开关电源供电方式选择及元器件选用

开关电源供电方式选择及元器件选用
开关电源供电方式选择及元器件选用

1. 供电方式的选择

集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电质量,而且应用单台电源供电,当电源发生故障时可能导致系统瘫痪。分布式供电系统因供电单元靠近负载,改善了动态响应特性,供电质量好,传输损耗小,效率高,节约能源,可靠性高,容易组成N+1冗余供电系统,扩展功率也相对比较容易。所以采用分布式供电系统可以满足高可靠性设备的要求。

2. 电路拓扑的选择

开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激式、推挽式、半桥、全桥等八种拓扑。单端正激式、单端反激式、双单端正激式、推挽式的开关管的承压在两倍输入电压以上,如果按60%降额使用,则使开关管不易选型。在推挽和全桥拓扑中可能出现单向偏磁饱和,使开关管损坏,而半桥电路因为具有自动抗不平衡能力,所以就不会出现这个问题。双管正激式和半桥电路开关管的承压仅为电源的最大输入电压,即使按60%降额使用,选用开关管也比较容易。在高可靠性工程上一般选用这两类电路拓扑。

3. 控制策略的选择

在中小功率的电源中,电流型PWM控制是大量采用的方法,它较电压控制型有如下优点:逐周期电流限制,比电压型控制更快,不会因过流而使开关管损坏,大大减小过载与短路的保护;优良的电网电压调整率;迅捷的瞬态响应;环路稳定,易补偿;纹波比电压控制型小得多。生产实践表明电流控制型的50 W开关电源的输出纹波在25mV左右,远优于电压控制型。

硬开关技术因开关损耗的限制,开关频率一般在350kHz以下,软开关技术是应用谐振原理,使开关器件在零电压或零电流状态下通断,实现开关损耗为零,从而可将开关频率提高到兆赫级水平,这种应用软开关技术的变换器综合了PWM变换器和谐振变换器两者的优点,接近理想的特性,如低开关损耗、恒频控制、合适的储能元件尺寸、较宽的控制范围及负载范围,但是此项技术主要应用于大功率电源,中小功率电源中仍以PWM技术为主。

4 元器件的选用

因为元器件直接决定了电源的可靠性,所以元器件的选用非常重要。元器件的失效主要集中在以下四个方面:

(1)制造质量问题

质量问题造成的失效与工作应力无关。质量不合格的可以通过严格的检验加以剔除,在工程应用时应选用定点生产厂家的成熟产品,不允许使用没有经过认证的产品。

(2)元器件可靠性问题

元器件可靠性问题即基本失效率的问题,这是一种随机性质的失效,与质量问题的区别是元器件的失效率取决于工作应力水平。在一定的应力水平下,元器件的失效率会大大下降。为剔除不符合使用要求的元器件,包括电参数不合格、密封性能不合格、外观不合格、稳定性差、早期失效等,应进行筛选试验,这是一种非破坏性试验。通过筛选可使元器件失效率降低1~2个数量级,当然筛选试验代价(时间与费用)

很大,但综合维修、后勤保障、整架联试等还是合算的,研制周期也不会延长。电源设备主要元器件的筛选试验一般要求:

①电阻在室温下按技术条件进行100%测试,剔除不合格品。

②普通电容器在室温下按技术条件进行100%测试,剔除不合格品。

③接插件按技术条件抽样检测各种参数。

④半导体器件按以下程序进行筛选:

目检→初测→高温贮存→高低温冲击→电功率老化→高温测试→低温测试→常温测试

筛选结束后应计算剔除率Q

Q=(n / N)×100%

式中:N——受试样品总数;

n——被剔除的样品数;

如果Q超过标准规定的上限值,则本批元器件全部不准上机,并按有关规定处理。

在符合标准规定时,则将筛选合格的元器件打漆点标注,然后入专用库房供装机使用。

(3)设计问题

首先是恰当地选用合适的元器件:

①尽量选用硅半导体器件,少用或不用锗半导体器件。

②多采用集成电路,减少分立器件的数目。

③开关管选用MOSFET能简化驱动电路,减少损耗。

④输出整流管尽量采用具有软恢复特性的二极管。

⑤应选择金属封装、陶瓷封装、玻璃封装的器件。禁止选用塑料封装的器件。

⑥集成电路必须是一类品或者是符合MIL-M-38510、MIL-S-19500标准B-1以上质量等级的军品。

⑦设计时尽量少用继电器,确有必要时应选用接触良好的密封继电器。

⑧原则上不选用电位器,必须保留的应进行固封处理。

⑨吸收电容器与开关管和输出整流管的距离应当很近,因流过高频电流,故易升温,所以要求这些电容器具有高频低损耗和耐高温的特性。

在潮湿和盐雾环境下,铝电解电容会发生外壳腐蚀、容量漂移、漏电流增大等情况,所以在舰船和潮湿环境,最好不要用铝电解电容。由于受空间粒子轰击时,电解质会分解,所以铝电解电容也不适用于航天电子设备的电源中。

