夫琅禾费圆孔衍射光强分布公式的两种简明推导

夫琅禾费圆孔衍射光强分布公式的两种简明推导
夫琅禾费圆孔衍射光强分布公式的两种简明推导

测定夫琅禾费衍射实验

测定单缝衍射得光强分布 【教学目得】 1.观察单缝衍射现象,加深对衍射理论得理解。 2.会用光电元件测量单缝衍射得相对光强分布,掌握其分布规律。 3.学会用衍射法测量微小量。 【教学重点】 1.夫琅禾费衍射理论 2.夫琅禾费单缝衍射装置 3.用光电元件测量单缝衍射得相对光强分布,衍射法测量微小量 【教学难点】 夫琅禾费单缝衍射光路及光强分布规律 【课程讲授】 提问:1、缝宽得变化对衍射条纹有什么影响? 2、夫琅与费衍射应符合什么条件? 一、实验原理 光得衍射现象就是光得波动性得重要表现。根据光源及观察衍射图象得屏幕(衍射屏)到产生衍射得障碍物得距离不同,分为菲涅耳衍射与夫琅禾费衍射两种,前者就是光源与衍射屏到衍射物得距离为有限远时得衍射,即所谓近场衍射;后者则为无限远时得衍射,即所谓远场衍射。要实现夫琅禾费衍射,必须保证光源至单缝得距离与单缝到衍射屏得距离均为无限远(或相当于无限远),即要求照射到单缝上得入射光、衍射光都为平行光,屏应放到相当远处,在实验中只用两个透镜即可达到此要求。实验光路如图1所示, 图1夫琅禾费单缝衍射光路图 与狭缝E垂直得衍射光束会聚于屏上P0处,就是中央明纹得中心,光强最大,设为I0,与光

轴方向成Ф角得衍射光束会聚于屏上PA处,P A得光强由计算可得: 式中,b为狭缝得宽度,为单色光得波长,当时,光强最大,称为主极大,主极大得强度决定于光强得强度与缝得宽度。 当,即: 时,出现暗条纹。 除了主极大之外,两相邻暗纹之间都有一个次极大,由数学计算可得出现这些次极大得位置在=±1、43π,±2、46π,±3、47π,…,这些次极大得相对光强I/I0依次为0、047,0、017,0、008,… 图2夫琅禾费衍射得光强分布 夫琅禾费衍射得光强分布如图2所示。 图3 夫琅禾费单缝衍射得简化装置 用氦氖激光器作光源,则由于激光束得方向性好,能量集中,且缝得宽度b一般很小,这样就可以不用透镜L1,若观察屏(接受器)距离狭缝也较远(即D远大于b)则透镜L2也可以不用,这样夫琅禾费单缝衍射装置就简化为图3,这时, 由上二式可得 二、实验装置

泊松分布的概念及表和查表方法

目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质 命名原因 泊松分布实例

泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例

圆的计算有关公式

圆的计算有关公式1、同一个圆中半径与直径的关系。(1)半径是直径的一半。 1d 用字母表示:r= 2 (2)直径是半径的2倍。 用字母表示:d=2r 2、圆的周长的计算有关公式。 (1)圆的周长=圆周率×直径。 用字母表示:c=兀d (2)圆的周长=圆周率×半径×2。 用字母表示:c=2兀r (3)圆的半径=圆的周长÷圆周率÷2。 用字母表示:r=c÷兀÷2 (4)圆的直径=圆的周长÷圆周率。 用字母表示:d=c÷兀 3、半圆的周长的计算有关公式。 (1)半圆的周长=圆周率×直径÷2+直径。 用字母表示:c=兀×d÷2+d (2)半圆的周长=圆周率×半径+半径×2。 用字母表示:c=兀×r+2r (3)圆的半径=半圆的周长÷(圆周率+2)。 用字母表示:c=c÷(兀+2)

