均速管流量计的现状与发展

均速管流量计的现状与发展
均速管流量计的现状与发展

均速管流量计的现状与发展

王力勇

(哈尔滨市质量技术监督局开发区技术检测服务中心,150090)

摘要:针对均速管流量计的总压及背压检测孔的数量和位置,检测杆的剖面形状等问题进行了讨论。详细介绍了均速管的几种结构形式,给出了使用流量测量的计算公式,分析了各种因素对测量精度的影响,最后对该产品的发展提出了一个构想。

关键词:流量测量均速管影响因素应用

均速管流量计的测量元件——均速管(国外称Annubar,直译阿牛巴),是基于早期皮托管测速原理发展起来的,是60年代后期开发的一种新型差压流量测量元件,并开始应用与我国的工业现场,70年代中期已有30余家厂家进行了研制生产。均速管的优点是;结构上较为简单(如图1所示),压力损失小,安装、拆卸方便,维护量小。

该流量计由于生产成本低,价格低廉,因此在市场较为畅销,在众多的流量仪表中占有了一席之地。特别是由于其压力损失小(与孔板相比较,仅为孔板的5%以下),大大减少了动力消耗,节能效果显著,这在能源紧张的今天,有着其特殊的意义。由于该流量计适应范围宽,长期稳定性好(如图2所示)近年来有了较大的发展,出现了几种结构形式不同的流量计。但因使用不当,在应用中产生了一些问题,使得客观要求与发展现状产生了很大的矛盾,许多人期望其应用问题能得到解决,为此人们做了大量的不懈努力,使得均速管流量计这一既古老而又年轻的流量计,在能源、环保等计量测试中得到了较为广泛的应用。

1 均速管流量传感器的测量原理

均速管流量传感器,由其结构示意图所知,它是一根沿直径插入管道中的中空金属杆,在迎向流体流动方向有成对的测压孔,一般说来是两对,但也有一对或多对的,其外形似笛。迎流面的多点测压孔测量的是总压,与全压管相连通,引出平均全压p1,背流面的中心处一般开有一只孔,与静压管相通,引出静压p2。均速管是利用测量流体的全压与静压之差来测量流速的。均速管的输出差压(△p)和流体平均速度(v),

可根据经典的伯努利方程得出

(1)

式中;△P——全压与静压之差,Pa

ρ——流体密度,kg/m3

k——校正系数。

如果用流量来表示,其流量计算基本公式为

式中 qv ——流体的体积流量,m3/s;

qm——流体的质量流量,kg/s;

α——工作状态下均速管的流量系数;

ε——工作状态下流体流过检测杆时的流束膨胀系数;

A——工作状态下管道内截面面积,m2

对于不同压缩性流体:ε=1;对于可压缩性流体:ε<1

全压孔的位置,可按等分面积法求取。这样,在流量变化的情况下均速管能有较好的适应能力,所反映的误差较小。所谓等分面积法,就是将管道截面分割成内圆和外环的等效平均流速点,这些点就是全压孔的位置,如图3所示。

全压孔的开孔位置可用切比雪夫数值积分的解法求得,如图4所示,图中r1=±0.4597R,r2=±0.8881R,r1,r2为取压孔中心距管道中心的距离,R为管道内半径。

对于这种选点方法,无论是数目还是位置,近年来学术界及国际标准化组织均提出了异议,认为管内的流动应分为三个区域,选点按对数——切比雪夫(Log-Jchebycheff)法进行,因此,总压检测孔的位置应为;r1=±0.03754R;r2=±0.7252R;r3=±0.9358R。这种方法已被国际标准化组织(ISO)封闭管道中的流量测量委员会(TC30)所确认,鉴于上述原因,通过人们的试验研究,均速管的总压孔数目还是建议采用二对或三对为宜。

背压检测孔长期以来采用一个,是由于人们已经认识到均速管按规范是处于位势流中,而位势流的前题是管道横截面上各点静压均相等,没有横向流动。从这个角度来看,一个背压检测孔已足够,为了防止流体的流量在检测过程中阻塞背压检测孔,多孔的背压取压,已开始应用在均速管流量传感器上,总之,由流量的基本公式可知,只要有效地测出均速管的输出差压△P,就可测出流体的流量值,这就是均速管流量传感器的测量原理。

2 均速管的结构形式

均速管的结构是一根中空的金属杆,其剖面形状应用最多的产品是圆形及菱形,80年代中期也采用过机翼形截面。

圆形截面的均速管,当雷诺数Re处于105至106之间时,使得流量系数α不稳定,它的稳定区域是在雷诺数Re<105和Re>106。这主要是由于圆形截面的阻力件,自身存在着“阻力危机”而引起的。流体流经圆管时存在着分离点不同而导致圆管在迎流流体时,在圆管上引起的压力分布不同,从而引起了流量系数α的变化。

菱形截面的均速管,就是为了克服圆形截面这一流量系数不稳定区而设计的。菱形截面无论雷诺数的数值Re是多少,其分离点都是确定不变的,从而较好地解决了均速管流量传感器在检测气体、蒸汽流量时不稳定区的困难。均速管截面采用菱形,已经被人们所共认。

机翼形截面是为了进一步减少流体通过检测杆时迎流阻力,从而减小压力损失。其实,就均速管而言,不论采用圆形还是菱形横截面,其不可恢复的压力损失,都是微不足道的,仅占输出差压的2%左右,但在实际应用过程中,均速管的输出差压△P较低是它的一大弱点,当采用机翼形横截面时确实可以减小一些阻力,但是其输出差压更小,和圆形截面或菱形截面相比差压减少了50%,由于差压的过低,工作起来必须采用配套的较为昂贵的微差压变送器,在这种情况下工作,使得检测不稳定,从而影响了它的推广应用。

3 均速管的流量计的系统组成

如式(2)和式(3)所示。均速管流量计系统的组成实质是对差压△P的测量,这是所有差压式流量计的共性,技术是通用的,即采用差压变送器把△P转换成相应的机械信号或电信号,也可直接测量△p并进行相应处理,本文不再详述。

4 应用过程中对测量精度有影响的因素

均速管流量计在应用过程中应注意的问题,请参阅国家计量检定规程JJG640-94差压式流量计检定规程及相关文献,本文不再详述。

5 结束语

应该指出,均速管流量计从设计、制造到安装使用,都要求十分严格,只要其中一个环节稍加不慎,就可造成很大误差。

准确测量流量是任何生产部门都需要的,也是任何部门普遍关心的问题。均速管流量计要想在今后的计测应用中发挥自己的作用,提高流量测量的水平是有路可走的。热式均速管流量计就是其中的一个途径,如图5所示。