钽电解电容温度和频率特性较好,耐高低温,储存时间长,性能稳定可靠,但钽电解电容较重、容积比低、不耐反压、高压品种。

(>125V)较少、价格昂贵。

关于降额设计:电子元器件的基本失效率取决于工作应力(包括电、温度、振动、冲击、频率、速度、碰撞等)。除个别低应力失效的元器件外,其它均表现为工作应力越高,失效率越高的特性。为了使元器件的失效率降低,所以在电路设计时要进行降额设计。降额程度,除可靠性外还需考虑体积、重量、成本等因素。不同的元器件降额标准亦不同,实践表明,大部分电子元器件的基本失效率取决于电应力和温度,因而降额也主要是控制这两种应力,以下为开关电源常用元器件的降额系数:

①电阻的功率降额系数在0.1~0.5之间。

②二极管的功率降额系数在0.4以下,反向耐压在0.5以下。

③发光二极管

开关电源设计中的主要参数名称

开关电源设计中的主要参数名称 P O额定输出功率 η整机效率 Is 次级绕组电流 I PRI 初级绕组电流 I R初级绕组脉动电流I R=I p*K RP(比值关系) K RP初级绕组电流比例因素K RP=I R/I p Ip 初级绕组峰值电流 Ip=I R/K RP(比值关系) Ip=I AVG/(1-0.5K RP)*Dmax(数值) I RMS初级绕组有效值电流 Dmax 最大占空比 Dmax=U OR/U OR+U Imin-U DS(on)*100% U Imin最低直流电压(一般取90V) C XT初级绕组的分布电容 C D次级绕组的分布电容 C OSS输出电容值 U DS漏-源峰值脉冲 U OR初级绕组感应电压 L PO初级绕组漏感 L SO次级绕组漏感 I AVG输入电流平均值I AVG=P o/η*U Imin B M最大磁通密度B M=100*I P*L P/N P*S J δ磁芯气隙宽度δ=40ΠS J(N P2/1000L P-1/1000A L) M 铜线安全边距,三重绝缘线 M=0 I SP次级峰值电流I SP=I P*N P/N S I SRMS次级有效值电流 I RI输出滤波电容上的纹波电流 Dsm 次级导线最小直径(裸线) DSM 次级导线最大外径(带绝缘层) DSM=b-2M/Ns J 初级绕组的电流密度(一般值为4-10A/mm2) U(BR)S次级整流管最大反向峰值电压U(BR)S=Uo+Umax*Ns/Np U(BR)FB反馈级整流管最大反向峰值电压U(BR)FB=U FB+Umax*N F/N P Uo 输出额定电压 U FB反馈额定电压 N S输出次级绕组匝数 Ns=(Uo+U D)*N P*(1-Dam)/V in(min)*Dmax N F反馈绕组匝数N F=Ns*U FB+U F2/Uo+U F1 N P初级绕组匝数N P=Ns*U OR/Uo+U F1 ;N P=L P*I P/Ae*B U RI 输出纹波电压U RI=I SP*ro I RMS整流桥输入有效值电流I RMS=Po/η*umin*Cosφ I OM最大输出电流 ro 输出电容的等效串联电阻值(可查电容规格)

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

功率铁氧体磁芯 常用功率铁氧体材料牌号技术参数 EI型磁芯规格及参数

PQ型磁芯规格及参数 EE型磁芯规格及参数 EC、EER型磁芯规格及参数

1,磁芯向有效截面积:Ae 2,磁芯向有效磁路长度:le 3,相对幅值磁导率:μa 4,饱和磁通密度:Bs 1磁芯损耗:正弦波与矩形波比较 一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。对于高电阻率的磁性材料如类似铁氧体,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。材料中存在高的涡流损耗(如大 一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。但在元件存在铜损的情况下,这是不正确的。在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。举个例子,在 20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激

励磁芯损耗的两倍。例如,对于许多开关电源来说,具有矩形波激励磁芯的 5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。 2Q值曲线 所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。这些测试参数通常是用置于磁芯上的最适用的绕组完成的。对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。 对于钼坡莫合金磁粉芯同样是正确的。用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。3电感量、AL系数和磁导率 在正常情况下,磁芯制造厂商会发布电感器和滤波器磁芯的AL系数、电感量和磁导率等参数。这些AL的极限值建立在初始磁导率范围或者低磁通密度的基础上。对于测试AL系数,这是很重要的,测试AL系数是在低磁通密度下实施的。 某些质量管理引入检验部门,希望由他们用几匝绕组检查磁芯,并用不能控制频率或激励电压的数字电桥测试磁芯。几乎毫不例外,以几百高斯、若干

