草甘膦与其铵盐和异丙胺盐的异同

草甘膦与其铵盐和异丙胺盐的异同

用液质法检测水和土中的草甘膦及草铵膦

Journal of Chromatography A,1081(2005) 145–155 Residue determination of glyphosate,glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry Mar′?a Ib′a?n ez,′Oscar J.Pozo,Juan V.Sancho,Francisco J.L′o pez,F′e lix Hern′a ndez? Research Institute for Pesticides and Water,University Jaume I,E-12071Castell′o n,Spain Received11February2005;received in revised form3May2005;accepted17May2005 Abstract This paper describes a method for the sensitive and selective determination of glyphosate,glufosinate and aminomethylphosphonic acid (AMPA)residues in water and soil samples.The method involves a derivatization step with9-?uorenylmethylchloroformate(FMOC)in borate buffer and detection based on liquid chromatography coupled to electrospray tandem mass spectrometry(LC–ESI-MS/MS).In the case of water samples a volume of10mL was derivatized and then4.3mL of the derivatized mixture was directly injected in an on-line solid phase extraction(SPE)–LC–MS/MS system using an OASIS HLB cartridge column and a Discovery chromatographic column.Soil samples were ?rstly extracted with potassium hydroxide.After that,the aqueous extract was10-fold diluted with water and2mL were derivatized.Then, 50?L of the derivatized10-fold diluted extract were injected into the LC–MS/MS system without pre-concentration into the SPE cartridge. The method has been validated in both ground and surface water by recovery studies with samples spiked at50and500ng/L,and also in soil samples,spiked at0.05and0.5mg/kg.In water samples,the mean recovery values ranged from89to106%for glyphosate(RSD<9%),from 97to116%for AMPA(RSD<10%),and from72to88%in the case of glufosinate(RSD<12%).Regarding soil samples,the mean recovery values ranged from90to92%for glyphosate(RSD<7%),from88to89%for AMPA(RSD<5%)and from83to86%for glufosinate (RSD<6%).Limits of quanti?cation for all the three compounds were50ng/L and0.05mg/kg in water and soil,respectively,with limits of detection as low as5ng/L,in water,and5?g/kg,in soil.The use of labelled glyphosate as internal standard allowed improving the recovery and precision for glyphosate and AMPA,while it was not ef?cient for glufosinate,that was quanti?ed by external standards calibration.The method developed has been applied to the determination of these compounds in real water and soil samples from different areas.All the detections were con?rmed by acquiring two transitions for each compound. ?2005Elsevier B.V.All rights reserved. Keywords:Glyphosate;Glufosinate;AMPA;Water;Soil;Liquid chromatography;Electrospray interface;Tandem mass spectrometry;Derivatization 1.Introduction Glyphosate[N-(phosphonomethyl)glycine]and glufos-inate[ammonium dl-homoalanin-4-(methyl)phosphinate] are broad spectrum,nonselective,post-emergence herbicides extensively used in various applications for weed control in aquatic systems and vegetation control in non-crop areas. Aminomethylphosphonic acid(AMPA)is the major degra-dation product of glyphosate found in plants,water and soil ?Corresponding author.Tel.:+34964728100;fax:+34964728066. E-mail address:hernandf@exp.uji.es(F.Hern′a ndez).[1].Chemical structures of these phosphorus-containing her-bicides are given in Fig.1. Due to the extensive worldwide use of these compounds and the restrictive regulations for water in the European Union,very sensitive methods for the determination of pes-ticide residues are required.However,the determination of these two herbicides at the sub?g/L level is dif?cult due to their ionic character,low volatility,low mass and lack of chemical groups that could facilitate their detection.Even more dif?cult can result the residue determination in soil at low concentration levels(e.g.below0.1mg/kg),due to the complexity of this matrix sample.Most methods developed 0021-9673/$–see front matter?2005Elsevier B.V.All rights reserved. doi:10.1016/j.chroma.2005.05.041

草铵膦的基本知识

农药中含量(纯度)很高的为原药:其中除少量杂质外几乎都是有效成分,一般含量至少在80%以上。母药则是指:含量较高有效成分溶解在一定的溶剂中得到的混合物,含量较原药低(主要是一些高纯度原药难以制备的农药品种,在制备过程中只能得到母药)。 原药及母药均用于农药制剂(农民直接使用的产品)的配制,故是农药制剂生产中的原料。 草铵膦 1.基本定义 中文通用名:草铵膦 别名:草胺磷铵盐;2-氨基-4-[羟基(甲基)膦酰基]丁酸铵 英文通用名:glufosinate-ammonium 化学名称:4-[羟基(甲基)膦酰基]-DL-高丙氨酸 分子式:C5H15N2O4P 分子量:198.16 2.历史 草铵膦---于上个世纪80年代由德国赫斯特公司开发生产,(几经合并后现归属拜耳公司),拜耳公司是草铵膦专利持有者。除了具有除草活性外,还具有杀虫杀菌活性,可以与杀虫剂等混配,达到同时防治的效果。该除草剂具有高效、低毒、易降解等特点,水为基剂,使用安全方便。 3.理化性质 白色结晶,有轻微气味,在水中溶解度为1370g/L (22℃),在一般有机溶剂中溶解度低,对光稳定。 4.毒性 低毒,雄大鼠急性经口LD 50为2000mg/kg,雌大鼠为1620mg/kg;雄小鼠急性经口LD 50431mg/kg,雌小鼠为 416mg/kg;狗急性经口LD 50200~400mg/kg。雄大鼠急性经皮LD 50>2000mg/kg,雌大鼠为4000mg/kg。 5.作用原理 属于膦酸类除草剂,部分内吸,非传导性触杀型除草剂 与草甘膦杀根不同,草铵膦先杀叶,通过植物蒸腾作用可以在植物木质部进行传导(水分从活的植物体表面(主要是叶子)以水蒸汽状态散失到大气中的过程) 木质部是维管植物的运输组织,负责将根吸收的水分及溶解于水里面的离子往上运输,以供其他器官组织使用,另外还具有支持植物体的作用。木质部由导管、管胞、木纤维和木薄壁组织细胞以及木射线组成。 抑制植物体内的谷氨酰胺合成酶活性,导致谷氨酰胺合成受阻、氮代谢紊乱、铵离子累积,从而破坏植物细胞膜,阻止植物光合作用而枯死。 6.防治对象: 用于果园、葡萄园、非耕地、马铃薯田等防治一年生和多年生双子叶及禾本科杂草。 双子叶植物是指植物种子体内有两片子叶。 合成路线: 国内的普通的合成路线也就是所谓的斯特累克尔反应(strecker 法) 1.草铵膦合成的关键是中间体甲基亚磷酸二乙酯的合成 2.以廉价易得的三氯化磷和亚磷酸三乙酯为原料制备氯代亚膦酸二乙酯,经格氏反应得到甲基亚膦酸二乙酯; 甲基亚膦酸二乙酯与二溴乙烷在自制催化剂催化下反应得到甲基(2-溴乙基)膦酸乙酯;然后与乙酰氨基丙二酸二乙酯负离子在甲苯中反应,经盐酸酸化,氨水铵化得到草铵膦铵盐 此外,草铵膦合成还有高压催化合成法、低温定向合成法、采用斯特累克尔反应和密切尔加成法等。