热式均速管流量计由三部分组成,检测杆、电子线路和流量的显示与积算。检测杆是一根中空的金属管,并在其上配置了若干热丝感测元件。电子线路相应地和每一只热丝感测元件组合,相当于一台热丝测速计。热式均速管流量计的流量计算式为

(5)

式中; A——管道横截面面积,m2

n——管道截面的等分数;

ρi——第i个特征点处的密度,kg/m3;

υi——第i个特征点处的流速,m/s;

质量流速(pυ)的计算式为

(6)

式中:I为加热电流;R为热丝电阻;T为热丝感测元件温度;T0为气体温度;ρ为被测介质密度;υ为流体流速:α1,α2,m为经验常数。

文丘里流量计等的工作原理

文丘里流量计等的基本原理 文丘里流量计等的基本原理 充满文丘里流量计管道的流体,当它流经文丘里流量计管道内的节流件时,流速将在文丘里流量计节流件处形成局部收缩,因而流速增加,静压力降低,于是在文丘里流量计节流件前后便产生了压差。流体流量愈大,产生的压差愈大,这样可依据压差来衡量流量的大小。这种测量方法是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。压差的大小不仅与流量还与其他许多因素有关,例如当文丘里流量计节流装置形式或文丘里流量计管道内流体的物理性质(密度、粘度)不同时,在同样大小的流量下产生的压差也是不同的。 文丘里流量计等的流量方程 式中 qm--质量流量,kg/s; qv--体积流量,m3/s; C--流出系数; ε--可膨胀性系数; β--直径比,β=d/D; d--工作条件下文丘里流量计节流件的孔径,m; D--工作条件下上游文丘里流量计管道内径,m; △P--差压,Pa; ρ --上游流体密度,kg/m3。 l 由上式可见,流量为C、ε、d、ρ、△P、β(D)6个参数的函数,此6个参数可分为实测量[d,ρ,△P,β(D)]和统计量(C、ε)两类。 (1)实测量 1)d、D 式(4.1)中d与流量为平方关系,其精确度对流量总精度影响较大,误差值一般应控制在±0.05%左右,还应计及工作温度对材料热膨胀的影响。标准规定管道内径D必须实测,需在上游管段的几个截面上进行多次测量求其平均值,误差不应大于±0.3%。除对数值测量精度要求较高外,还应考虑内径偏差会对节流件上游通道造成不正常节流现象所带来的严重影响。因此,当不是成套供应节流装置时,在现场配管应充分注意这个问题。 2)ρρ在流量方程中与△P是处于同等位置,亦就是说,当追求差压变送器高精度等级时,绝不要忘记ρ的测量精度亦应与之相匹配。否则△P的提高将会被ρ的降低所抵消。 3)△P 差压△P的精确测量不应只限于选用一台高精度差压变送器。实际上差压变送器能否接受到真实的差压值还决定于一系列因素,其中正确的取压孔及引压管线的制造、安装及使用是保证获得真实差压值的关键,这些影响因素很多是难以定量或定性确定的,只有加强制造及安装的规范化工作才能达到目的。 (2)统计量 1)C 统计量C是无法实测的量(指按标准设计制造安装,不经校准使用),在现场使用时最复杂的情况出现在实际的C值与标准确定的C值不相符合。它们的偏离是由设计、制造、安装及使用一系列因素造成的。应该明确,上述各环节全部严格遵循标准的规定,其实际值才会与标准确定的值相符合,现场是难以完全满足这种要求的。 应该指出,与标准条件的偏离,有的可定量估算(可进行修正),有的只能定性估计(不确定度的幅值与方向)。但是在现实中,有时不仅是一个条件偏离,这就带来非常复杂的情况,因为一般资料中只介绍某一条件偏离引起的误差。如果

浅谈流量计的发展和现状

浅谈流量计的发展和现状 一、概述 传统的流体整流器经长期的研究与实践已趋于成熟,它一般采用阻隔体分隔流道来调整管道内的速度分布,以达到整流的目的;这一类整流器主要用于实验室和流量标定系统。但这种方法易引起污物堵塞和增加阻力损失,所以在工业管道上很少采用。涡街流量计由于其独特的性能,一直受到人们重视,并己到了广泛的应用,但仍有两个方面的问题困扰着人们,一是由于仪表上游管道阻流件的干扰,流场发生畸变,影响旋涡正常拨离。为了克服流场扰动,仪表前需要配装较长直管道(一般为15~40倍的工艺管内径的长度),而在实际现场是很难满足的。二是,涡街流量计主要特点之一是量程宽,一般在10:1左右,应该说这样宽的测量范围应属比较优良的性能,但在实际工业应用中,最大流量远低于仪表的上限值,最小流量又往往会低于仪表的下限值,一些仪表经常工作在下限流量附近,造成仪表的计量准确度下降,这时信号较弱,仪表的抗干扰能力也下降。为了测量小流量,人们往往采用内腔形状为园台的传统变径管,经过缩径提高测量处的流速。使涡街流量计工作在正常流速范围内,但这种变径方式,结构尺寸大(一般长度为工艺管内径的3~5倍),同时,由于流体流经变径管,在变径处产生大量旋转流团,增大局部阻力损失,也使流场发生畸变。所以必须在变径管与仪表之间加装大于15倍工艺管内径长度的直管道进行整流,且增加了沿程阻力损失(如图1所示),这种方法增加施工成本,也给加工、安装带来不便。 (图1)纵端面采用特殊形线的变径整流器(己申报国家专利),具有整流,提高流速及改变流速分布的多重作用,其结构尺寸小,长度仅为工艺管内径的1/3,可以直接卡装在仪表的两端,不仅不需要另外附加直管道,而且可以降低仪表对上游直管道的要求。实验表明:仪表上游阻力件为一个平面内的两个90°弯头在一般情况下,涡街流量计上游侧应加装大于20倍管道内径长度的直管道,而涡街流量计加装了变径整流器大大降低了对上游测直管道长度的要求,其阻力远远小于传统的变径管。更主要的是,可使下限流速降为原来的1/3,量程比提高到15:1以上。’