(4)圆的直径=半圆的周长÷(圆周率+2)×2。 用字母表示:c=c÷(兀+2) ×2。 n+半径×2。 4、扇形的周长=圆的周长× 360 n+2r 用字母表示:c=2兀r× 360 (n表示圆心角的度数) 5、环形的周长=大圆的周长+小圆的周长。 用字母表示:c=2兀R+2兀r=2兀×(R+r) 6、圆的面积=圆周率×半径的平方。 用字母表示:S=兀r2 7、半圆的面积=圆周率×半径的平方÷2。 用字母表示:S=兀r2÷2 n。 8、扇形的面积=圆周率×半径的平方× 360 n 用字母表示: S=兀r2× 360 (n表示圆心角的度数) 9、环形的面积=大圆的面积-小圆的面积。 用字母表示:S =2兀R2-2兀r2=2兀×(R2-r2) 10、时钟先问题。 (1)一昼夜=一天=24小时 (2) 时针一昼夜转2圈 (3)分针一昼夜转24圈 (4)秒针一昼夜转1440圈

夫琅禾费双缝衍射的原理

双缝衍射原理 图1双缝衍射装置 Fig.1. Double-slit diffraction equipment 双缝衍射的实验装置如图1所示:一光栅有N 条缝,透光的缝宽度为a ,不透光的挡板宽度为b ,入射光波为λ。 双缝间距为d=a+b ,d 称为光栅常数。如图,在θ方向,相邻两条缝之间的 光程差为δ=dsin θ,相位差为λ θπλδπ?sin 22d ==?,假设每一个单缝引起的光波振幅为'A ?,根据多个等幅同频振动的合振幅公式:()()2/sin 2/sin ?????=n A A ,所有缝在θ方向产生的振幅为()()v Nv A N A A sin sin 2/sin 2/sin '' '?=???=??,其中λθπsin d v =。汇聚点的光强为2'0)sin sin (v Nv I I =,其中2''0A I ?=。当N=1,可知:'0I 是单缝引起的光强。根据单缝衍射的公式20)sin (u u I I =,可得光栅衍射的光强公式20)sin (u u I I =2)sin sin (v Nv ,其中u=λθπsin a 。 (1)当N=1时,光强公式变为单缝衍射的公式20)sin (u u I I =,因此2)sin (u u 称为单缝衍射因子。 (2)当N=2时,根据光栅衍射公式可得:v u u I I 220cos 4)sin ( =[2]。 3双缝衍射的强度分布和谱线图 仍利用MATLAB 软件,根据双缝衍射的算法,输入程序,得到的衍射强度分布和谱线图。下面改变参数对双缝衍射进行讨论分析。 3.2.1改变缝宽a 观察双缝衍射图样变化

夫琅禾费衍射实验要求

夫琅禾费衍射的研究 实验仪器 半导体激光器、缝、细丝、光电元件、光屏、微动读数装置、微电流计 预习思考题 1、什么是衍射?菲涅耳衍射与夫琅禾费衍射有什么区别? 2、实验中如何调节光源、衍射物和光屏等高共轴?如何满足夫琅禾费衍射条件? 3、实验中如何选择光电流检流计的量程? 实验内容 一. 定性观察单缝的夫琅禾费衍射图案,记录图案的特征 1、观察单缝的衍射图案,记录图案特征。 2、观察并记录衍射图案随缝宽的变化规律。 3、改变缝到观察屏的距离,观察并记录条纹的变化情况。 二. 测量单缝衍射的光强分布曲线 1.记录狭缝零点误差。 2.选择一个缝宽,调节光路使衍射花纹清晰,对称,中央主极大宽度1cm左右,并使光电流显示最大。从中央最大向一侧测到三级极小。要求至少测20个数据。 注意:(1)缝与接收器间距应满足远场衍射条件。 (2)微电流计选择适当的档位。 (3)不要错过每一级的最亮点与最暗点。 (4)测量过程中接收器要保持只向一个方向移动,避免空转。 (5)注意同时记录光电流值和相应的位置。 3.测量缝到屏的距离。 4.从中央最大向另一侧测量,重复上述测量步骤。 5.记录光源波长λ。 6.测量缝宽: 方法(选一种): (1) 直接读数。 (2) 用透镜成像法测量,提供钠灯,f=10cm凸透镜一个,测微目镜,自行设计光路。 三. 测量细丝的直径