41%草甘膦异丙胺盐水剂防除桑园杂草田间药效试验

41%草甘膦异丙胺盐水剂防除桑园杂草田间药效试验 摘要41%草甘膦异丙胺盐水剂防除桑园杂草田间药效试验结果表明,该药剂施用剂量不低于 3.0L/hm2,即有效成分 1.230kg/hm2,采用二次稀释法,对水750L/hm2,在杂草旺盛生长时期进行杂草茎叶定向均匀喷雾,对桑园杂草防效好,持效期长,对桑树安全,无药害。 关键词41%草甘膦异丙胺盐水剂;桑园杂草;防效 高含量草甘膦除草剂是今后草甘膦类除草剂发展及应用的主要方向。为明确江苏丰山集团有限公司研制的41%草甘膦异丙胺盐水剂对桑园杂草的防效,特进行了本试验。 1材料与方法 1.1试验田概况 试验田设在金寨县白塔畈乡楼冲村一农户承包田,面积780m2,土壤为黄棕壤,土壤质地为中层耕种麻石土,有机质含量16.0g/kg,pH值5.2,施肥、管理与当地生产水平一致。试验田桑树为胡桑,1998年栽植,株行距0.5m×2.0m,长势较好。试验时桑树呈光拳状,部分夏伐处开始吐露新叶;桑园内的杂草正处于旺盛生长时期,多数杂草处于八至十叶期。试验时土壤相对含水量80%左右。 1.2试验对象 药前进行桑园田间杂草密度调查,平均密度为245株/m2左右,其中狗尾草(Setaria viridis(L.)Beauv)约占36%,碎米莎草(Cyperus iria L.)约占23%,牛筋草(Eleusine indica(L.)Gaertn)约占14%,南苜蓿(Medicago hispida Gaertn)约占12%,其他少量杂草包括小飞蓬、铁苋菜、酸模叶蓼、鸡眼草、萹蓄、苍耳、反枝苋、粟米草、稗草、马唐及其他莎草等,约占15%。 1.3供试药剂

草甘膦的特性.安全性及特性docx

草甘膦的特性、安全性及其应用评述来源 文章来源:中国农药工业协会 1971年孟山都公司开发出在世界农业中具有划时代意义的广谱除草剂草甘膦(Glyphosate),70年代中后期推出草甘膦异丙胺盐、胺盐与钠盐;ICI公司于1989年推出三甲锍盐。目前,草甘膦已成为世界上应用最广、产量最大的农药品种,其年销售额一直居农药之首。近年来,随着转基因抗草甘膦作物的发展,草甘膦用量逐年增加,不仅影响新品种的开发方向,而且对现有除草剂品种的市场格局也造成较大冲击。 1 草甘膦的性质与剂型 1.1 化学结构 草甘膦是非常稳定的化合物,其存在形态为酸及其盐: 1.2 物理化学性质 草甘膦为白色、无味固体;密度1.74g/ml,熔点200℃(不分解),45℃蒸气压2.45×18-8KPa(1.84×10-7mmHg);在25℃,pH5.7~9时贮存32d稳定。在25℃水中溶解度,草甘膦酸为15.7g/l(pH7)~11.6g/l( pH2.5),异丙胺盐为900g/l(pH 7)~786g/l (pH 4)。 1.3 剂型 以草甘膦酸为基础将其加工成盐或酯,由于植物对酸的吸收差,高剂量,特别是低喷液量时草甘膦酸易沉淀,因此,酸的活性通常低于盐类。最常用的剂型是含异丙胺盐的“农达”(R oundup),此盐类显著溶于水;一般为可溶性液剂(SL),含有效成分365g/l或480g/l。近 年来,孟山都公司推出高含量草甘膦的干制剂(94%)、可溶性粒剂及片剂。在草甘膦剂型加工中,表面活性剂及增效剂非常重要,硫酸铵及硫酸二铵是常用的活化剂。草甘膦异丙胺盐是一种弱酸,在溶液中能够解离,分子的阴离子部分是活性成分,它们能够在喷洒液中与其他阳离子如:Ca2+、Mg2+、K+、Na+、Fe2+/3+缔合,形成植物不易吸收的盐类,而硫酸铵与硫酸二铵能够阻止此种拮抗性盐类产生,从而形成草甘膦-NH4+迅速被植物吸收。磷酸盐、酒石酸以及乙二胺四醋酸均能增进草甘膦的活性。 在草甘膦剂型中应充分重视表面活性剂。有机硅表面活性剂在新西兰被指定为草甘膦必备助剂,它可诱导草甘膦迅速通过气孔被植物吸收,避免雨水淋洗,显著提高除草效果。最近,美国EPA接受了Hampshire化学公司生产的Ⅳ一酰基肌胺酸(甲替甲胺酸)及Ⅳ-酰基肌胺酸钠盐表面活性剂作为草甘膦剂型加工中的助剂,它们优于现有绝大多数表面活性剂。 在转基因抗草甘膦作物田,根据作物种类可将草甘膦与该作物所使用的除草剂品种加工成混剂或进行混用。目前以草甘膦为主的混剂主要有(g/l):FallowStar[草甘膦+麦草畏(dicam