开关电源与线性电源的区别及用途

开关电源和线性电源的区别,各用在什么场合? 线性电源的调整管工作在放大状态,因而发热量大,效 率低(35%左右),需要加体积庞大的散热片,而且还需要同样 也是大体积的工频变压器,当要制作多组电压输出时变压器会 更庞大。开关电源的调整管工作在饱和和截至状态,因而发热 量小,效率高(75%以上)而且省掉了大体积的变压器。但开 关电源输出的直流上面会叠加较大的纹波(50mV at 5V output typical),在输出端并接稳压二极管可以改善,另外由于开关 管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁 珠加以改善。相对而言线性电源就没有以上缺陷,它的纹波可 以做的很小(5mV以下)。 对于电源效率和安装体积有要求的地方用开关电源为 佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电 检测)多选用线性电源。另外当电路中需要作隔离的时候现在 多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说 就是开关电源)。还有,开关电源中用到的高频变压器可能绕 制起来比较麻烦。 开关电源介绍 开关电源设计 1 电子产品,特别是军用稳压电源的设计是一个系统工程,不但要考虑电源本身参数 设计,还要考虑电气设计、电磁兼容设计、热设计、安全性设计、三防设计等方面。因为 任何方面那怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们应充分认识到电源 产品可靠性设计的重要性。 2 开关电源电气可靠性设计 2.1 供电方式的选择 集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电 质量,而且应用单台电源供电,当电源发生故障时可能导致系统瘫痪。分布式供电系统因 供电单元靠近负载,改善了动态响应特性,供电质量好,传输损耗小,效率高,节约能 源,可靠性高,容易组成N+1冗余供电系统,扩展功率也相对比较容易。所以采用分布式 供电系统可以满足高可靠性设备的要求。 2.2 电路拓扑的选择 开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激 式、推挽式、半桥、全桥等八种拓扑。单端正激式、单端反激式、双单端正激式、推挽式 的开关管的承压在两倍输入电压以上,如果按60%降额使用,则使开关管不易选型。在推 挽和全桥拓扑中可能出现单向偏磁饱和,使开关管损坏,而半桥电路因为具有自动抗不平 衡能力,所以就不会出现这个问题。双管正激式和半桥电路开关管的承压仅为电源的最大 输入电压,即使按60%降额使用,选用开关管也比较容易。在高可靠性工程上一般选用这 两类电路拓扑。 2.3 控制策略的选择 在中小功率的电源中,电流型PWM控制是大量采用的方法,它较电压控制型有如下优 点:逐周期电流限制,比电压型控制更快,不会因过流而使开关管损坏,大大减小过载与 短路的保护;优良的电网电压调整率;迅捷的瞬态响应;环路稳定,易补偿;纹波比电压 控制型小得多。生产实践表明电流控制型的50W开关电源的输出纹波在25mV左右,远优于电 压控制型。 硬开关技术因开关损耗的限制,开关频率一般在350kHz以下,软开关技术是应用谐振

电力系统接地分类

电力系统接地分类详解 电力系统接地分类详解 在电力系统中,接地是用来保护人身及电力、电子设备安全的重要措施。通常我们将接地分为工作接地、系统接地、防雷接地、保护接地,用他们来保护不同的对象,这几种接地形式从目的上来说是没有什么区别的,均是通过接地接地导体将过电压产生的过电流通过接地装置导入大地,从而实现保护的目的。现代工厂在接地上都要求形成一张严密的网,而所有的被保护对象都挂在这个安全的接地网上,但不同的接地都需要从接地装置处的等电位点连接。 对于防雷接地,主要是通过将雷电产生的雷击电流通过接地网这一有效途径引入大地,从而对建筑物起到保护作用。一般有两种避雷方式供选择,其一是避雷针接地,其二是采用法拉第笼方式接地。它们是两种不同的防雷模式,它们在防雷原理上有显著的区别。避雷针的原理是空中拦截闪电、使雷电通过自身放电,从而保护建筑物免受雷击,避雷针的保护范围是从地面算起的以避雷针高度为滚球半径的弧线下的面积,对于法拉第笼,它认为避雷针的范围很小,而且在避雷针保护的空间内仍有电磁感应作用,而且避雷针附近是强的电磁感应区,有很大的电位梯度,在它周围有陡的跨步电压存在,在这一范围内的人们有生命危险,鉴于种种观点,现在的防雷接地系统中法拉第笼占有重要地位。实验证明,一个封闭的金属壳体是全屏蔽的,在雷电流通过时,是沿着壳体的外表面流入大地,而在壳体的内部没有感应电动势及磁通,即雷电流没有对内部的设备产生干扰效应。而法拉第笼下部的环状接地环、等电位均压网也避免了人在此等电位环境中被雷击的危险。 采用保护接地是当前低压电力网中的一种行之有效的安全保护措施。通常有两种做法,即接地保护和接零保护。将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接是电气工作的一个重点,也就是我们通常说的接地。将电气设备和用电装置的金属外壳与系统零线相接叫做接零。由于电力系统中采用保护接地,是我们对用电设备、金属结构及电子等设备采取的接地保护措施,这样就可以避免电器设备漏电、线路破损或绝缘老化漏电等漏电事故造成