用衍射的方法测量细丝的直径。 注意:避免激光直接照射探测器。 四. 数据处理(课后) 单缝衍射: 1.以sinθ为横座标,I/I0为纵座标绘制曲线。 2.利用从光强分布曲线获得的数据计算缝宽,与实际的缝宽相比较,并分析误差。 3.验证各级次极大值与中央主极大值的关系I/I0=0.047,0.017…,实验结果与此有何差距?请分析产生差距的原因。 细丝直径: 1.以sinθ为横座标,I/I0为纵座标绘制曲线。 2.利用从光强分布曲线获得的数据计算细丝直径。 注意事项 1、实验过程中按规定操作注意仪器的安全。 2、实验中调光路原则:等高共轴;先粗调,后微调。 课后问题 1、 你还能利用什么光学原理来测量细丝直径? 2、(选做)查阅资料并结合实验中衍射现象,分析总结巴俾涅(babinet)原理。

概率论与数理统计课程报告:泊松分布及其在实际中的应用

泊松分布及其在实际中的应用 摘要:本文从泊松分布的定义和基本性质出发,举例讨论了泊松分布在实际中的重要应用。 关键字:泊松分布;应用;运筹学;分子生物学;核衰变 泊松分布是法国数学家泊松于1837年引入的,是概率论中的几大重要分布之一。作为一种常见的离散型随机变量的分布,其在实际中有着非常广泛的应用。 1泊松分布的定义及基本知识 1.1定义: (1)若随机变量X 的分布列为 ), ?=>= =-,2,1,0(0,! )(k k e k X P k λλλ 则称X 服从参数为λ的泊松分布,并用记号X~P(λ)表示。 (2)泊松流: 随机质点流:随机现象中源源不断出现的随机质点构成的序列。 若质点流具有平稳性、无后效性、普通性, 则称该质点流为泊松事件流(泊松流)。 例如某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数等这些事件都可以看作泊松流。 1.2有关泊松分布的一些性质 (1)满足分布列的两个性质:P(X=k)≥0(k=0,1,2,…), 且有 1! ! )(0 =?====-∞ =-∞=∞ =-∑∑∑ λλλ λ λλe e k e k e k X P k k k o k k . (2)若随机变量X 服从参数为λ的泊松分布,则X 的期望和方差分别为:E (X)=λ; D(X)=λ. (3)以n ,p 为参数的二项分布,当n →∞,p →0时,使得np=λ保持为正常数,则 λλ--→ -e k p p C k k n k k n ! ) 1(对于k=0,1,2,…一致成立。 由如上定理的条件λ=np 知,当n 很大时,p 很小时,有下面的近似公式 λλ--→ -=e k p p C k P k k n k k n n ! ) 1()( 2泊松分布的应用 对于试验成功概率很小而试验次数很多的随机过程, 都可以很自然的应用于泊松分布的理论。在泊松分布中的概率表达式只含一个参数λ,减少了对参数的确定与修改工作量, 模型构建比较简单, 具有很重要的实际意义。 以下具体举例说明泊松分布在实际中的重要应用。 (1)泊松分布在经济生活中的应用: 泊松分布是经济生活中的一种非常重要的分布形式,尤其是经常被运用在运筹学研究中的一个分布模型。如物料订单的规划,道路交通信号灯的设计,生产计划的安排,海港发

正确理解 泊松分布 通俗解释

很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在1876 年由贝尔发明,一台电话由几个部分构成……”(泊松分布在1876 年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。比如在一段时间t(比如 1 个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200 人),而应该符合某种随机规律:假如在 1 个小时内来200 个学生的概率是10%,来180 个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 这当然只是形象化的理解什么是泊松分布,若要公式化定义,那就是:若随机变量X 只取非负整数值0,1,2,..., 且其概率分布服 从则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差。生活中,当一个随机事件,例如来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从