草甘膦与草铵膦对比

草甘膦与草铵膦对比 一、草甘膦市场 (一)基本情况 草甘膦,属芽后内吸非选择性高效广谱灭生性除草剂,通过溶解杂草的叶径表面蜡质层,药效迅速进入植物传导系统产生作用,使杂草枯竭死亡,具有广谱、低毒、无残留、内吸传导和优良的灭生性等特点,对植物无选择性,所有绿色植物,包括是作物。草甘膦是由美国孟山都1971年开发的。是全球第一大除草剂品种,占据全球除草剂30%的市场份额。 市场刚性需求:除草剂使用量占整个农药使用量的50%以上,其中草甘磷在除草剂中所占份额达三分之一。国际市场上销售的草甘膦制剂含量以41%为主,41%水剂在62%枯斯啦产品没有出现之前质量是最好的,销量约占全球市场份额的50%以上。草甘膦主要应用于转基因作物,而转基因作物优势突出。其全球种植面积从96年的170万公顷推广至12年的1.7亿公顷,增长近100倍,显示其全球化推广势不可挡。得益于粮食价格上涨和转基因作物的大面积种植推广,草甘膦市场还会保持高速增长,至少10年内草甘膦的行业老大地位还无法取代。中国是传统农业大国,由于10%草甘膦水剂价格便宜农民使用成本较低、对杂草具有一定防效而倍受农民的青睐。10%草甘膦水剂年使用量在25万吨以上,南方多数省份草甘膦是农资零售店必备而且是销售量最大的一种农药。 图一:我国近年来草甘膦产量变化:

图二:2009年草甘膦价格变化: 图三:2012年草甘膦价格变化:

(二)环保政策频出对草甘膦行业的影响显现 2012年我国草甘膦产量39万吨,全球第一。而生产1吨草甘膦要排放5吨高浓度和大毒性废水,国家近年陆续出台了相关环保政策。过去3年不符合环保产业政策或者技术不强的企业纷纷退出市场,行业经历了一轮去产能化过程后,逐步提升的开工率显示供需得到改善。2013年5月27日,环保部发布《关于开展草甘膦(双甘膦)生产企业环保核查工作的通知》,企业自查阶段是在7月30日前,而省级环保部门初审阶段在9月30日前,环保部复合并发布公告的时间段则会在年底前。到2015年年底基本完成全面核查,并公告3批符合环保要求的草甘膦生产企业名单。核查重点在于“三废”排放及母液回收及过程控制等。 环保核查以浙江为中心并已向全国蔓延,查处力度相当严格,缺乏三证的企业勒令关停,个别农药登记证是借的或者建设不合理的厂家,目前正被调查当中,极有可能面临关停。面对严格的环保核查,中小企业进入两难之境。按照排放标准,1吨草甘膦用在处理废水上的投入达到2000~4000元,缺乏规模优势和技术优势的中小企业难以承担如此高的处污成本。环保风波下,2013年6月份以

草甘膦几种盐的区别

草甘膦常见制剂的区别 1.草甘膦品种 按存在方式分,有:草甘膦异丙胺盐,草甘膦酸铵盐,草甘膦酸钾盐,草甘膦酸钠盐,草甘膦二甲胺盐(新安开发,暂定)等; 2.按草甘膦离子的含量,41%异丙胺盐=30.5%草甘膦=3 3.5%草甘膦铵盐=37.5%草甘膦钾盐=3 4.5%草甘膦钠盐,二甲胺盐不详 3.在除草效果来说,钾盐稍大于异丙胺盐稍大于铵盐、钠盐。 4.草甘膦难溶于水,它的盐易溶于水,盐可以有钾盐、钠盐、铵盐、异丙胺盐等。草甘膦是草甘膦酸,属酸性,水溶性差,需要成盐,增加其水溶性,一般成铵盐和异丙胺盐,钾盐、钠盐等,最常见的是铵盐和异丙胺盐,41%的异丙胺盐,33%的铵盐中草甘膦含量都是30%,41%异丙胺盐需要用原药配置,而现在市面上标30%的草甘膦是不成盐的 企标中计算公式:草甘膦异丙胺盐=1.349*草甘膦含量,这个公式要先确定该盐是草甘膦异丙胺盐,而无其它形式的盐,这计算方法才勉强成立,但企标中没有这一点也就是说30%草甘膦水剂,不管是什么盐,都可以说成是41%草甘膦异丙胺盐水剂。 41%草甘膦异丙胺盐水剂实际上用不着制定企标,就用GB 20684-2006 草甘磷水剂。因为里面写得清清楚楚“本标准适用于由草甘膦原药或草甘膦可溶性盐和水及适宜的助剂组成的草甘膦水剂”。草甘膦的分子量为169.07,草甘膦异丙胺盐的分子量为228.2,

所以41%草甘膦异丙胺盐水剂实际上就是30.38%草甘膦水剂(略去小数点后面的数字就是30%草甘膦水剂)。有效成分是草甘膦。 41%的草甘膦异丙胺盐水剂和30%的草甘膦水剂还是有区别的: 41%草甘膦异丙胺盐水剂说明我的产品是异丙胺盐的 30%草甘膦水剂有以下几种可能: 1)30%草甘膦水剂以异丙胺盐的形式存在,类似于 40.5%草甘膦异丙胺盐水剂(略微底一点啊) 2)30%草甘膦水剂以钾盐形式存在,类似于37%的草甘膦钾盐水剂 3)30%草甘膦水剂以铵盐形式存在,类似于33%的草甘膦铵盐水剂 4)钠盐、二甲胺盐都有可能。 上述几个产品效果怎样,还要取决于使用助剂的种类,添加量。