金属管转子流量计

金属管转子流量计 一、概述 HSB-LZ系列金属管转子流量计用于封闭管道中液体、气体或蒸汽的流量测量,在过程控制中的广泛应用,特别适合中小流量的控制和测量。 它是由锥管、浮子、指示器、转换器组成。流体流进锥管浮子上升,其升力M与重力G平衡时,浮子的位移通过磁钢传递给指示器就地指示流量或再由转换器转换成相应的电信号(二线制4-20mA,三线制0-10mA,四线制4-20mA、0-20mA)可与DDZ-Ⅱ、DDZ-Ⅲ型电动单元组合仪表,I系列、EK系列等仪表匹配,也可与计算机联网实现流量的远距离显示,记录、调节,积算和控制。 1.设计合理,工作可靠,指示器部分属于免修部件,耐腐蚀、耐高温、高压,防尘、防滴、 防爆。 根据用户要求可同时指示标准状态流量和实际工作状态的流体流量(根据用户提供、流量、温度、密度、压力等参数由计 算机计算完成)亦即可作2-3种刻度指示,输出信号和刻度一致而且线性。 2.输出模拟信号0-10mA、4-20mA或0-20mA可配我厂模拟信号-频率转换器,输出 频率信号并可显示累积流量。 3.管道与流量传感器连接有多种形式的结构和尺寸为方便设计院设计,基型流量传感器安 装高度为250mm,过滤器安装高度 为100mm和50mm二种,亦可按客户要求定制。 4.流量传感器除基材1Cr18Ni9Ti外亦可选用0Cr18Ni9Ti;0Cr18Ni12Mo2Ti(钼二 钛);镍基合金(hastelloy哈氏合金) 如0Cr16Ni60Mo16W4;内衬聚四氟乙烯(PTFE)4F或46F、玻璃、橡胶等。 5.各项性能指标均不低于国外同类产品。 6.流量计耐高温可达400℃,小口径耐压可达10MPa以上。 7.为防止测量气体或蒸汽时,浮子的跳动产生的误差专门设计了阻尼器,亦可适用于较大 脉动的流体测量。 8.流量计的进出口位置有:下-上;左-右(平);右-左(平);下-上横;下横-上横; 9.根据用户需要有指示型;电远传;上下限报警装置;现场累积显示;保温;冷却夹套; 并备有各种规格式样的过滤器,安 装高度可由客户定。 10.我公司专门为用户生产各种特殊规格、特殊用途的流量计,请与我公司联系。

金属管浮子流量计说明书

金属管浮子流量计说明书 金属管浮子流量计采用可变面积式测量原理,适用于测量液体,气体。全金属结构,有指示型、电远传型、耐腐型、高压型、夹套型、防爆型。具有0-10mA,4-20mA的标准模拟量信号输出和现场指示。累积,数字通讯,现场修改测量参数,不同的供电方式功能,带有磁性过滤器和特殊规格品种。广泛应用于,石油、化工、发电、制药、食品、水处理等。复杂,恶劣环境条件,及各种介质条件的流量测量过程中 工作原理 金属管浮子流量计 金属管浮子流量计浮子在测量管中,随着流量的变化,将浮子向上移动,在某一位置浮子所受的浮力与浮子重力达到平衡。此时浮子与孔板(或锥管)间的流通环隙面积保持一定。环隙面积与浮子的上升高度成正比,即浮子在测量管中上升的位置代表流量[1]的大小,变化浮子的位置由内部磁铁传输到外部的指示器,使指示器正确地指示此时的流量值。这就使得指示器壳体不和测量管直接接触,因此,即使安装限位开关或变送器,仪表可用于高温,高压工作条件下。 特点 金属管浮子流量计是工业自动化过程控制中常用的一种变面积流量测量仪表。它具有体积小,检测范围大,使用方便等特点。它可用来测量液体、气体以及蒸汽的流量,特别适宜低流速小流量的介质流量测量。 测量部分特点: 1、坚固的全金属结构设计型浮子流量计; 2、采用独立概念设计的测量管指示 3、可选择不锈钢、哈氏合金、钛材、PTFE材料测量系统; 4、低压力损失 设计;5、短行程、小型结构设计、仪表总高度250 ;6、磁性耦合结构确 保数据传输、信号更加稳定;7、保温或伴热夹套;8、垂直、水平、各种

安装方式更适合不同使用场合;9适用于小口径和低流速介质流量测量;10、工作可靠,维护量小,寿命长;11、对于直管段要求不高;12、较宽的流量 比10:1;13、双行大液晶显示,可选现场瞬时/累计流量显示,可带背光; 14、单轴灵敏指示;15非接触磁耦合传动;16金属结构,适于高温、高 压和强腐蚀性介质;17、可用于易燃、易爆危险场合;18、选二线制、电 池、交流供电方式;19、多参数标定功能;20、带有数据恢复,数据备份 及掉电保护功能具 结构原理 金属浮子流量计的流量检测元件是由一根自下向上扩大的垂直锥形管和一个沿着锥管轴上下移动的浮子组所组成。工作原理如图1所示,被测流体从下向上经过锥管1和浮子2形成的环隙3时,浮子上下端产生差压形成浮子上升的力,当浮子所受上升力大于浸在流体中浮子重量时,浮子便上升,环隙面积随之增大,环隙处流体流速立即下降,浮子上下端差压降低,作用于浮子的上升力亦随着减少,直到上升力等于浸在流体中浮子重量时,浮子便稳定在某一高度。浮子在锥管中高度和通过的流量有对应关系。体积流量Q的基本方程式为(1)当浮子为非实芯中空结构(放负重调整量)时,则(2)式中α——仪表的流量系数,因浮子形状而异;ε——被测流体为气体时气体膨胀系数,通常由于此系数校正量很小而被忽略,且通过校验已将它包括在流量系数内,如为液体则ε=1; △F——流通环形面积,m2;g——当地重力加速度,m/s2;Vf——浮子体积,如有延伸体亦应包括,m3;ρf——浮子材料密度,kg/m3;ρ——被测流体密度,如为气体是在浮子上游横截面上的密度,kg/m3;Ff——浮子工作直径(最大直径)处的横截面积,m2;Gf——浮子质量,kg。流通环形面积与浮子高度之间的关系如式(3)所示,当结构设计已定,则d、β为常量。 式中有h的二次项,一般不能忽略此非线性关系,只有在圆锥角很小时,才可视为近似线性。m2(3)式中d——浮子最大直径(即工作直径),m;h——浮子从锥管内径等于浮子最大直径处上升高度,m;β——锥管的圆锥角;a、b——常数。口径15-40mm透明锥形管浮子流量计典型结构如图2所示。透明锥形管4用得最普遍是由硼硅玻璃制成,习惯简称玻璃管浮子流量计。流量分度直接刻在锥管4外壁上,也有在锥管旁另装分度标尺。锥管内腔有圆锥体平滑面和带导向棱筋(或平面)两种。浮子在锥管内自由移动,或在锥管棱筋导向下移动,较大口平滑面内壁仪表还有采用导杆导向。图3是直角型安装方式金属管浮子流量计典型结构,通常适用于口径15-40mm以上仪表。锥管5和浮子4组成流量检测元件。套管(图3未表示)内有导杆3的延伸部分,通过磁钢耦合等方式,将浮子的位移传给套管外的转换部分。转换部分有就地指示和远传信号输出两大类型。除直角安装方式结构外还有进出口中线与锥管同心的直通型结构,通常用于口径小于10-15mm的仪表。 主要技术参数