任意三角形外接圆半径、内切圆半径的求法及通用公式

一、任意三角形外接圆半径 设三角形各边边长分别为a,b,c 外接圆半径为R ,(如右图所示) 则βαβαβαsin sin cos cos 2)cos(2 22-=-+= +ab c b a (余弦定理) 而R b R b 22cos ==α,R b R 4sin 22 - = α R a R a 22cos ==β,R a R 4sin 2 2 - = β 即有:=-+ab c b a 2222R a R R b R R a R b 442222 22 - ? --? 即有:2 22222222) 4)(4(R a R b R ab ab c b a ---= -+ 所以:)4)(4()( 222222 222 a R b R ab c b a R ab --=-+- 即有:2222242 2224 2 2 2 2 2 )(416)( 4)(4)(b a R b a R ab c b a R c b a R ab ++-=-++-+- 所以:])( 4[2 2222 2 ab c b a R c -+-=,即:])(4[2222222222c b a b a R c b a -+-= 所以:) )()()((a c b b c a c b a c b a abc R -+-+-+++= 而三角形面积: ))()()((4a c b b c a c b a c b a S -+-+-+++= (海伦公式) 所以,有:S abc R 4= ※ 另一求法,可用正弦定理,即:R A a 2sin =,而bc a c b A 2cos 222-+= 所以: 2 222222 2222)(4) 2(12) (cos 12sin 2a c b c b abc bc a c b a A a A a R -+-= -+-= -==

夫琅禾费单缝衍射

§16.2 单缝和圆孔的夫琅禾费衍射 §16.2.1 单缝的夫琅禾费衍射 ( 1 ) 单缝衍射的实验装置和现象 夫琅禾费衍射是平行光的衍射,在实验中可借助于两个透镜来实现。位于物方焦面上的点光源经透镜L1后成为一束平行光,照射在开有一条狭缝的衍射屏上。衍射屏开口处的波前向各方向发出子波或衍射光线,方向相同的衍射光线经透镜L2后会聚在象方焦面上的同一点,各个方向的衍射光线在屏幕上形成了衍射图样,它在与狭缝垂直的方向上扩展开来。衍射图样的中心是一个很亮的亮斑,两侧对称地分布着一系列强度较弱的亮斑,中央亮斑的宽度为其他亮斑的两倍,且它们都随狭缝宽度的减小而加宽。如果用与狭缝平行的线光源代替点光源,则在接收屏幕上将会看到一组平行于狭缝的衍射条纹。 图16 - 4 单缝的夫琅禾费衍射 ( 2 ) 单缝衍射的光强分布公式 考虑点光源照明时的单缝夫琅禾费衍射。取z轴沿光轴,y轴沿狭缝的走向,x轴与狭缝垂直。因为入射光仅在x方向受到限制,衍射只发生在x - z平面内,因此具体分析可在该平面图中进行。按惠更斯 菲涅耳原理,我们可以把单

缝内的波前AB分割为许多等宽的窄条,它们是振幅相等的相干子波源,朝各个方向发出子波。由于接收屏幕位于透镜L2的象方焦面上,因此角度θ相同的衍射光线将会聚于屏幕上同一点进行相干叠加。 图16 - 5 衍射矢量图 设入射光与光轴Oz平行,则在波面AB上无相位差。为求单缝上、下边缘A和B到点的衍射光线间的光程差?L和相位差δ,自A点引这组平行的衍射光线的垂线AN,于是就是所要求的光程差。设缝宽为b,则有 (16.4) (16.5) 矢量图解法:用小矢量代表波前每一窄条对点处振动的贡献,由A点作一系列等长的小矢量,首尾相接,逐个转过相同的小角度,最后到达B点,总共转过的角度就是单缝上、下边缘到点的衍射光线间的相位差δ. 若取波前每一窄条的面积,则由这些小矢量连成的折线将化为圆弧,其圆心角2α = δ. 由于整个缝宽AB内的波前在点处产生的合振幅等于弦长,而在的点处的合振幅A0等于弧长,故有 ,

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

泊松过程与泊松分布的基本知识

泊松过程与泊松分布的基本知识泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。 泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这

么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理: 这个定理是可以证明的,Fn(t)是分布函数,就是说:在t时刻,更新函数值就是在这个时刻,n取遍所有值的分布之和。 那么是否可以这样理解,更新过程和泊松过程的区别就是更新间隔序列不同,那么如果已知了更新间隔序列的概率密度函数,就可以求解该过程的更新函数了,详细的推导就不写了。扔结论出来:对间隔序列概率密度函数做拉氏变换得到Lf(s),然后求 Lm(s)=Lf(s)/s(1-Lf(s)),再对Lm(s)进行逆变换,就得到了m(t),这就是更新函数。