正确使用草甘膦的方法和经验

正确使用草甘膦的方法和经验 (发布日期:2008-12-12 11:41:29) 浏览人数:403 农民提出的有关草甘膦除草剂使用时出现的问题,其中具有代表性的问题集中在:一是反映草甘膦除草剂虽然除草效果好但是有时在使时其药效差异很大;二是如何才能充份发挥草甘膦除草剂效果;三是在使用草甘膦除草剂时对农作物的安全问题。草甘膦作为除草剂目前使用量大、除草效果好,深受农民朋友的欢迎,但它在使用时仍要讲究一定的技术性,稍不留心,容易给生产带来不利的影响,值得引起大家的注意。 一、施用草甘膦除草剂时药效为何有差异。 草甘膦是一种有机膦吸传导型灭生性除草剂,又名为农达、镇草宁。杀草广谱、灭生性强,在土壤中无残留,广泛应用于免耕田化学除草和林、果园的定向除草,能杀死地面生长的各种杂草,但对地下萌芽未出土的杂草无效。草甘膦除草剂对40多科杂草都有防效,包括单子叶、双子叶、一年生和多年生的草本杂草及灌木、藻类、蕨类等。农民朋友反映的草甘膦除草剂除草效果不一致问题经过我们的调查和观察不外乎这几个原因:一是耕作方式不同药效会有差异。使用草甘膦除草剂最好用于免耕播种。于作物播前1-3天喷药,为抢季节播种也可在喷后播种。播前用药因药物不与作物种子直接接触,不会影响作物种子发芽和幼苗生长,因而除草和抑草效果均优于翻耕。免耕没有将土壤里层的杂草种子翻到表土层,因而杂草种子难以发芽,一旦作物成长封行后,杂草种子和幼苗因见不到而不能萌发生长。因此草甘膦除草剂用于免耕地的除草效果就会好于翻耕地。二是杂草不同生育期用药,药效会有差异。草甘膦是吸传导型除草剂,所以要在杂草生长最旺盛时用药。在时间上一般在3-10月,在植物学特性上,应以开花前用药最佳时期。一般来说一年生杂草有15厘米左右高度、多年生杂草有 30厘米高度、6-8片叶时喷?是最迁宜的。不考虑杂草的生育时期,待杂草老化后再盲目喷药除草,当然就收不到理想的防治效果了。在作物行间除草,当作物植株较高与杂草存在一定的落差时,用药效果较好且安全。此时用草甘膦除草剂时作物因下部叶片已经老化,对药物的敏感度低,传导力差,因而药物对作物的影响很小。如玉米行间的除草,上架后的豆类、瓜类行间除草等都可以用这种方法。三是喷施浓度不同药效会有差异。据调查,农户在用草甘膦时用药浓度不像其它农药一样有较严格的要求,随意性较大,加大用量或减少用量的现象时有发生。在确定用药浓度时一定要考虑杂草的类型。一般禾本科杂草对草甘膦较敏感,能被低剂量的药液杀死,而防除阔叶杂草时则要提高浓度;对一些多年生的根茎繁殖的恶性杂草则需要较高的浓度,杂草叶龄大、耐药力提高,相应的用药量也要提高。如防除果园杂草时,一年生禾本科杂草时可用10%草甘膦500-700克兑水30-40公斤;防除一年生阔叶杂草时药液用量应增加到750-1000克;防除多年生恶性杂草时,用药量应达到1250-1500克。但用药过量时会迅速杀死植物的传导组织,反而不利于药液吸收而降低药效,因此为了经济用药,应先用较低浓度把嫩草杀死,然后约10天后再用相应的浓度定向喷?恶性杂草。 二、如何充分发挥草甘膦的除草效果 首先草甘膦药液要大量地传导到杂草地下根茎组织,才能起到除草效果。这需要杂草有较多的叶片,在使用前若杂草面积小、光合作用不强则根部贮存的养分由下向上传导,此时用药则药液向下输入根部的量很少,起不到杀草效果;而杂草生长的中后期,光合作用强,光合产物由上往下传导,此时用药效果最好。因此使用草甘膦最重一条就是选定最佳用药时期。如用草甘膦防除玉米田杂草最好是在玉米苗高1.5米下部有2-3片老残叶,草高已达