开关电源参数(精)

开关电源基本参数的概念及常见术语 一.描述输入电压影响输出电压的几个参数。 1.绝对稳压系数。 A.绝对稳压系数:表示负载不变时,稳压电源输出直流变化量△U0与输入电网变化量△Ui之比。既: K=△U0/△Ui。 B.相对稳压系数:表示负载不变时,稳压电源输出直流电压Uo的相对变化量△Uo与输出电网Ui的相对变化量△Ui之比。急: S=△Uo/Uo / △Ui/Ui 2. 电网调整率。 它表示输入电网电压由额定值变化+-10%时,稳压电源输出电压的相对变化量,有时也以绝对值表示。 3. 电压稳定度。 负载电流保持为额定范围内的任何值,输入电压在规定的范围内变化所引起的输出电压相对变化△Uo/Uo(百分值),称为稳压电源的电压稳定度。 二.负载对输出电压影响的几种指标形式。 1.负载调整率(也称电流调整率)。 在额定电网电压下,负载电流从零变化到最大时,输出电压的最大相对变

化量,常用百分数表示,有时也用绝对变化量表示。 2.输出电阻(也称等效内阻或内阻)。 在额定电网电压下,由于负载电流变化△IL引起输出电压变化△Uo,则输出电阻为 Ro=|△Uo/△I L| 欧。 三.纹波电压。 1.最大纹波电压。 在额定输出电压和负载电流下,输出电压的纹波(包括噪声)的绝对值的大小,通常以峰峰值或有效值表示。 2.纹波系数Y(%)。 在额定负载电流下,输出纹波电压的有效值Urms与输出直流电压Uo之比,既 y=Umrs/Uo x100% 3.纹波电压抑制比。 在规定的纹波频率(例如50HZ)下,输出电压中的纹波电压Ui~与输出电压中的纹波电压Uo~之比,即: 纹波电压抑制比=Ui~/Uo~ 。 注:噪声不同于纹波。纹波是出现在输出端子间的一种与输入频率和开关频率同步的成分,用峰-峰(peak to peak)值表示,一般在输出电压的0.5%以下;噪声是出现在输出端子间的纹波以外的一种高频成分,也用峰-峰(peak to peak)值表示,一般在输出电压的1%左右。纹波噪声是二者的合成,用峰-峰(peak to peak)值表示,一般在输出电压的2%以下。四.冲击电流。 冲击电流是指输入电压按规定时间间隔接通或断开时,输入电流达到稳定

电力系统接地讲解知识

电力系统的中性点接地有三种方式: 有效接地系统(又称大电流接地系统) 小电流接地系统(包含不接地和经消弧线圈接地) 经电阻接地系统(含小电阻、中电阻和高电阻) 大电流接地系统 用于110kV及以上系统及。该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。 作为220kV枢纽变电站的主变必须并列运行。其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV系统零序保护的方向性和稳定性。主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。 作为220kV负荷变电站的主变必须分列运行。此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。所有主变不能相220kV系统提供零序电流,110kV 侧零序阻抗稳定。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV侧中性点通过间隙接地。110kV侧中性点必须全部直接接地。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。所以主变110kV 侧中性点通过间隙接地,并且不再加装间隙保护。 0.4kV系统均采用大电流接地运行。对于Y/Y0接线的变压器,零序阻抗很大。虽然接入的负荷多为单相负荷,由于每个负荷较小,并不一定会造成三相负荷电流严重不一致(中性点电流小于额定电流的25%),不会造成三相电压严重不平衡。但当线路出现对地短路时,短路电流较小,往往不能使断路器(空气开关)跳开或熔断器熔断,致使事故扩大,许多情况下形成火灾。此时应在变压器中性点引线处加装过流保护,跳开高压侧断路器。显然这是比较复杂的。 使用△/Y0接线的变压器,可以克服这一缺点。但充油变压器的分接开关制作比较困难,尤