气体流量计表如何选型

气体流量计表如何选型 作者:气体流量计来源:https://www.360docs.net/doc/658973903.html,/ 气体流量计表如何选型,气体流量计在工业生产中应用也很多,其主要有4个方面:一是无腐蚀气体,二是有腐蚀性,三是易燃易爆气体,四是有毒气体。在选择时要根据介质不同合理确定用什么仪表。我们把可以测量气体介质的流量仪表叫做气体流量计。 气体流量计常用的有哪些:涡街,孔板,浮子,旋进旋涡,气体涡轮,威力巴,弯管。涡街是可以测量大多数的气体介质。它可以测量气体体积流量和质量流量,可以用于高温和高压和易燃易爆气体。孔板也可以测量大多数气体介质,但它因测量精度不高,需配套仪表多,价格较高,现已经慢慢变涡街所代替。浮子流量计主要用来测量小口径仪表的流量,它对小流量测量是其它流量计无法做到的。威力巴应用于煤气测量,由于煤气里面含有焦油,一般差压式仪表都会因堵塞而无法测量,它是专用于煤气测量。旋进旋涡和气体涡轮主要针对于天然气等介质测量,因其造价,其它气体类很少选择它,弯管也是适用大多数液体测量,它的计量精度高,维护量少,由于价格高,在一些大型企业才会考虑此种流量计。

气体流量计选型,怎么选,选哪种合适,选哪种计量准确,选哪种计量安全。在选择时我们要把计量安全放在首要位置,再次考虑计量精度,最后才能考虑产品价格。如:介质空气流量正常我们可以选择涡街来测量,如果流量小管径小只有选择浮子流量计,如果管道大见议采用弯管流量计。在测量气体仪表中,质量是绝对重要,如果发生泄露那是相当危险的。 气体测量要根据实际情况来综合分析,根据现场环境和安全来确定仪表要采用普通型还是采用防爆型。是选择220V供电还是24V供电或是锂电池供电。在气体测量仪表的质量显的更加重要。

转子流量计的原理及计算【最新版】

转子流量计的原理及计算 1概述 转子流量计(Rotometer),又称浮子流量计(FloatTypeFlowmeter),在工业中得到广泛的应用。它可测量液体、气体和蒸气的流量,宜测中小管径(DN4~250)的流量。压力损失小且恒定,测量范围比较宽,量程比1:10,工作可靠且刻度线性,使用维修方便,对仪表前后直管段长度要求不高。其测量精确度为±2%左右,受被测液体的密度、粘度、纯净度以及温度、压力的影响,也受安装垂直度的影响。玻璃管浮子流量计结构简单,成本低,易制成防腐蚀性仪表,但其强度低。金属管浮子流量计可输出标准信号,耐高压,能实现流量的指示、积算、记录、控制和报警等多种功能。 1.1 原理及结构 1.1.1 冲量定理及应用 设一物体的质量为m,作用其上的力为F,实际上流体的速度v,物体变化路程为L。那么根据冲量定理可推出 (1)

1.1.2 测量原理及结构 如果将阻挡体置于直立且具有锥度(上大下小)的管道中,就形成转子式的流量计,它的工作原理如图1所示。 当流量增加时,转子接受流体自下而上的冲力将增加,因而被冲向上方,一到达上面,由于流通截面增加,流速减小,冲力也随之减小。当冲力和差压对转子截面构成的作用力以及粘滞摩擦力等的合力与转子本身在流体中重量相等时,转子即处于一平衡状态,不再上升或下降,这个位置就表示新的流量值。 1.2 计算公式 设转子的显示重量为Wf(N),流体对转子的作用力为F(N),锥形管与转子间环形截面为Sa(m2),转子处最大截面积为Sf(m2),转子体积Vf(m3),转子密度为ρf(Kg/m3),转子长度为L(m),流体介质的密

2020全球与中国尿流量计行业发展现状分析及前景展望

2020全球与中国尿流量计行业发展现状分析及前景展望 1 2020全球与中国尿流量计行业发展现状分析及前景展望

报告摘要 2019年全球尿流量计市场总值达到了xx亿元,预计2026年可以增长到xx亿元,年复合增长率(CAGR)为xx%。 本报告研究全球与中国尿流量计的发展现状及未来发展趋势,分别从生产和消费的角度分析尿流量计的主要生产地区、主要消费地区以及主要的生产商。重点分析全球与中国的主要厂商产品特点、产品产品类型、不同产品类型产品的价格、产量、产值及全球和中国主要生产商的市场份额。 主要生产商包括: MMS Medical Measurement Systems Schippers-Medizintechnik Tic Medizintechnik MEDICA EV.ServiceItalia Andromeda Aymed CellSonic Medical MCube Technology Mediwatch EMD Medical Technologies LABORIE NOVAmedtek

Foresight T echnology BestMedical Dantec Medical Medispec 按照不同产品类型,包括如下几个类别: 无线连接类型 电缆连接类型 按照不同应用,主要包括如下几个方面: 前列腺良性增生(+可选的膀胱测压) 前列腺炎 膀胱憩室 遗尿症(+膀胱测压术) 自发性尿失禁(+强制性膀胱测压) 压力性尿失禁(+膀胱测压) 膀胱神经肌肉功能障碍(必要时+膀胱测压)膀胱颈梗阻 创伤后尿道狭窄 重点关注如下几个地区: 北美 欧洲 日本 东南亚