41%异丙胺盐与30%草甘膦的区别

41%异丙胺盐与30%草甘膦的区别 10%的草甘膦马上就要退出市场了,这几天几乎所有的农药经销商都在找30%的草甘膦,今天下午跟一个市场“地头蛇”讨论草甘膦问题正欢,突然来了一个山东某农资企业的业务员向该客户推广他们企业的主打产品30%的草甘膦,客户看了看包装说:你们的包装不错嘛,价位也不错,我现在正好缺一个这样的产品去占市场。。。。不过,你们这个30%的草甘膦下面海标注了41%的草甘膦异丙胺盐,这个异丙胺盐跟草甘膦有什么区别?有什么好处?。。。只见那个业务员的脸色由白转红,又由红转惨白,结果嘴里哆嗦着,不知道说什么好了,我看他估计是不知道怎么说,或者是不懂,我就详细的向客户解释了两者的区别和作用,结果,这个这可客户当场决定给我们草甘膦产品打120吨的预付款,当然把那个山东的企业业务员拒之门外了。。。我暗自庆幸,幸好昨晚恶补了下除草剂知识啊。。。。我这里正好有一份资料,拿出来给大家分享下,我相信搞不清楚这几者之间的区别和联系的人,大有人在,我们共同进步吧! 按化学分类,草甘膦异丙胺盐、草甘膦铵盐、草甘膦分属植物源、季胺盐和有机磷类。 存在方式也不一样,41%异丙胺盐=30.5%草甘膦=33.5%草甘膦铵盐=37.5%草甘膦钾盐=34.5%草甘膦钠盐 在除草效果来说,钾盐稍大于异丙胺盐,异丙胺盐稍大于铵盐、钠盐。 草甘膦难溶于水,它的盐易溶于水,盐可以有钾盐、钠盐、铵盐、异丙胺盐等。草甘膦是草甘膦酸,属酸性,水溶性差,需要成盐,增加其水溶性,一般成铵盐和异丙胺盐,钾盐、钠盐等,最常见的是铵盐和异丙胺盐,41%的异丙胺盐,33%的铵盐中草甘膦含量都是30%,41%异丙胺盐需要用原药配置,而现在市面上标30%的草甘膦是不成盐的。 企标中计算公式:草甘膦异丙胺盐=1.349*草甘膦含量,这个公式要先确定该盐是草甘膦异丙胺盐,而无其它形式的盐,这计算方法才勉强成立,但企标中没有这一点。也就是说30%草甘膦水剂,不管是什么盐,都可以说成是41%草甘膦异丙胺盐水剂。 41%草甘膦异丙胺盐水剂实际上用不着制定企标,就用GB 20684-2006 草甘磷水剂。因为里面写得清清楚楚“本标准适用于由草甘膦原药或草甘膦可溶性盐和水及适宜的助剂组成的草甘膦水剂”。草甘膦的分子量为169.07,草甘膦异丙胺盐的分子量为228.2,所以41%草甘膦异丙胺盐水剂实际上就是30.38%草甘膦水剂(略去小数点后面的数字就是30%草甘膦水剂)。有效成分是草甘膦。 41%的草甘膦异丙胺盐水剂和30%的草甘膦水剂还是有区别的: 41%草甘膦异丙胺盐水剂说明我的产品是异丙胺盐的 30%草甘膦水剂有以下几种可能: 1)30%草甘膦水剂以异丙胺盐的形式存在,类似于40.5%草甘膦异丙胺盐水剂(略微底一点啊)2)30%草甘膦水剂以钾盐形式存在,类似于37%的草甘膦钾盐水剂 3)30%草甘膦水剂以铵盐形式存在,类似于33%的草甘膦铵盐水剂 4)钠盐、二甲胺盐都有可能。

草甘膦的特性、安全性及其应用评述

草甘膦的特性、安全性及其应用评述 戴宝江 朱秦 任新峰 (南通江山农药化工股份有限公司) 1971年Monsanto 公司开发出在世界农业中具有划时代意义的广谱除草剂草甘膦(Glyphosate),70年代中后期推出草甘膦异丙胺盐、胺盐与钠盐;ICI 公司于1989年推出三甲锍盐。目前,草甘膦已成为世界上应用最广、产量最大的农药品种,其年销售额一直居农药之首。近年来,随着转基因抗草甘膦作物的发展,草甘膦用量逐年增加,不仅影响新品种的开发方向,而且对现有除草剂品种的市场格局也造成较大冲击。 1 草甘膦的性质与剂型 1.1 化学结构 草甘膦是非常稳定的化合物,其存在形态为酸及其盐: HO C O CH 2NH CH 2P O OH O 草甘膦铵盐 NH 4 1.2 物理化学性质 草甘膦为白色、无味固体;密度1.74g/ml ,熔点200℃ (不分解),45℃蒸气压2.45×18-8 KPa(1.84×10-7mmHg);在25℃,pH 5.7~9时贮存32d 稳定。在25℃水中溶解度,草甘膦酸为15.7g/l (pH7)~11.6g/l ( pH 2.5),异丙胺盐为900g/l (pH 7)~786g/l (pH 4)。 1.3 剂型 以草甘膦酸为基础将其加工成盐或酯,由于植物对酸的吸收差,高剂量,特别是低喷液量时草甘膦酸易沉淀,因此,酸的活性通常低于盐类。最常用的剂型是含异丙胺盐的“农达”(Roundup),此盐类显著溶于水;一般为可溶性液剂(SL),含有效成分365g/l 或480g/l 。近年来,Monsanto 公司推出高含量草甘膦的干制剂(94%)、可溶性粒剂及片剂。在草甘膦剂型加工中,表面活性剂及增效剂非常重要,硫酸铵及硫酸二铵是常用的活化剂。草甘膦异丙胺盐是一种弱酸,在溶液中能够解离,分子的阴离子部分是活性成分,它们能够在喷洒液中与其他阳离子如:Ca 2+、Mg 2+、K +、Na +、Fe 2+/3+缔合,形成植物不易吸收的盐类,而硫酸铵与硫酸二铵能够阻止此种拮抗性盐类产生,从而形成草甘膦-NH 4+迅速被植物吸收。磷酸盐、酒石酸以及乙二胺四醋酸均能增进草甘膦的活性。 在草甘膦剂型中应充分重视表面活性剂。有机硅表面活性剂在新西兰被指定为草甘膦必备助剂,它可诱导草甘膦迅速通过气孔被植物吸收,避免雨水淋洗,显著提高除草效果。最