开关电源元器件选型

开关电源元器件选型 A:反激式变换器: 1.MOS管:Id=2Po/Vin; Vdss=1.5Vin(max) 2.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=8Vout 3.缺点:就是输出纹波较大,故不能做大功率(一般≦150W),所以输出电容的容量要大. 4.优点:输入电压范围较宽(一般可做到全电压范围90Vac-264Vac),电路简单. 5.最佳控制方法:应选择电流型IC幷采用电流型控制. B:正激式变换器: 6.MOS管:Id=1.5Po/Vin; Vdss=2Vin(max) 7.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=3Vout 8.缺点:成本上升,如要全电压得加PFC,电路稍比反激复杂. 9.优点:纹丝小,功率可做到0~200W. 10.最佳控制方法:应选择电流型IC幷采用电流型控制. C:推挽式变换器: 11.MOS管: Id=1.2Po/Vin; Vdss=2Vin(max) 12.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout 13.缺点: 成本上升,如要全电压得加PFC,电路稍复杂.不太合适离线式. 14.优点: 功率可做到100W~1000W.DC-DC用此电路很好! 15.最佳控制方法:应选择电流型IC幷采用电流型控制. D:半桥式变换器: 16.MOS管: Id=1.5Po/Vin; Vdss=Vin(max) 17.整流: Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout 18.缺点: 成本上升,如要全电压得加PFC,电路稍复杂. 19.优点: 功率可做到100W~500W. 20.最佳控制方法:应选择电流型IC幷采用电流型控制. E:全桥式变换器: 21.MOS管: Id=1.2Po/Vin; Vdss=Vin(max)

电力系统的接地形式(图示)

N = N eutral Conductor PE = P rotection- E arth Conductor PEN = P rotectitive- E arth- N eutral- Conductor T = T erre = Earthing I = I solation S = S eparated Neutral and Protective Conductor C = C ombined Neutral and Protective Conductor Abb. 6 TN-S-System Abb. 7 TN-C System Abb. 8 TN-C-S System Abb.9 TT System Abb. 10 IT System Network configuration Power systems Network configuration Network configurations are differed as per kind of – direct current, alternating current – “number of active conductors and the kind of earth connection” using the following characters: First letter: earthing of the current source (part 300, VDE 0100): T – direct earthing of a point I - insulation of all active parts of earth or connection of a point with the earth via an impedance. Second letter: earthing of elements of electrical machine: T – element is directly earthed, independent of the earthing of a point of a current source N – element is directly connected to the operating earth electrode (in networks of alternating voltage the earthed point is mostly the neutral point). Further letters: arrangement of neutral conductor and protective conductor in the TN-system: S – functions of neutral and protective conductor by separate conductors C – functions of neutral and protective conductor combined in one conductor (PEN). In TN-systems a point is directly earthed (operating earth electrode). The elements of the electrical machine are connected to this point via PE- or PEN-conductor. Three types of TN-systems are to be differed (part 300, VDE 0100): TN-S-system - Separated neutral and protective conductor in the entire network (diagram 6)TN-C-system - Functions of neutral and protective conductor are combined in the entire network in one conductor, the PEN- conductor (diagram 7).TN-C-S-system - In one part of the network the neutral and the protective conductor are combined (PEN- conductor) (diagram 8). In the TT-system a point is directly earthed (operating earth electrode). The elements of the electrical machine are connected with earth electrodes, that are separated from the operating earth electrode (diagram 9). The IT-system has no direct connection between active conductors and earthed parts. The elements of the electrical machine are earthed (diagram 10).

常用电源芯片及其参数

常用电源的电源稳压器件如下: 79L05 负5V稳压器 79L06 负6V稳压器 79L08 负8V稳压器 79L09 负9V稳压器 79L12 负12V稳压器 79L15 负15V稳压器 79L18 负18V稳压器 79L24 负24V稳压器 LM1575T-3.3 3.3V简易开关电源稳压器(1A) LM1575T-5.0 5V简易开关电源稳压器(1A) LM1575T-12 12V简易开关电源稳压器(1A) LM1575T-15 15V简易开关电源稳压器(1A) LM1575T-ADJ

简易开关电源稳压器(1A可调1.23 to 37) LM1575HVT-3.3 3.3V简易开关电源稳压器(1A) LM1575HVT-5.0 5V简易开关电源稳压器(1A) LM1575HVT-12 12V简易开关电源稳压器(1A) LM1575HVT-15 15V简易开关电源稳压器(1A) LM1575HVT-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2575T-3.3 3.3V简易开关电源稳压器(1A) LM2575T-5.0 5V简易开关电源稳压器(1A) LM2575T-12 12V简易开关电源稳压器(1A) LM2575T-15 15V简易开关电源稳压器(1A) LM2575T-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2575HVT-3.3 3.3V简易开关电源稳压器(1A) LM2575HVT-5.0 5V简易开关电源稳压器(1A) LM2575HVT-12 12V简易开关电源稳压器(1A)