气体流量计分类原理说明

空气质量流量计其实是有很多种的,但是根据每个种类的工作原理介绍大致可划分为几大类,空气流量计可真是应用广泛啊,仅仅是空气流量计就已经占据了流量计市场的主导地位,但是仅凭着空气流量计的使用还是远远不够的。 随着时代的不断发展,科学技术的不断创新,在流量计行领域中,就不得不要求技术人员的创造和更新能力了,需要紧跟时代的步伐,在空气流量计原有的基础上,不断的创新出新的跟随时代行业需要的流量计来。这样也大大的填补了行业的需求量。行业的需求量大,行业的需求力就更大。所以根据空气流量计的基本原理,创新了现如今的各种空气流量计。下面就是根据空气流量计的原理分类出的流量计。 叶片式空气流量计,https://www.360docs.net/doc/658973903.html,空气流量计的结构简单,可靠性高;但进气阻力大,响应较慢且体积较大。卡门旋涡式空气流量计,所谓卡门旋涡,是指在流体中放置一个圆柱状或三角状物体时,在这一物体的下游就会产生的两列旋转方向相反,并交替出现的旋涡。光学式卡门旋涡空气流量计,在产生卡门旋涡的过程中,旋涡发生器两侧的空气压力会发生变化,通过导孔作用在金属箔上,从而使其振动,发光二极管的光照在振动的金属箔上时,光敏三极管接收到的金属箔上的反射光是被旋涡调制的光,其输出经解调得到代表空气流量的频率信号。超声波式卡门旋涡空气流量计,当无空气流动时,电桥处于平衡状态,控制电路输出某一加热电流至热线电阻;当有空气流动时,由于的热量被空气吸收而变冷,其电阻值发生变化,电桥失去平衡,如果保持热线电阻与吸入空气的温差不变并为一定值,就必须增加流过热线电阻的电流。因此,热线电流就是空气质量流量的函数。热膜式空气流量计和靶式流量计,热膜式空气流量计的工作原理与热线式空气流量计类似,都是用惠斯登电桥工作的。所不同的是:热膜式不使用白金丝作为热线,而是将热线电阻、补偿电阻及桥路电阻用厚膜工艺制作在同一陶瓷基片上构

流量仪表的现状与发展趋势

《流量仪表的现状与发展趋势》 摘要:流量仪表是一种重要的计量仪表,广泛用应于现代化建设、国防及科研,对节约资源 保护环境起到至关重要的作用。本文从工农业生产和科研的实际应用出发,重点介绍了几种常用的流量仪表,重点介绍了各自的优缺点及应用范围。随着新技术、新材料的应用,分析了今后流量仪表的主流发展趋势及方向。 关键词:流量仪表;应用范围;发展趋势 近年来,随着科学技术及工业自动化水平的发展,科技人员不断改进现有的测量方法和运用数字化信号处理方法,提高了流量仪表的可靠性、稳定性、精准性。随着我国对节能环保的要求越严,流量仪表是一种重要的计量仪表,流量仪表应用会更加广泛,现就对流量仪表的应用现状发展趋势做如下论述。 1 流量仪表定义及种类 流量分为瞬时流量及累积流量,瞬时流量是指在单位时间内流过管道截面积流体的量,可分为体积流量及质量流量。累积流量是指一段时间内,流过管道截面积液体的总和。用来测量流量的仪表为流量仪表。就目前工业生产中应用情况看,检测方法多样,但还没有统一的分类,一般可分为体积流量计量、质量流量计量。 2 体积计量仪表 体积计量可分为速度式测量仪表、容积式测量仪表。速度式测量仪表又分为液体力学法、电学法、声学法、执学法、光学法等。容积式流量仪表有刮板、双转子等,速度式流量仪表有孔板、阿牛吧、涡街、涡轮、电磁等流量仪表,下面就目前国内工业生产中几种常用的流量仪表简单介绍如下: 2.1 孔板流量计 孔板流量计是差压式流量计。根据能量守恒定律和流动连续性方程,当充满管道的流体流经管道内的节流装置,流速将在节流件处流速增加,静压力降低,在节流件前后产生压力差(差压)。流体的流速愈大,在节流件前后产生的差压也愈大,因此通过测量差压来测量流体流过节流装置时的流量大小。

几种常见的流量测量方法 气体

流量计常用的几种测量方法简述点击次数:179 发布时间:2010-8-31 15:48:15 为了满足各种测量的需要,几百年来人们根据不同的测量原理,研究开发制造出了数十种不同类型的流量计,大致分为容积式、速度式、差压式、面积式、质量式等。各种类型的流量计量原理、结构不同既有独到之处又存在局限性。为达到较好的测量效果,需要针对不同的测量领域,不同的测量介质、不同的工作范围,选择不同种类、不同型号的流量计。工业计量中常用的几种气体流量计有: (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为:

式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=3.1794×10-6;c为流出系数;E为渐近速度系数;d 为工况下孔板内径,mm;FG为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 (2)速度式流量计

均速管流量计的现状与发展

均速管流量计的现状与发展 王力勇 (哈尔滨市质量技术监督局开发区技术检测服务中心,150090) 摘要:针对均速管流量计的总压及背压检测孔的数量和位置,检测杆的剖面形状等问题进行了讨论。详细介绍了均速管的几种结构形式,给出了使用流量测量的计算公式,分析了各种因素对测量精度的影响,最后对该产品的发展提出了一个构想。 关键词:流量测量均速管影响因素应用 均速管流量计的测量元件——均速管(国外称Annubar,直译阿牛巴),是基于早期皮托管测速原理发展起来的,是60年代后期开发的一种新型差压流量测量元件,并开始应用与我国的工业现场,70年代中期已有30余家厂家进行了研制生产。均速管的优点是;结构上较为简单(如图1所示),压力损失小,安装、拆卸方便,维护量小。 该流量计由于生产成本低,价格低廉,因此在市场较为畅销,在众多的流量仪表中占有了一席之地。特别是由于其压力损失小(与孔板相比较,仅为孔板的5%以下),大大减少了动力消耗,节能效果显著,这在能源紧张的今天,有着其特殊的意义。由于该流量计适应范围宽,长期稳定性好(如图2所示)近年来有了较大的发展,出现了几种结构形式不同的流量计。但因使用不当,在应用中产生了一些问题,使得客观要求与发展现状产生了很大的矛盾,许多人期望其应用问题能得到解决,为此人们做了大量的不懈努力,使得均速管流量计这一既古老而又年轻的流量计,在能源、环保等计量测试中得到了较为广泛的应用。 1 均速管流量传感器的测量原理 均速管流量传感器,由其结构示意图所知,它是一根沿直径插入管道中的中空金属杆,在迎向流体流动方向有成对的测压孔,一般说来是两对,但也有一对或多对的,其外形似笛。迎流面的多点测压孔测量的是总压,与全压管相连通,引出平均全压p1,背流面的中心处一般开有一只孔,与静压管相通,引出静压p2。均速管是利用测量流体的全压与静压之差来测量流速的。均速管的输出差压(△p)和流体平均速度(v),