草甘膦复配

草甘膦复配 草甘膦是目前市面上用量最多的除草剂之一,不仅经济实惠,而且效果优越,但是有些厂家为 了不断增强草甘膦的效果,出现了参差不齐的复配草甘膦,价格比单剂贵一半或一倍,虽说效 果可靠但性价比不高农户难以接受。自己学会草甘膦复配,省钱又高效! 这里介绍几种草甘膦复配方案 草甘膦+草铵膦 混用特点:选择一种或多种互补除草剂品种复配,是防除抗或耐草甘膦杂草和延缓抗性发展的 有效途径。近年来,有相关研究报告指出:草甘膦为内吸传导型慢性广谱灭生性除草剂,草铵 膦为触杀型除草剂。 两者化合物类型、作用机理不同,复配理论上可行;草甘膦和草铵膦复配可以提高杂草防治效果、扩大杀草谱,弥补草甘膦杀草谱的不足,对耐受草甘膦的部分恶性杂草如牛筋草、小飞蓬 等效果好;草铵膦性能优异,但价格较贵,目前,草铵膦原药价格约是草甘膦价格的10倍,而 且其产量还不能满足市场需求,两者混配能降低用药成本;并且两者混配能提高除草速度,符 合农业生产者的传统心理预期。 研究表明:草甘膦和草铵膦混配对藜、蓼、马唐、狗尾草4种杂草防效表现出较明显的加成和 一定的增效作用。 克草甘膦+30克二甲四氯钠 对阔叶杂草、阔叶杂灌等效果快而好,尤其对田旋花、打碗花。并不影响对禾本科杂草的防效。克草甘膦+10克乙羧氟草醚 对马齿苋等特效,对一般阔叶也有增效,不影响对禾本科的防效。适用于菜地等。 克草甘膦+20克的精喹禾灵 对禾本科增效,尤其对宿根多年生的恶性杂草,不影响对阔叶的防效。 草甘膦单用除草情况 不同植物对草甘膦的敏感性不同。 、一年生杂草如稗、狗尾草、看麦娘、牛筋草、卷耳、马唐、藜、繁缕、猪殃殃等每亩用有效 成分40~70克就能有效防除。 、车前草、小飞蓬、鸭跖草、双穗雀稗等杂草,每亩需用有效成分75~100克。 、白茅、芦苇、香附子、水蓼、狗牙根、蛇莓、刺儿菜、野葱等,每亩需用有效成分120~200克。 、百合科、豆科和旋花科植物虽然对草甘膦的耐药性较强,但适当加大剂量也能有效防除。

正确使用草甘膦的方法和经验

(发布日期:) 浏览人数: 农民提出地有关草甘膦除草剂使用时出现地问题,其中具有代表性地问题集中在:一是反映草甘膦除草剂虽然除草效果好但是有时在使时其药效差异很大;二是如何才能充份发挥草甘膦除草剂效果;三是在使用草甘膦除草剂时对农作物地安全问题.草甘膦作为除草剂目前使用量大、除草效果好,深受农民朋友地欢迎,但它在使用时仍要讲究一定地技术性,稍不留心,容易给生产带来不利地影响,值得引起大家地注意.文档收集自网络,仅用于个人学习 一、施用草甘膦除草剂时药效为何有差异. 草甘膦是一种有机膦内吸传导型灭生性除草剂,又名为农达、镇草宁.杀草广谱、灭生性强,在土壤中无残留,广泛应用于免耕田化学除草和林、果园地定向除草,能杀死地面生长地各种杂草,但对地下萌芽未出土地杂草无效.草甘膦除草剂对多科杂草都有防效,包括单子叶、双子叶、一年生和多年生地草本杂草及灌木、藻类、蕨类等.农民朋友反映地草甘膦除草剂除草效果不一致问题经过我们地调查和观察不外乎这几个原因:一是耕作方式不同药效会有差异.使用草甘膦除草剂最好用于免耕播种.于作物播前天喷药,为抢季节播种也可在喷后播种.播前用药因药物不与作物种子直接接触,不会影响作物种子发芽和幼苗生长,因而除草和抑草效果均优于翻耕.免耕没有将土壤里层地杂草种子翻到表土层,因而杂草种子难以发芽,一旦作物成长封行后,杂草种子和幼苗因见不到阳光而不能萌发生长.因此草甘膦除草剂用于免耕地地除草效果就会好于翻耕地.二是杂草不同生育期用药,药效会有差异.草甘膦是内吸传导型除草剂,所以要在杂草生长最旺盛时用药.在时间上一般在月,在植物学特性上,应以开花前用药最佳时期.一般来说一年生杂草有厘米左右高度、多年生杂草有厘米高度、片叶时喷?是最迁宜地.不考虑杂草地生育时期,待杂草老化后再盲目喷药除草,当然就收不到理想地防治效果了.在作物行间除草,当作物植株较高与杂草存在一定地落差时,用药效果较好且安全.此时用草甘膦除草剂时作物因下部叶片已经老化,对药物地敏感度低,传导力差,因而药物对作物地影响很小.如玉米行间地除草,上架后地豆类、瓜类行间除草等都可以用这种方法.三是喷施浓度不同药效会有差异.据调查,农户在用草甘膦时用药浓度不像其它农药一样有较严格地要求,随意性较大,加大用量或减少用量地现象时有发生.在确定用药浓度时一定要考虑杂草地类型.一般禾本科杂草对草甘膦较敏感,能被低剂量地药液杀死,而防除阔叶杂草时则要提高浓度;对一些多年生地根茎繁殖地恶性杂草则需要较高地浓度,杂草叶龄大、耐药力提高,相应地用药量也要提高.如防除果园杂草时,一年生禾本科杂草时可用草甘膦克兑水公斤;防除一年生阔叶杂草时药液用量应增加到克;防除多年生恶性杂草时,用药量应达到克.但用药过量时会迅速杀死植物地传导组织,反而不利于药液吸收而降低药效,因此为了经济用药,应先用较低浓度把嫩草杀死,然后约天后再用相应地浓度定向喷?恶性杂草.文档收集自网络,仅用于个人学习 二、如何充分发挥草甘膦地除草效果 首先草甘膦药液要大量地传导到杂草地下根茎组织,才能起到除草效果.这需要杂草有较多地叶片,在使用前若杂草面积小、光合作用不强则根部贮存地养分由下向上传导,此时用药则药液向下输入根部地量很少,起不到杀草效果;而杂草生长地中后期,光合作用强,光合产物由上往下传导,此时用药效果最好.因此使用草甘膦最重一条就是选定最佳用药时期.如用草甘膦防除玉米田杂草最好是在玉米苗高米下部有片老残叶,草高已达厘米时施药为最佳.其次是要讲究环境条件.在度范围内,随着温度地升高杂草对草甘膦地吸收量增加一倍因此大气温度高比气温低时用药效果好;空气相对湿度高可延长药液在植物表面地湿润时间有利于药物地传导;土壤干旱含水量少时不利于植物地新陈代谢,因而不利于药物在杂草中传导所以药效也下降.第三关于草甘膦与其它除草剂混配地问题,有地农户想除多种草,为了节省用工,在使用草甘膦时任意加入其它除草剂,但其结果反而不好,因为有些除草剂是不能与草甘膦混配地,如二甲四氯、克无踪等速效型除草剂是不能与草甘膦混配使用地,