3二项分布、泊松分布与泊松逼近

二项分布、泊松分布与泊松逼近 雅各布·伯努利与二项分布公式 雅各布·伯努利(Jacob Bernoulli,1654—1705)来自数学史上的传奇家族—瑞士巴塞尔的伯努利家族,该家族的三代成员中产生了8位数学家,在17世纪和18世纪微积分理论及应用的发展中占有领先地位,雅各布·伯努利是其家族第一代数学家中的第一位,他与弟弟约翰·伯努利(Johann Bernoulli,1667—1748)、侄子丹尼尔·伯努利(Daniel Bernoulli,1700—1782)在数学史上享有声誉。 家族简介 在科学史上,父子科学家、兄弟科学家并不鲜见,然而,在一个家族跨世纪的几代人中,众多父子兄弟都是科学家的较为罕见,其中,瑞士的伯努利(也译作贝努力、伯努利)家族最为突出。 伯努利家族3代人中产生了8位科学家,出类拔萃的至少有3位;而在他们一代又一 代的众多子孙中,至少有一半相继成为杰出人物。伯努利家族的后裔有不少于120位被人们系统地追溯过,他们在数学、科学、技术、工程乃至法律、管理、文学、艺术等方面享有名望,有的甚至声名显赫。最不可思议的是这个家族中有两代人,他们中的大多数数学家,并非有意选择数学为职业,然而却忘情地沉溺于数学之中,有人调侃他们就像酒鬼碰到了烈酒。 老尼古拉·伯努利(Nicolaus Bernoulli,公元1623~1708年)生于巴塞尔,受过良好教育,曾在当地政府和司法部门任高级职务。他有3个有成就的儿子。其中长子雅各布(Jocob,公元1654~1705年)和第三个儿子约翰(Johann,公元1667~1748年)成为著名的数学家,第二个儿子小尼古拉(Nicolaus I,公元1662~1716年)在成为彼得堡科学院数学界的一员之前,是伯尔尼的第一个法律学教授。 雅各布·伯努利

概率统计论 浅谈泊松分布

浅谈泊松分布 班级:XXX 姓名:XXX 学号:XXX

浅谈泊松分布当一个随机事件,以固定的平均瞬时速率λ

二项概率的泊松逼近 如果∞→n ,0→p 使得λ=np 保持为正常数,则 λλ--→-e k p p C k k n k k n !)1( 对k = 0,1,2,…一致地成立。

2.1泊松分布使用范围 泊松分布主要用于描述在单位时间(空间)中稀有事件的发生数. 即需满足以下四个条件: 1. 给定区域内的特定事件产生的次数,可以是根据时间,长度,面积来定义; 2. 各段相等区域内的特定事件产生的概率是一样的; 3. 各区域内,事件发生的概率是相互独立的;

4. 当给定区域变得非常小时,两次以上事件发生的概率趋向于0。 2.2泊松分布的性质 1. 泊松分布的均数与方差相等,即m =2σ 2.泊松分布的可加性 如果1x ,2x ,3x …k x 相互独立,且它们分别服从以1λ,2λ,3λ…k λ为参数的泊松分布,则k X X X X T ++++= 321也服从泊松分布,其参数为k λλλλ++++ 321。 3.泊松分布的应用 )0(P 是未产生二体的菌的存在概率,实际上其值的5%与采用2/05.0m J 照射时的大肠杆菌uvrA -株,recA -株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因