节能仪表——均速管流量计

节能仪表——均速管流量计 毛新业 四川自控工程专业委员会 均速管流量计(国外称Annbar 、Torbar 、Probar 、verabar 、itabar ……等),问世已三十八年,名称不同,截面各异,但都是基于皮托管测速原理,以测管道中直线上几点流速来推算流量的一种插入式流量仪表。它具有结构简单,价格低廉,装、拆方便,压损小。从耗材少、运行费用低二方面来看都是一种节能仪表。在当前大力倡导建设节约型经济情况下,是一种值得推荐的流量仪表。 一、 基本原理(图一) 流量Q 是单位时间s 内通过管道某一截面A 的流体体积m 3(或质量kg ),即Q= m 3/s=m 2·m/s=A ·V 流量也可变换为管道截面A 与流速V 的乘积,但工业管道中的流速通常不是常数,只有桴截面划为许多单元面积Ai ,乘以通过Ai 的流速Vi ,即流量Q=∑=n i AiVi 1。但这种方法过于繁琐。幸好无论管道流速中流速分布 多么复杂,在较长的直管段(一般应为30倍直径)后,在流体的粘性作

用下,管内的流速分布将呈现对称于圆心的充分发展紊流。在这种情况,只需测直径方向上N 个点的流速,就可以准确地推算流量值。 采用皮托管测速原理,通过测流体的总静压,运用柏努利方程就可测量流体的流速值。均速管沿管道直径方向插入管道,流向有数对总压孔,由于沉速不等,所测总压也不相等,在高压腔内平均后,通过高压线,接入变送器高压端;背流向一侧有数对背压孔,所测背压(如处于位流各背压值应相等)在低压腔平均后,通过低压线接至变速器低压端,忽略一些影响不大的因素,均速管的流量计算公式可表示为 Q=AJO 2 〔ΔP/δ〕21……① 式中①Q 为流量(m 3/n );A 为系数取决于各参数的单位; P 为管道内很能够(m );ΔP ,平均后的高低压之差(Pa ); δ流体密度(kg/m 3)。 二、主要特点 1、结构简单、重量轻巧,总共仅10多个零件。 2、适应范围宽阔。可适用于多种流体(气、液、蒸汽);口径自25毫米至9米,压力上限可达40Mpa ;温度上限1000℃。

金属管转子流量计测量管报价单

可变面积流量计 一种全金属结构的浮子流量计 一种指示器类型:M9 电信号输出:4-20mA 四种测量部件材质:不锈钢,哈氏合金,钛材,PTFE 简述 H 系列流量计是适于测量液体、气体的全金属结构金属管浮子流量计。 相对应测量介质的某一流量,磁性浮子在测量管中对应一个浮子位置,这个浮子位置通过指示器中的磁钢耦合给指针,由刻度盘和指针读出相应的流量值。浮子流量计适用于垂直管道,介质低进上出的工艺流程。 坚固结构设计的H系列金属管浮子流量计可广泛应用于复杂,恶劣环境条件及各种介质条件的流量测量过程中。 特点 测量部分 ·坚固的全金属结构设计型浮子流量计。 ·采用独立、modular概念设计的测量管及指示器,更便于库存,维修和配件的更换。·可选择不锈钢哈氏合金、钛材。PTFE材质测量系统。 ·新型结构便于使用X射线进行焊缝的安全检查,低压力损失设计。 ·短行程、小型结构设计,仪表总高250mm。 ·新型磁铁耦合结构设计确保数据传输信号更加稳定。 ·保温或伴热夹套。 ·新型设计H系列流量计运行更加安全稳定可靠。 ·更适合于恶劣环境和腐蚀严重的介质,具有良好的抗热性和抗震性。 H 系列流量计 M9 指示器功能和特点: ·在指示器中采用一块耦合磁钢完成流量指示、电信号转换和为控制流量波动而设计的阻尼 功能,使仪表运行更加稳定、可靠。 ·采用模块式组合设计,可在现场快速的给仪表增加电信号输出、上下限开关、流量累计功 能各功能单元板为插装结构,具有更换部件简单、方便、定位准确的特点。解决了老型产 品由于各环节的人为因素而产生的故障以及至使仪表更换部件后精度降低的缺陷,使仪表 的可靠性得到很大提高。

有关文丘里流量计的几个小问题

有关文丘里流量计的几个小问题 请问:流量计性能测定实验中,1.孔流系数与那些因素有关?2.孔板、文丘里流量计安装时各应注意什么问题?3文丘里流量计和孔板流量计的流量系数不同的原因 答: 1孔流系数跟流体的流速\黏度和密度都有联系 2.对准位置、准确安装喉部 3.打开并开大转子流量计的流速实验中的方法更直接、更准确,这里提到的方法更直观! 请问:孔板流量计和文丘里流量计的流量系数比较?永久压降比较? 答:文丘里流量计高,原因与两者的构造有关,孔板流量计的流量系数主要取决于管路流动方式,面积比,测压方式,孔口形状,加工光洁度,孔板厚度以及管壁粗糙度。有一点要明确就是当雷诺数增大到一定程度时,流量系数只与孔口与管径的面积比有关,与其他因素无关。而孔板流量计的应用条件也在这一范围。由于流体流过孔板会因为流道扩大形成大量漩涡,因此阻力损失很大,所以流量系数小。一般在0.6~0.7之间而文丘里流量计的孔道是渐变的,逐渐缩小在逐渐扩大,不会形成漩涡,阻力损失小所以流量系数打,一般在0,98~0.99之间 请问:文丘里流量计的用途及实际意义 答:实际上就是差压测量就是检测元件不同罢了主要是精度高可以参考检测元件/文丘里管的测量选择请问:为什么文丘里流量计进口通道夹角大而出口通道夹角小 答:文丘里管,由收缩管路,颈部,扩散管路所组成,这个流量损失较小。 请问:文丘里流量计的流量系数受哪些因素影响?文丘里流量计水平或垂直放置对流量系数有影响吗?