草甘膦、草甘膦铵盐、草甘膦异丙胺盐的区别20140630

草甘膦、草甘膦胺盐、异丙胺盐有什么区别? 分类:问题驿站| 标签:草甘膦异丙胺水剂钾盐药效 2011-10-06 14:56阅读(3261)评论(0)农资人论坛 1.按化学分类,草甘膦异丙胺盐、草甘膦铵盐、草甘膦分属植物源、季胺盐和有机磷类。 2.是存在方式不一样,41%异丙胺盐=30.5%草甘膦=3 3.5%草甘膦铵盐=37.5%草甘膦钾盐=3 4.5%草甘膦钠盐 3.在除草效果来说,钾盐稍大于异丙胺盐稍大于铵盐、钠盐。 4.草甘膦难溶于水,它的盐易溶于水,盐可以有钾盐、钠盐、铵盐、异丙胺盐等。草甘膦是草甘膦酸,属酸性,水溶性差,需要成盐,增加其水溶性,一般成铵盐和异丙胺盐,钾盐、钠盐等,最常见的是铵盐和异丙胺盐,41%的异丙胺盐,33%的铵盐中草甘膦含量都是30%,41%异丙胺盐需要用原药配置,而现在市面上标30%的草甘膦是不成盐的 企标中计算公式:草甘膦异丙胺盐=1.349*草甘膦含量,这个公式要先确定该盐是草甘膦异丙胺盐,而无其它形式的盐,这计算方法才勉强成立,但企标中没有这一点。 也就是说30%草甘膦水剂,不管是什么盐,都可以说成是41%草甘膦异丙胺盐水剂。 41%草甘膦异丙胺盐水剂实际上用不着制定企标,就用GB 20684-2006 草甘磷水剂。因为里面写得清清楚楚“本标准适用于由草

甘膦原药或草甘膦可溶性盐和水及适宜的助剂组成的草甘膦水剂”。草甘膦的分子量为169.07,草甘膦异丙胺盐的分子量为228.2,所以41%草甘膦异丙胺盐水剂实际上就是30.38%草甘膦水剂(略去小数点后面的数字就是30%草甘膦水剂)。有效成分是草甘膦。 41%的草甘膦异丙胺盐水剂和30%的草甘膦水剂还是有区别的:41%草甘膦异丙胺盐水剂说明我的产品是异丙胺盐的 30%草甘膦水剂有以下几种可能: 1)30%草甘膦水剂以异丙胺盐的形式存在,类似于40.5%草甘膦异丙胺盐水剂(略微底一点啊) 2)30%草甘膦水剂以钾盐形式存在,类似于37%的草甘膦钾盐水剂 3)30%草甘膦水剂以铵盐形式存在,类似于33%的草甘膦铵盐水剂 4)钠盐、二甲胺盐都有可能。 上述几个产品效果怎样,还要取决于使用助剂的种类,添加量。

草甘膦异丙胺盐

草甘膦异丙胺盐,英文名为N-(phosphonomethyl)glycine,分子式是C3H9N·C3H8NO5P,分子量为228.18,CAS登记号为38641-94-0,农用化学品一种。 H9N·C3H8NO5P 分子式:C3 草甘膦、草甘膦胺盐、异丙胺盐有什么区别? 1.按化学分类,草甘膦异丙胺盐、草甘膦铵盐、草甘膦分属植物源、季胺盐和有机磷类。 2.是存在方式不一样,41%异丙胺盐=30.5%草甘膦=3 3.5%草甘膦铵盐=37.5%草甘膦钾盐=3 4.5%草甘膦钠盐 3.在除草效果来说,钾盐稍大于异丙胺盐稍大于铵盐、钠盐。 4.草甘膦难溶于水,它的盐易溶于水,盐可以有钾盐、钠盐、铵盐、异丙胺盐等。草甘膦是草甘膦酸,属酸性,水溶性差,需要成盐,增加其水溶性,一般成铵盐和异丙胺盐,钾盐、钠盐等,最常见的是铵盐和异丙胺盐,41%的异丙胺盐,33%的铵盐中草甘膦含量都是30%,41%异丙胺盐需要用原药配置,而现在市面上标30%的草甘膦是不成盐的 企标中计算公式:草甘膦异丙胺盐=1.349*草甘膦含量,这个公式要先确定该盐是草甘膦异丙胺盐,而无其它形式的盐,这计算方法才勉强成立,但企标中没有这一点。 也就是说30%草甘膦水剂,不管是什么盐,都可以说成是41%草甘膦异丙胺盐水剂。 41%草甘膦异丙胺盐水剂实际上用不着制定企标,就用GB

20684-2006 草甘磷水剂。因为里面写得清清楚楚“本标准适用于由草甘膦原药或草甘膦可溶性盐和水及适宜的助剂组成的草甘膦水剂”。草甘膦的分子量为169.07,草甘膦异丙胺盐的分子量为228.2,所以41%草甘膦异丙胺盐水剂实际上就是30.38%草甘膦水剂(略去小数点后面的数字就是30%草甘膦水剂)。有效成分是草甘膦。 41%的草甘膦异丙胺盐水剂和30%的草甘膦水剂还是有区别的:41%草甘膦异丙胺盐水剂说明我的产品是异丙胺盐的 30%草甘膦水剂有以下几种可能: 1)30%草甘膦水剂以异丙胺盐的形式存在,类似于40.5%草甘膦异丙胺盐水剂(略微底一点啊) 2)30%草甘膦水剂以钾盐形式存在,类似于37%的草甘膦钾盐水剂 3)30%草甘膦水剂以铵盐形式存在,类似于33%的草甘膦铵盐水剂 4)钠盐、二甲胺盐都有可能。 上述几个产品效果怎样,还要取决于使用助剂的种类,添加量。