组有一个二体就是致死量,因此)1(P ,)2(P ……就意味着全部死亡的概率。 3.2泊松分布在医学统计上的应用 在遗传学上,计算遗传图距的基本方法是建立在重组率基础上的,根据重组率的大小作出有关基因间的距离,绘制线性基因图;可是当研究的两个基因间的距离相对较远,在它们之间可能发生双交换、三交换、四交换甚至更高数目的交换,而形成的配子总有一半是非重组型的。若简单的把重组率看作交换率,显然交换率降低了,图距也随之缩小。这里可以用泊松分布原理来描述减数分裂过程中染色体上某区段交换的分布。在图距计算中,x 表示交换数,m 表示对总样本来说每进行一次减数分裂两基因 间的平均交换数,而基因间不发生交换的概率为m m e e m P --==! 0)0(0 ,基因间至少发生一次交换的概率为m e P P --=-=1)0(1。由此可计算两基因间的交换率和重组率。进而可更科学的作出遗传图。 3.3 泊松分布在交通运输上的应用 道路是行驶各种车辆的通道。为了给编制交通建设规划提供可靠的依据和保证道路上的车能安全而有效地通行, 道路工作者必须对道路上的车流进行实地调查和统计分析以便掌握车流的变化规律。数理统计方法是对交通流分布进行研究的有效而实际可行的方法。通常把在单位时间内通过道路上某一地点的车辆叫做交通流。对于时间间隔极短,并非是高密度的交通流的分布状态, 它常常是服从“概率论” 中的“ 泊松分布” 规律的。 如用简单例子表示,取通过某一地点车辆的时间作为时间数轴, 在数轴上划出给定时间间隔和该时间间隔内通过的车辆数目,譬如, 以20秒的时间间隔的数轴为例, 在20~0秒内,一辆车也没有通过, 在40~20秒间隔内,有二辆车通过, 在60~40秒间隔内, 有一辆车通过, 等等。这样在实地进行大量观测就可以的到某一时间间隔内的随机来车数目和该时间间隔内出现该车辆数的次数, 从而按泊松分布公式求算在给定时间间隔内在某一地点通过γ辆车的概率)(γP 。 参考文献 1. 戴维 M. 莱文等.《以EXCEL 为决策工具的商务统计》.机械工业出版社,2009 2.庄军、林奇英《泊松分布在生物学中的应用》.激光生物学报.2007年第16卷第5期. 3.薛珊荣 《“泊松分布”在交通工程中的应用》.湖南大学学报.1995年第8卷第2期.

泊松过程

泊松过程 泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。

泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的 频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理:

测定夫琅禾费衍射实验

测定单缝衍射的光强分布 【教学目的】 1.观察单缝衍射现象,加深对衍射理论的理解。 2.会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律。 3.学会用衍射法测量微小量。 【教学重点】 1.夫琅禾费衍射理论 2.夫琅禾费单缝衍射装置 3.用光电元件测量单缝衍射的相对光强分布,衍射法测量微小量 【教学难点】 夫琅禾费单缝衍射光路及光强分布规律 【课程讲授】 提问:1. 缝宽的变化对衍射条纹有什么影响 2. 夫琅和费衍射应符合什么条件 一、实验原理 光的衍射现象是光的波动性的重要表现。根据光源及观察衍射图象的屏幕(衍射屏)到产生衍射的障碍物的距离不同,分为菲涅耳衍射和夫琅禾费衍射两种,前者是光源和衍射屏到衍射物的距离为有限远时的衍射,即所谓近场衍射;后者则为无限远时的衍射,即所谓远场衍射。要实现夫琅禾费衍射,必须保证光源至单缝的距离和单缝到衍射屏的距离均为无限远(或相当于无限远),即要求照射到单缝上的入射光、衍射光都为平行光,屏应放到相当远处,在实验中只用两个透镜即可达到此要求。实验光路如图1所示,

图1 夫琅禾费单缝衍射光路图 与狭缝E 垂直的衍射光束会聚于屏上P 0处,是中央明纹的中心,光强最大,设为I 0,与光轴方向成Ф角的衍射光束会聚于屏上P A 处,P A 的光强由计算可得: 式中,b 为狭缝的宽度,λ为单色光的波长,当0=β时,光强最大,称为主极大,主 极大的强度决定于光强的强度和缝的宽度。 当π βk =,即: 时,出现暗条纹。 除了主极大之外,两相邻暗纹之间都有一个次极大,由数学计算可得出现这些次极大的位置在β=±π,±π,±π,…,这些次极大的相对光强I/I 0依次为,,,… 图2 夫琅禾费衍射的光强分布 220sin ββI I A =)sin (λ φπβb =b K λφ=sin ) ,,,???±±±=321(K

