac statistics),有时也简称费米统计、FD统计,在统计力学中用来描述由大量满足泡利不相容原理的费米子组成的系统中,粒子处在不同量子态上的统计规律。 这个统计规律的命名来源于恩里科·费米和保罗·狄拉克,他们分别独立地发现了这一统计规律。不过费米在数据定义比狄拉克稍早。[1][2] 费米–狄拉克统计的适用对象是,热平衡时自旋量子数为半奇数的粒子。除此之外,应用此统计规律的前提是,系统中各粒子之间的相互作用可以忽略不计。这样,就可以用粒子在不同定态的分布状况来描述大量微观粒子组成的宏观系统。不同的粒子分处于不同的能态上,这一特点对系统许多性质会产生影响。费米–狄拉克统计适用于自旋量子数为半奇数的粒子,这些粒子也被称为费米子。由于电子的自旋量子数为1/2,因此它是费米–狄拉克统计最普遍的应用对象。费米–狄拉克统计是统计力学的重要组成部分,它利用了量子力学的一些原理。 目录 [隐藏] ? 1 概述 ? 2 历史 ? 3 费米–狄拉克分布 o 3.1 粒子的能量分布 ? 4 量子范畴和经典范畴 ? 5 参考文献 ? 6 相关条目 概述[编辑] 函数反对称,在费米子的某一个能级上,最多只能容纳一 个粒子。因而符合费米–狄拉克统计分布的粒子,当他们 处于某一分布(“某一分布”指这样一种状态:即 在能量为的能级上同时有个粒子存在着,不难 想象,当从宏观观察体系能量一定的时候,从微观角度观察体系可能有很多种不同的分布状态,而且在这些不同的分布状态中,总有一些状态出现的几率特别的大,而其中出现几率最大的分布状态被称 为最可几分布)时,体系总状态数为:

20道利用三角函数图像求解析式习题

1是函数π 2sin()2 y x ω???? =+< ?? ? 的图象上的一段,则( ) A.10π 116ω?==, B.10π116 ω?= =-, C.π 26 ω?==, D.π 26 ω?==-, 2、若函数k x A y ++=)sin(?ω的最大值为5,最小值为-1,则函数A =____k =_______。 3、下列函数中,图像的一部分如右图所示的是( ) (A )sin()6y x π=+ (B )cos(2)6y x π=- (C )cos(4)3y x π=- (D )sin(2)6y x π=- 4、已知函数()?? ? ? ? <>+=2,0sin π?ω?ωx y 的部分图象如右上图所示,则( ) A. 6 ,1π ?ω== B. 6 ,1π ?ω- == C. 6 ,2π ?ω== D. 6 ,2π ?ω- == 5、将函数sin (0)y x ωω=>的图象向左平移 6 π 个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( ) A .sin()6y x π =+ B .sin()6 y x π =- C .sin(2)3y x π =+ D .sin(2)3 y x π =- .6、设函数)(x f = )2sin(?+x (0<<-?π),)(x f 图像的一条对称轴是直线8 π = x , 则? 的值为( )A .2π B .π C .2π D .4 π 7、函数)20,0,)(sin(π?ω?ω<≤>∈+=R x x y 的部分图象如图,则 A .4 ,2 π ?π ω= = B .6 ,3 π ?π ω= =

相关文档
最新文档