目前草甘膦的剂型

1、草甘膦水剂(AS) 草甘膦水剂通常按含量来分类,如10%的草甘膦AS;41%草甘膦AS;51%的草甘膦异丙胺盐AS;62%草甘膦异丙胺盐。 10%草甘膦AS可以由草甘膦原药直接制备,也可以由生产草甘膦原药时生成的废液浓缩后,回注一定量的原药来制备。又分10%的甘草了的钠盐和氨盐。 41%草甘膦AS可根据不同盐分为:41%草甘膦异丙胺盐;41%草甘膦钾盐;41%草甘膦氨盐等。41%草甘膦AS也可根据其粘度分为:一般粘度的41%草甘膦AS(粘度在14-18cps);高粘度的41%草甘膦AS(18-25,25-35,35-45,45cps以上)。41%草甘膦AS也可以根据不同颜色来分,可以做成各种颜色如:赤、橙、黄、绿、青、蓝、紫。 其它的草甘膦AS,如抗低温的草甘膦AS;与其他农药混配的水剂如草甘膦-二甲四氯;草甘膦-麦草威;草甘膦-咪草烟;草甘膦-百草枯等。 2、草甘膦可溶性粉剂(SP) 草甘膦SP按草甘膦酸含量的高低分:30%草甘膦SP;50%草甘膦SP;65%草甘膦SP。 草甘膦SP可由草甘膦的单铵盐或草甘膦的钾、钠盐,加上助剂和添料来生产制备,也可以草甘膦原粉,加功能性添料、助剂和添料来生产制备。 3、草甘膦可溶性颗粒剂(WDG) 草甘膦WDG国内主要是75.7%草甘膦单铵盐颗粒剂(孟山都公司为74.7%苯-WDG,草甘膦单铵盐含量为74.7%),草甘膦WDG的生产工艺大体可分为两种: ①由草甘膦单铵盐、专用助剂、添料混合后,经造粒、烘干、筛分、包装即可。 ②由草甘膦原药、功能性添料、专用助剂、添料,先预混,静置一定时间,再经过造粒、烘干、筛分、包装即可。 ②与①相比省去了植被单铵盐的全过程,从而显得简单易行,操作方便,投资、能耗、损耗会更少、成本也会更低些,是目前主要推崇的工艺。 草甘膦WDG也可以制备成各种不同的颜色。

62%草甘膦异丙胺盐合成工艺优化小试研究

62%草甘膦异丙胺盐合成工艺优化小试研究 李延博,方建明,沈 洁,刘凤羽 (广州创特技术有限公司,广东广州 510055) 摘 要:通过强化反应过程中异丙胺的分散,对工艺过程进行优化,提高了反应速率,降低了反应过程中冷却水和蒸汽的使用量,提高了装置利用率。 关键词:异丙胺;草甘膦异丙胺盐;优化 中图分类号:T E357 文献标识码:A 文章编号:1006—7981(2012)14—0039—01 草甘膦是目前广泛使用的一种光谱灭生性除草剂,随着抗草甘膦转基因作物品种的不断丰富和种植面积的不断扩大,对草甘膦的需求量将继续扩大[1] 。草甘膦异丙胺盐除有一般草甘膦具备的内吸传导型、光谱、灭生性等特性外,还具有除草药效好,水溶性更高的特点。草甘膦异丙胺盐水剂是目前市 场上的主导品种,全球销售超过几十万吨[2] 。 当前国内的62%草甘膦异丙胺盐水剂生产厂家普遍存在的主要问题是:装置利用率低、单釜产能小、能耗高、劳动条件差等一系列问题。通过对国内62%草甘膦异丙胺盐水剂厂家的生产过程分析,发现配置过程效率低、能耗高的主要原因在于装置的异丙胺分散较差,从而影响异丙胺的加入速度,在异丙胺加入速度加快后来不及反应的异丙胺挥发,造成操作环境差,现场有异丙胺的刺鼻气味,同时造成异丙胺消耗量过高。为了克服异丙胺挥发的问题,在异丙胺加入过程中需要通冷却水,而在草甘膦和异丙胺反应结束后为了保证62%草甘膦异丙胺盐水剂的稳定性,还要用蒸汽把物料升温到90℃,这种先冷却再加热的方式造成能耗较高,且反应速率较慢。 为了克服上述问题,采取强化传质的方式,加快异丙胺的加入速度,同时利用反应过程放出的热量对物料进行加热,加快了反应速率,提高了装置利用率、降低了能耗、改善了操作环境,为反应装置的放大奠定了基础。1 实验部分1.1 实验装置 实验用的反应器为玻璃材质的四口烧瓶,四个口分别为搅拌器入口,冷凝管接口、进料口和温度计接口,烧瓶外部采用棉花保温。1.2 反应物质量计算 草甘膦与异丙胺的化学反应方程式 : 假设反应后6%草甘膦异丙胺盐水剂的质量为 100g,则草甘膦异丙胺盐的质量为62g 。反应过程中为了保证草甘膦完全反应,异丙胺要适当过量,异丙胺与草甘膦的摩尔比为:1。 草甘膦的质量=62g 228g/mol ×169g/mol ÷0.95 =48.4g 异丙胺的质量= 62g 228g/mol ×1.2×59g/mol ÷ 0.99=19.8g 水的质量=100-48.4-19.8=31.8g 由上面的计算结果可知:得到100g62%草甘膦异丙胺盐所需的草甘膦、异丙胺和水的质量分别为48.4g 、19.8g 、31.8g 。1.3 实验过程 先搭建上图所示的实验装置,电机、搅拌器、四口烧瓶和冷凝管由铁架台固定,冷凝管的目的是冷凝挥发的异丙胺,从加料口加入一定量的水,调节温度计的高度,直至温度计的液泡完全浸在液面下,然后固定。打开搅拌器,草甘膦由加料口加入,调节搅拌器的转速至草甘膦与水能够充分混合,然后将异丙胺由加料口用滴液漏斗加入,可以通过滴液漏斗下面的旋塞控制异丙胺的加入速度。 39  2012年第14期 内蒙古石油化工 收稿日期55 作者简介李延博(—),男,工学硕士。 2:2012-0-2:1982

相关文档
最新文档