夫琅禾费衍射现象的观察和分析

夫琅禾费衍射现象的观察和分析1、单缝夫琅和费衍射现象的观察与分析 狭缝在垂直方向狭缝在水平方向 衍射 图样 特点所成图像的方向与狭缝的方向相互垂直,出现明暗相间的条纹,其中中央零级亮条纹的宽度最宽、亮 度最大,从中央往两边,其它亮条纹的亮度依次减 小所成图像的方向与狭缝的方向相互垂直,出现明暗相间的条纹,其中中央零级亮条纹的宽度最宽、亮度最大,从中央往两边,其它亮条纹的亮度依次减小 测量狭缝宽度(λ=632.8nm)狭缝到 衍射图样的距离 L(mm) 零级亮斑 的宽度 2x k(mm) θ ? ( d λ θ 2 = ?) 缝宽d(mm) (计算结果) x k L d λ = 缝宽d(结 果测量) 零级亮纹图样变化特点 缝宽变化(从小到大)600.0 20.5 0.03230.04 0.10mm 随着狭缝宽度的逐渐增大,零级亮纹 的宽度、角宽度在逐渐减小 600.0 6.9 0.01170.11 0.20mm 677.8 2.2 0.00370.35 0.30mm 677.8 1.5 0.00250.52 0.40mm 狭缝在垂直和水平方向 衍射图样特点1、所成图像的方向与狭缝的方向相互垂直,出现明暗相间的条纹,其中中央零级亮条纹的宽度最宽、 亮度最大,从中央往两边,其它亮条纹的亮度依次减小。 2、随着狭缝宽度的逐渐增大,零级亮纹的宽度、角宽度在逐渐减小。

2、圆孔夫琅禾费衍射现象的观察与分析 衍射图样的特点 出现明暗相间的圆环,其中央为亮度最强的亮圆,从中央圆环依次往外,亮圆环的亮 度逐渐减小 测量圆孔直径 狭缝到衍射图样 的距离L(mm) 零级亮圆 的直径 d(mm) θ ? L d = ?θ 直径D(计算结果) θ λ ? =22 .1 D 零级亮纹图样变化特点 改变圆孔直径1058.6 1.6 0.015 0.00112 随着圆孔直径的逐渐增 大,中央零级亮圆环的 直径、角宽度在逐渐减 小 1058.6 2.9 0.027 0.00268 812.5 4.2 0.052 0.00359 765.8 6.9 0.090 0.00788

二项分布、泊松分布和正态分布的区别及联系

二项分布、泊松分布和正态分布的区别及联系 二项分布、泊松分布和正态分布的区别及联系?被浏览8,9732 个回答猴子微信公众号:猴子聊人物之前你已经了解概率的基础知识(如果还不知道概率能干啥,在生活中有哪些应用的例子,可以看我之前的《投资赚钱与概率》)。 今天我们来聊聊几种特殊的概率分布。这个知识目前来看,还没有人令我满意的答案,因为其他人多数是在举数学推导公式。我这个人是最讨厌数学公式的,但是这并不妨碍我用统计概率思维做很多事情。相比熟悉公式,我更想知道学的这个知识能用到什么地方。可惜,还没有人讲清楚。今天,就让我来当回雷锋吧。 首先,你想到的问题肯定是:1. 什么是概率分布?2. 概率分布能当饭吃吗?学了对我有啥用?好了,我们先看下:什么是概率分布? 1. 什么是概率分布?要明白概率分布,你需要知道先两个东东:1)数据有哪些类型2)什么是分布数据类型(统计学里也叫随机变量)有两种。第1种是离散数据。离散数据根据名称很好理解,就是数据的取值是不连续的。例如掷硬币就是一个典型的离散数据,因为抛硬币的就2种数值(也就是2种结果,要么是正面,要么是反面)。你可以把离散数据想象成一块一块垫脚石,你可以从一个数值调到另一个数

值,同时每个数值之间都有明确的间隔。 第2种是连续数据。连续数据正好相反,它能取任意的数值。例如时间就是一个典型的连续数据1.25分钟、1.251分钟,1.2512分钟,它能无限分割。连续数据就像一条平滑的、连绵不断的道路,你可以沿着这条道路一直走下去。 什么是分布呢?数据在统计图中的形状,叫做它的分布。 其实我们生活中也会聊到各种分布。比如下面不同季节男人的目光分布.。 各位老铁,来一波美女,看看你的目光停在哪个分布的地方。美女也看了,现在该专注学习了吧。现在,我们已经知道了两件事情:1)数据类型(也叫随机变量)有2种:离散数据类型(例如抛硬币的结果),连续数据类型(例如时间)2)分布:数据在统计图中的形状现在我们来看看什么是概率。概率分布就是将上面两个东东(数据类型+分布)组合起来的一种表现手段:概率分布就是在统计图中表示概率,横轴是数据的值,纵轴是横轴上对应数据值的概率。很显然的,根据数据类型的不同,概率分布分为两种:离散概率分布,连续概率分布。那么,问题就来了。为什么你要关心数据类型呢?因为数据类型会影响求概率的方法。对于离散概率分布,我们关心的是取得一个特定数值的概率。例如抛硬币正面向上的概率为:p(x=正面)=1/2而对于连续概率分布来说,我们无法给出每一个数值的概率,因为我们不可能列举每一