答:看你检测什么物质密度大的话水平和着垂直安装就大不一样,这就属于安装问题了,文丘里用在重要的地方一般都会有温度压力补偿的,受影响不是很大可以忽略了

文丘里流量计实验

文丘里流量计实验(新) 一、实验目的和要求、 1、掌握文丘里流量计的原理。 2、学习用比压计测压差和用体积法测流量的实验技能。 3、利用量测到的收缩前后两断面1-1和2-2的测管水头差h ?,根据理论公式计算管道 流量,并与实测流量进行比较,从而对理论流量进行修正,得到流量计的流量系数 μ,即对文丘里流量计作出率定。 一、实验装置 1. 仪器装置简图 12 4567 321 8 9101112 1234 图一 文丘里流量计实验装置图 1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 文丘里实验管段 8. 测压计气阀 9. 测压计 10. 滑尺 11. 多管压差计 12. 实验流量调节阀

[说明] 1. 在文丘里流量计7的两个测量断面上, 分别有4个测压孔与相应的均压环连通, 经均压环均压后的断面压强,由气—水多管压差计9测量, 也可用电测仪测量。 2. 功能 (1) 训练使用文丘里管测量管道流量和采用气—水多管压差计测量压差的技术; (2) 率定流量计的流量系数μ, 供分析μ与雷诺数Re的相关性; (3) 可供实验分析文氏流量计的局部真空度, 以分析研究文氏空化管产生的水力条件与构造条件及其他多项定性、定量实验。 3. 技术特性 (1) 由可控硅无级调速器控制供水流量的自循环台式装置实验仪; (2) 恒压供水箱、文丘里管及实验管道采用丘明有机玻璃精制而成。文丘里管测压断面上设有多个测压点和均压环; (3) 配有由有机玻璃测压管精制而成的气 水多管压差计, 扩充了测压计实验内容; (4) 为扩充现代量测技术, 配有压差电测仪, 测量精度为0.01; (5) 供电电源: 220V、50HZ; 耗电功率:100W; (6) 流量: 供水流量0~300ml/s, 实验管道过流量0~200ml/s; (7) 实验仪专用实验台: 长×宽=150cm×55cm 。 二、安装使用说明: 1. 安装仪器拆箱以后, 按图检查各个部件是否完好, 并按装置图所示安装实验仪, 各测点与测压计各测管一一对应,并用连通管联接, 调速器及电源插座可固定在实验台侧壁或图示位置, 调速器及电源插座位置必须高于供水器顶; 2. 通电试验加水前先接上220V交流市电, 顺时针方向打开调速器旋钮, 若水泵启动自如, 调速灵活, 即为正常。请注意, 调速器旋钮逆时针转至关机前的临界位置, 水泵转速最快, 即出水流量最大; 3. 加水 (1) 供水器内加水加水前,需先把供水器及水箱等擦干净, 水质要求为洁净软水, 经过滤净化更佳,若水的硬度过大, 最好采用蒸馏水。加水量以使水位刚接近自循环供水器与回水管接口为宜,并检查供水器是否漏水。 (2) 多管压差计内加水做实验之前需对多管压差计内加水, 先打开气阀8, 在测管2、3内注水至h2=h3 ≈ 24.5cm, 并检查测压计管1与管2、管3与管4之间是否连通, 再检查管2、3之间底部,若有气泡, 也需排除。 4. 排气开启水泵供水, 待水箱溢流后, 来回开关实验流量调节阀数次, 待

常见流量计的种类及特点

常见流量计的种类及特点 测量流体流量的仪表统称为流量计或流量表.流量计是工业测量中重要的仪表之一.随着工业生产的发展,对流量测量的准确度和范围的要求越来越高,流量测量技术日新月异.为了适应各种用途,各种类型的流量计相继问世。目前已投入使用的流量计已超过100种。从不同的角度出发,流量计有不同的分类方法。常用的分类方法有两种,一是按流量计采用的测量原理进行归纳分类:二是按流量计的结构原理进行分类。 一、按测量原理分类 (1)力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。 (2)电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。 (3)声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。 (4)热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。 (5)光学原理:激光式、光电式等是属于此类原理的仪表。 (6)原于物理原理:核磁共振式、核幅射式等是属于此类原理的仪表. (7)其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。 二、按流量计结构原理分类 按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下几种类型: 1.容积式流量计 容积式流量计相当于一个标准容积的容器,它接连不断地对流动介质进行度量。流量越大,度量的次数越多,输出的频率越高。容积式流量计的原理比较简单,适于测量高粘度、低雷诺数的流体。根据回转体形状不同,目前生产的产品分:适于测量液体流量的椭圆齿轮流量计、腰轮流量计(罗茨流量计)、旋转活塞和刮板式流量计;适于测量气体流量的伺服式容积流量计、皮膜式和转简流量计等.2.叶轮式流量计 叶轮式流量计的工作原理是将叶轮置于被测流体中,受流体流动的冲击而旋转,以叶轮旋转的快慢来反映流量的大小。典型的叶轮式流量计是水表和涡轮流量计,其结构可以是机械传动输出式或电脉冲输出式。一般机械式传动输出的水表准确度较低,误差约±2%,但结构简单,造价低,国内已批量生产,并标准化、通用化和系列化。电脉冲信号输出的涡轮流量计的准确度较高,一般误差为±0.2%一0.5%。 3.差压式流量计(变压降式流量计) 差压式流量计由一次装置和二次装置组成.一次装置称流量测量元件,它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供二次装置进行流量显示。二次装置称显示仪表。它接收测量元件产生的差压信号,并将其转换为相应的流量进行显示.差压流量计的一次装置常为节流装置或动压测定装置(皮托管、均速管等)。二次装置为各种机械式、电子式、组合式差压计配以流量显示仪表.差压计的差压敏感元件多为弹性元件。由于差压和流量呈平方根关系,故流量显示仪表都配有开平方装置,以使流量刻度线性化。多数仪表还设有流量积算装置,以显示累积流量,以便经济核算。这种利用差压测量流量的方法历史悠久,比较成熟,世界各国一般都用在比较重要的场合,约占各种流量测量方式的70%。发电厂主蒸汽、给水、凝结水等的流量测量都采用这种表计。 4.变面积式流量计(等压降式流量计) 放在上大下小的锥形流道中的浮子受到自下而上流动的流体的作用力而移动。当此作用力与浮子的“显示重量”(浮子本身的重量减去它所受流体的浮力)相平衡时,俘子即静止。浮子静止的高度可作为流量大小的量度。由于流量计的通流截面积随浮子高度不同而异,而浮子稳定不动时上下部分的压力差相等,因此该型流量计称变面积式流量计或等压降式流量计。该式流量计的典型仪表是转子(浮子)流量计。 5.动量式流量计 利用测量流体的动量来反映流量大小的流量计称动量式流量计.由于流动流体的动量P与流体的密度