LM2575HVT-15 15V简易开关电源稳压器(1A) LM2575HVT-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2576T-3.3 3.3V简易开关电源稳压器(3A) LM2576T-5.0 5.0V简易开关电源稳压器(3A) LM2576T-12 12V简易开关电源稳压器(3A) LM2576T-15 15V简易开关电源稳压器(3A) LM2576T-ADJ 简易开关电源稳压器(3A可调1.23V to 37V) LM2576HVT-3.3 3.3V简易开关电源稳压器(3A) LM2576HVT-5.0 5.0V简易开关电源稳压器(3A) LM2576HVT-12 12V简易开关电源稳压器(3A) LM2576HVT-15 15V简易开关电源稳压器(3A) LM2576HVT-ADJ 简易开关电源稳压器(3A可调1.23V to 37V) LM2930T-5.0 5.0V低压差稳压器

电力系统中性点接地方式

电力系统中性点接地方式简述 电力系统中性点是指星形连接的变压器或发电机的中性点。 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。 电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。 电力系统中性点接地方式主要是技术问题,但也是经济问题。在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。 简言之,电力系统的中性点接地方式是一个系统工程问题。 接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与大地作良好的电气连接称为接地。 根据接地的目的不同,分为工作接地和保护接地。 工作接地是指为运行需要而将电力系统或设备的某一点接地。如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。 保护接地是指为防止人身触电事故而将电气设备的某一点接地。如将电气设备的金属外壳接地、互感器二次线圈接地等。 接地方式主要有2种,即直接接地系统和不接地系统。 1.中性点直接接地系统

中性点直接接地系统——又称大电流系统;适于110kV以上的供电系统,380V以下低压系统。直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。 随着电力系统电压等级的增高和系统容量增大,设备绝缘费用所占比重也越来越大。中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。所以,110kV及以上系统均采用中性点直接接地方式。对于380V以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。 对于高压系统,如110kV以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受√ 3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资大大增加;另外110kV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在110kV以上供电系统,多采用中性点直接接地系统。 在低压380/220V系统中,有许多单相用电设备,如果中性点不接地运行,则发生单相接地后,有可能未接地的相电压会升高,因过电压烧毁家用电器,从安全性考虑,必须采用中性点直接接地系统,将中性点牢牢接地。 1kV以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 中性点直接接地系统的优点:发生单相接地时,其它两完好相对地电压不会升高,因此可降低绝缘费用,保证安全。

开关电源指标参数

开关电源指标参数 一.描述输入电压影响输出电压的几个指标形式。 绝对稳压系数。 A.绝对稳压系数:表示负载不变时,稳压电源输出直流变化量△U0与输入电网变化量△U i之比。既: K=△U0/△Ui。 B.相对稳压系数:表示负载不变时,稳压器输出直流电压Uo的相对变化量△Uo与输出电网Ui的相对变化量△Ui之比。即: S=△Uo/Uo / △Ui/Ui 电网调整率。 它表示输入电网电压由额定值变化+-10%时,稳压电源输出电压的相对变化量,有时也以绝对值表示。 电压稳定度。 负载电流保持为额定范围内的任何值,输入电压在规定的范围内变化所引起的输出电压相对变化△Uo/Uo(百分值),称为稳压器的电压稳定度。 二.负载对输出电压影响的几种指标形式。 负载调整率(也称电流调整率)。 在额定电网电压下,负载电流从零变化到最大时,输出电压的最大相对变化量,常用百分数表示,有时也用绝对变化量表示。 输出电阻(也称等效内阻或内阻)。没用 在额定电网电压下,由于负载电流变化△IL引起输出电压变化△Uo,则输出电阻为 Ro=|△Uo/△IL| 欧。 三.纹波电压的几个指标形式。 最大纹波电压。 在额定输出电压和负载电流下,输出电压的纹波(包括噪声)的绝对值的大小,通常以峰峰值或有效值表示。 纹波系数Y(%)。