泊松分布下的Erlang C公式

泊松分布下的Erlang C 公式

目录 1 泊松分布下的Erlang C 公式 (4) 1.1 Erlang C 公式 (4) 1.2 性能指标 (4) 1.3 Erlang C公式与Erlang B公式的比较 (6) 附录A 泊松分布下Erlang C 公式的推导 (7)

图目录 图A-1 系统状态转移图 (8)

表目录 表A-1 各种方式发生的概率 (7)

1 泊松分布下的Erlang C 公式 1.1 Erlang C 公式 排队等待模型有两个基本假设: 1 用户数远远大于提供的信道数,相对于信道数来说,可以认为用户数为无穷大。 2 没有被处理的用户呼叫进入排队队列中等待,直到被处理。 在满足以上两个基本假设的情况下,认为用户呼叫到达是泊松分布,用户呼叫离开也是泊松分布。排队等待模型分两种情况:其一是队列长度有限的情况,此时阻塞率就是队列全满时的概率,另一种情况是队列长度无限的情况,此时没有阻塞率,其性能指标代之以等待队列长,总队列长,等待时间,逗留时间等参数。 在队列长度有限的情况下,当提供C 个信道,队列长度为N 时,设用户呼叫平均到达率为λ,平均用户呼叫持续时长为T ,T /1=μ,)/(μλρC =。则在某一时刻队列中有n 个用户的概率为: ∑-=---+=1 01 -1C n 0]1C!C ! [P C n N C n n C ρρρρ 0n n P !P ρn C n = n=C 当队列长度无限时,其概率为: ∑-=-+=1 01 -C C n 0]1C!C ! [P C n n n C ρρρ 0n n P !P ρn C n = n=C 1.2 性能指标 在队列长度有限的情况下,其性能指标如下: 其阻塞率为: 0N N P ! P B ρC C c == 其平均等待队列长度为:

基于Matlab的夫琅禾费衍射光学仿真

基于Matlab的夫琅禾费衍射光学仿真 摘要计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。计算机仿真早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。 关键词:计算机仿真夫琅禾费衍射Matlab Fraunhofer Diffraction Optical Simulation Based on Matlab Abstract The computer simulation technology is based on a variety of disciplines and theoretical, with the computer and the corresponding software tools, we can analyze the virtual experimentation and solve the problem of a comprehensive technology. Computer simulation of early known as the Monte Carlo method, is a random problem solved using the method of random number test. Key words:Computer simulation Fraunhofer diffraction Matlab 一、引言

计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。计算机仿真早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。根据仿真过程中所采用计算机类型的不同,计算机仿真大致经历了模拟机仿真、模拟-数字混合机仿真和数字机仿真三个大的阶段。20世纪50年代计算机仿真主要采用模拟机;60年代后串行处理数字机逐渐应用到仿真之中。到了70年代模拟-数字混合机曾一度应用于飞行仿真、卫星仿真和核反应堆仿真等众多高技术研究领域;80年代后由于并行处理技术的发展,数字机才最终成为计算机仿真的主流。现在,计算机仿真技术已经在机械制造、航空航天、交通运输、船舶工程、经济管理、工程建设、军事模拟以及医疗卫生等领域得到了广泛的应用。 计算机仿真的三个基本活动: 1. 数学模型建立:实际上是一个模型辩识的过程。所建模型常常是忽略了一些次要因素的简化模型。 2. 仿真模型建立:即是设计一种算法,以使系统模型能被计算机接受并能在计算机上运行。显然,由于在算法设计上存在着误差,所以仿真模型对于实际系统将是一个二次简化模型。 3. 仿真实验:即是对模型的运算。需要设计一个合理的、服务于系统研究的仿真软件。 二、本文的主要工作 本文主要使用matlab语言进行光学实验仿真,通过Matlab软

相关文档
最新文档