流量计国内外研究应用现状与发展趋势

信息技术在各行各业的广泛渗透,深刻地改变着经济和社会面貌。在过去的20 年间,信息技术广泛应用于环境保护的各个领域,环境信息已发展为一个复杂的多学科交叉的新学科[1 ] 。在环境领域,信息技术主要应用在环境质量监测与管理、污染源监控与管理、环境统计、环境评价、生态建设与管理、核安全与管理以及环境信息发布等业务中,为环境管理和辅助决策提供环境信息技术支持与服。环境信息化作为国民经济和社会信息化的重要组成部分,是环境保护工作的基础和关键支撑,它对提高环境与发展的综合决策能力、提升环境监管的现代化水平、加强政府的公共服务能力、构建资源节约型和环境友好型社会、实现环境保护的战略目标具有重要的作用。 1 发展现状 我国的环境信息化在“九五”以来得到了较快的发展,取得了明显的成效:初步建立了国家、省、市三级环境信息管理体系,配备了一批软、硬件设备,奠定了基础工作条件;开展了多项环境信息应用工作,提高了环保政务和业务工作的效率,积累了大量环境信息资源;为政府部门和社会公众提供了多种技术支持和信息服务,提高了行政效率,促进了政务公开;制定了一系列法规、标准,培养了一支专业人才队伍,保障了环境信息化的良性发展。同时,环境信 息资源和信息技术手段还能够为重大环境污染事故和生态灾难的应急响应提供必需的技术支持①。通过一系列国内及国外援助项目的开展,信息技术的发展取得了以下的成果:(1) 制度方面。国家环保总局信息中心已经发布了《环境信息化“九五”规划和2010 年远景目标》、《环境信息管理办法》(暂行) 、《国家环境信息“十五”指导意见》、《总局电子政务职责分工》、《国家环保总 局应用软件开发项目管理暂行办法》、《环境信息标准化手册》等环境信息文件。 (2) 硬件方面。应用亚洲开发银行援助、世行贷款B21 项目、世行贷款B21 扩项目、日本政府无偿援助等建成了总局信息中心、32 个省级环境信息中心和110 个城市环境信息中心,并配备了先进的计算机软、硬件和网络设备。 (3) 人员方面。依托日援二国研修项目,组织了环境信息中心,人员培训1 000 多人次,初步建立了一支具有较强业务能力和管理水平的人才队伍。 (4) 网络方面。已建成覆盖全国省级环保局和121 个城市环保局的卫星通信专网,连接至全国87个自动水质监测站,实现了总局与各省级环保局之间电子公文无纸化传输②。 2 信息技术在环境数据采集中的应用 环境数据包括环境元数据、环境法规与标准数据、环境文献与公报数据、环境质量数据、环境统计数据、环境背景数据、生态环境保护数据、生物多样性保护数据、辐射环境数据、其他环境管理相关数据等(社会经济信息及计划、规划等) 。而按照数据特征,环境数据可分为4 种形式:空间数据、属性数据、关系数据、时间数据[2 ] 。在环境业务中,环境数据的核心是环境质量监测信息和污染源数据两大部分[3 ] 。根据环境管理的需要,我国环保部门已设计出了一系列数据收集报表。环境数据的收集可分为手工操作和自动操作两种,自动操作一般与相关环境信息管理软件相对应,设计相应的基础数据收集报表和上报统计汇总表。 2. 1 环境质量监测数据的采集 我国环境监测发展相对完善,建立了一整套数据收集系统,主要包括自动监测和手工监测两种,并正随着信息技术的进步而逐步向智能化监测发展。环境质量自动监测的范围主要包括大气、水、噪声以及生物要素的监测等。目前全国环保系统共有各级环境监测站2 389 个,已初步形成了全国性的环境监测地面网络系统(见表1) 。 表1 环境监测地面网络系统 Table 1 Net systems of environmental monitoring 监测站类型数量/ 个

气体流量传感器选型介绍

气体流量传感器可能之前不是很了解,其实它也气体流量传感器的一种。气体检测仪所用的传感器是气体流量传感器的一种,气体流量传感器是一种将气体的成份、浓度等信息,有效转换为可以被人员、仪器仪表、计算机等利用的信息的装置。那么,我们应该如何更好地选择气体检流量传感器呢? 首先要流量传感器的线性范围气体流量传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。气体流量传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择气体流量传感器时,当气体流量传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何流量传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的气体流量传感器近似看作线性的,这会给测量带来极大的方便。然后再确定气体检测仪传感器的类型气体流量传感器的类型应根据测试气体对象与使用环境来综合考虑。在进行具体测量工作之前,我们首先要考虑可燃气体检测仪应采用何种原理的气体流量传感器,这需要综合考虑多方面的因素之后才能确定。 因为,即使是测量同一物理量,也有多种原理的气体流量传感器可供选用,哪一种原理的气体流量传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑。建议可以从气体检测仪的量程大小;信号的传递方法(有线或是非接触测量);被测位置对传感器体积要求;传感器产地(国产或进口);价格合适以及测量方式https://www.360docs.net/doc/658973903.html,(接触式或非接触式)等六个方面来选用何种类型的传感器。谨记着两点还是很重要的,至少能帮助你在选择气体流量传感器中起到一定的作用,希望能帮助即将要购买气体流量传感器的朋友们!!

文丘里流量计优缺点和直管段长度要求

文丘里流量计是什么工作原理?它是怎么选型,如何安装?主要应用哪些介质测量?文丘里流量计测量原理是以能量守恒定律——伯努力方程和流动连续性方程为基础的流量测量方法。内文丘里管由一圆形测量管和置入测量管内并与测量管同轴的特型芯体所构成。特型芯体的径向外表面具有与经典文丘里管内表面相似的几何廓形,并与测量管内表面之间构成一个异径环形过流缝隙。流体流经内文丘里管的节流过程同流体流经经典文丘里管、环形孔板的节流过程基本相似。内文丘里管的这种结构特点,使之在使用过程中不存在类似孔板节流件的锐缘磨蚀与积污问题,并能对节流前管内流体速度分布梯度及可能存在的各种非轴对称速度分布进行有效的流动调整(整流),从而实现了高精确度与高稳定性的流量测量。 文丘里流量计优点是什么?如果能完全按照ASME标准精确制造,测量精度也可以达到 0.5%, 但是国产文丘里由于其制造技术问题, 精度很难保证, 国内老资格的技术力量雄厚的开封仪表厂也只能保证4% 测量精度,该厂具有国家级大流量实验室,具有研究生产的整体技术队伍,其他一些近年来发展起来的仅仅具有机械加工能力的仪表厂,生产的文丘里测量精度更难保证。 对于超超临界发电的工况,这种喉管处的均压环在高温高压下使用是一个很危险的环节,不采用均压环,就不符合ASNE ISO5167标准,测量精度就无法保证,这是高压经典式文丘里制造中的一个矛盾。 文丘里流量计缺点是什么?喉管和进口/出口一样材质,流体对喉管的冲刷和磨损严重,无法保证长期测量精度。结构长度必须按ISO-5167规定制造, 否则就达不到所需精度, 由于ISO-5167对经典文丘里的严格结构规定, 使得它的流量测量范围最大/最小流量比很小, 一般在 3 – 5 之间. 很难满足流量

相关文档
最新文档