在额定负载电流下,输出纹波电压的有效值Urms与输出直流电压Uo之比,既 y=Umrs/Uo x100% 纹波电压抑制比。 在规定的纹波频率(例如50HZ)下,输出电压中的纹波电压Ui~与输出电压中的纹波电压Uo~之比,即: 纹波电压抑制比=Ui~/Uo~ 。 这里声明一下:噪声不同于纹波。纹波是出现在输出端子间的一种与输入频率和开关频率同步的成分,用峰-峰(peak to peak)值表示,一般在输出电压的0.5%以下;噪声是出现在输出端子间的纹波以外的一种高频成分,也用峰-峰(peak to peak)值表示,一般在输出电压的1%左右。纹波噪声是二者的合成,用峰-峰(peak to peak)值表示,一般在输出电压的2%以下。 四.冲击电流。 冲击电流是指输入电压按规定时间间隔接通或断开时,输入电流达到稳定状态前所通过的最大瞬间电流。一般是20A——30A。 五.过流保护。 是一种电源负载保护功能,以避免发生包括输出端子上的短路在内的过负载输出电流对电源和负载的损坏。过流的给定值一般是额定电流的110%——130%。 六.过压保护。 是一种对端子间过大电压进行负载保护的功能。一般规定为输出电压的130%——150%。 七.输出欠压保护。 当输出电压在标准值以下时,检测输出电压下降或为保护负载及防止误操作而停止电源并发出报警信号,多为输出电压的80%——30%左右。 八.过热保护。 在电源内部发生异常或因使用不当而使电源温升超标时停止电源的工作并发出报警信号。

(完整word版)开关电源工作原理超详细解析

开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC 直流电(配图1和2中的“4”);此时得到的低压直流电依

然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”)配图1:标准的线性电源设计图 配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也

第二部分开关电源中磁元件

第二部分 开关电源中磁元件 第五章 变换器中磁芯的工作要求 在功率变换中,应用了多种磁性元件:如脉冲、功率变压器,交、直流滤波电感,交、直流互感器,EMC 滤波电感以及谐振和缓冲吸收电感等。但就磁芯工作状态主要分为四种,其代表性功率电路—Buck 变换器滤波电感、正激、推挽变压器和磁放大器中磁元件磁芯就属于这四种工作状态. 5.1 Ⅰ类工作状态-Buck 变换器滤波电感磁芯 图5.1(a)所示为输出与输入共地的Buck 变换器的基本电路。输出由R 1和R 2取样,与基准U r 比较、误差放大,然后与三角波比较,输出PWM 信号,去控制功率开关S 的导通时间。假设电路进入稳态,U o 为常数,L 为线性电感。开关S 闭合时,输入电压U i 与输出电压U o 之差加到电感L 上(图5.1(b)),续流二极管D 截止,电感中电流线性增长(图(d)),直至开关打开前,电感存储能量。当开关打开时,电感中电流趋向减少,电感产生一个反向感应电势,试图维持原电流流通方向,迫使二极管D 导通,将电感中的能量传输到输出电容和负载,电感放出能量,电感电流线性下降。电感电流增加量(ΔI =(U i - U o )T on /L )应当等于减少量(U o T of /L ),由此得到U o =T on U i /T =DU i 。 通过改变功率开关的占空度D ,就可以控制每个周期导通期间存储在电感中的能量,从而控制了变换器的输出电压。 图 5.1(d)中,电感电流在整个周期内流通(可以过零或反向),电感这种状态称为电流连续状态。电感电流的平均值,即纹波的中心值等于输出电流I o 。当输出电流下降时,电感电流的变化率没有改变,斜坡的中心值在下降。当输出电流达到变化量的一半时,斜坡的起始端达到零(图5.1(d)中虚线三角波)。这种工作状态称为电感电流临界连续。 如果再继续减少负载电流,即增大负载电阻,输出电压将要增加。负反馈电路使得功率开关导通时间减少,以保持输出电压稳定。虽然电流变化率不变,电流变化量减少。因此,在下一个导通时间到来之前电感电流已下降到 零。电感电流开始断续(图5.2)。此时,为了保持输出电压 稳定,占空度随负载电流变化很大。 在电感电流断续前,一直保持U o =DU i (D =T on /T -占空度)。由于功率开关导通压降和线圈电阻压降随输出电流减 少,导通时间轻微地改变。进入断续以后,U o =DU i 不再成立。 U (b) i (c) t i L (φo (d) 图 5.1 基本Buck 变换器及其波形图 U i 图5.2 电感电流断续波形

常用电源芯片及其全参数

常用电源的电源稳压器件如下:79L05 负5V稳压器 79L06 负6V稳压器 79L08 负8V稳压器 79L09 负9V稳压器 79L12 负12V稳压器 79L15 负15V稳压器 79L18 负18V稳压器

79L24 负24V稳压器 LM1575T-3.3 3.3V简易开关电源稳压器(1A) LM1575T-5.0 5V简易开关电源稳压器(1A) LM1575T-12 12V简易开关电源稳压器(1A) LM1575T-15 15V简易开关电源稳压器(1A) LM1575T-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM1575HVT-3.3 3.3V简易开关电源稳压器(1A) LM1575HVT-5.0 5V简易开关电源稳压器(1A)

LM1575HVT-12 12V简易开关电源稳压器(1A) LM1575HVT-15 15V简易开关电源稳压器(1A) LM1575HVT-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2575T-3.3 3.3V简易开关电源稳压器(1A) LM2575T-5.0 5V简易开关电源稳压器(1A) LM2575T-12 12V简易开关电源稳压器(1A) LM2575T-15 15V简易开关电源稳压器(1A) LM2575T-ADJ 简易开关电源稳压器(1A可调1.23 to 37)

LM2575HVT-3.3 3.3V简易开关电源稳压器(1A) LM2575HVT-5.0 5V简易开关电源稳压器(1A) LM2575HVT-12 12V简易开关电源稳压器(1A) LM2575HVT-15 15V简易开关电源稳压器(1A) LM2575HVT-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2576T-3.3 3.3V简易开关电源稳压器(3A) LM2576T-5.0 5.0V简易开关电源稳压器(3A) LM2576T-12 12V简易开关电源稳压器(3A)

开关电源原理图各元件功能详解

电源原理图--每个元器件的功能详解! FS1: 由变压器计算得到Iin值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻): 电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用5Ω-10Ω热敏,若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap):

Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G 所以使用Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ1/4W)。LF1(Common Choke): EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温升可能较高。 BD1(整流二极管):

电力系统接地分类详解及其特点

电力系统接地分类详解及其特点 在电力系统中,接地是用来保护人身及电力、电子设备安全的重要措施。通常我们将接地分为工作接地、系统接地、防雷接地、保护接地,用他们来保护不同的对象,这几种接地形式从目的上来说是没有什么区别的,均是通过接地接地导体将过电压产生的过电流通过接地装置导入大地,从而实现保护的目的。现代工厂在接地上都要求形成一张严密的网,而所有的被保护对象都挂在这个安全的接地网上,但不同的接地都需要从接地装置处的等电位点连接。 对于防雷接地,主要是通过将雷电产生的雷击电流通过接地网这一有效途径引入大地,从而对建筑物起到保护作用。一般有两种避雷方式供选择,其一是避雷针接地,其二是采用法拉第笼方式接地。它们是两种不同的防雷模式,它们在防雷原理上有显著的区别。避雷针的原理是空中拦截闪电、使雷电通过自身放电,从而保护建筑物免受雷击,避雷针的保护范围是从地面算起的以避雷针高度为滚球半径的弧线下的面积,对于法拉第笼,它认为避雷针的范围很小,而且在避雷针保护的空间内仍有电磁感应作用,而且避雷针附近是强的电磁感应区,有很大的电位梯度,在它周围有陡的跨步电压存在,在这一范围内的人们有生命危险,鉴于种种观点,现在的防雷接地系统中法拉第笼占有重要地位。实验证明,一个封闭的金属壳体是全屏蔽的,在雷电流通过时,是沿着壳体的外表面流入大地,而在壳体的内部没有感应电动势及磁通,即雷电流没有对内部的设备产生干扰效应。而法拉第笼下部的环状接地环、等电位均压网也避免了人在此等电位环境中被雷击的危险。 采用保护接地是当前低压电力网中的一种行之有效的安全保护措施。通常有两种做法,即接地保护和接零保护。将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接是电气工作的一个重点,也就是我们通常说的接地。将电气设备和用电装置的金属外壳与系统零线相接叫做接零。由于电力系统中采用保护接地,是我们对用电设备、金属结构及电子等设备采取的接地保护措施,这样就可以避免电器设备漏电、线路破损或绝缘老化漏电等漏电事故造成的伤害。通过接地导体将可能产生的线路漏电、设备漏电及电磁感应、静电感应等产生的过电压通过接地回路导入大地,而避免设备等的损坏及保证人生的安全。有了接地保护,可以将漏电电流迅速导入地下,而实现此目的就是要求所有的用电设备、钢结构及电子、仪表设备都要与接地网可靠连接,简单而言,在电力系统中,接地和接零的目的,一是为了电气设备的正常工作,例如工作性接地;二是为了人身和设备安全,如保护性接地和接零。虽然就接地的性质来说,还有重复接地,防雷接地和静电屏蔽接地等,但其作用都不外是上述两种。而针对不同的供电系统,这些接地也有不同的选择。两种不同的保护方式使用的客观环境又不同,如果选择不当,不仅会影响对设备及人身的保护性能,还会影响电网的供电可靠性。对于不同供电方式所要求的接地系统也有区别,采取的保护措施也不同。 保护接地中的接零保护与接地保护有几个方面的不同。一是保护原理不同。接地保护的基本原理是限制漏电设备对地的泄露电流,使其不超过某一安全范围,一旦超过某一整定值保护器就能自动切断电源;接零保护的原理是借助接零线路,使设备在绝缘损坏后碰壳形成单相金属性短路时,利用短路电流促使线路上的保护装置迅速动作。二是

相关文档
最新文档