船用螺旋桨推进器探讨

船用螺旋桨推进器探讨
船用螺旋桨推进器探讨

船用螺旋桨推进器探讨

一,船用推进器的发展历程。

船舶推进器的种类很多,最古老的要算篙了,它可撑着船前进。后来又发明了桨和橹,它们一直沿用至今。随后是利用风帆作为推进工具,出现了多种形式的帆船。随着机器在船上的应用,就出现了明轮推进器。19世纪初出现了螺旋桨推进器。为了证明螺旋桨的优越性, 英国海军组织了一场有趣比赛:把动力相当的“响尾蛇号”螺旋桨轮船和“爱里克托号”明轮进行了竞赛。两艘船的船尾用粗缆绳系起来,让它们各朝相反的方向驶去。“响尾蛇号”的螺旋桨飞快地旋转,“爱里克托号”的明轮猛烈地向后拨水。先是互不相让,但过了一会儿,“响尾蛇号”就把“爱里克托号”拖走了。这场比赛证明了螺旋桨的优越性。从此,螺旋桨轮船就取代了明轮。

二,螺旋桨的基本构造与在船舶中的应用基本知识。

螺旋桨俗称车叶,由若干桨叶所组成。桨叶的数目通常为三叶、四叶或五叶,各叶片之间相隔的角度相等。螺旋桨通常装在船的尾部,螺旋桨与艉轴的连接部分称为毂,桨叶就固定在毂上。有船尾向船首看时,所看到的螺旋桨桨叶的一面称为叶面(压力面),另一面称为叶背(吸力面)。桨叶的外端为叶梢,而与毂的连接处称为叶根。螺旋桨旋转时叶梢的圆形轨迹为梢圆,此圆称为螺旋桨桨盘,直径称为螺旋桨直径,其面积称为盘面积。

螺旋桨正车旋转时,有船尾向船首看所见到的旋转方向为顺时针方向的称为右旋桨,反之为左旋桨。双桨船的螺旋桨装在船尾二侧,正常旋转时,若其上都向着船中线转动的称为内旋桨,反之为外旋桨。螺旋桨直径的大小往往受到船舶吃水的限制。一般来说,螺旋桨直径愈大转速愈低,其效率愈高。螺旋桨与船的尾框要有良好的配合,避免叶尖露出水面而影响效率。螺旋桨船体间隙要适当,以避免引起严重的振动。

三,船用螺旋桨的工作原理。

螺旋桨旋转时,把水往后推。根据力的作用与反作用的原理,水给螺旋桨以反作用力,这就是推力,推船前进。螺旋桨的运动情况同螺钉的运动情况极为相似。把螺钉旋转一圈,它就在螺帽中向前推进一段距离,这段距离称为螺距。螺旋桨的桨叶叶面(压力面)通常是螺旋面的一部分,就像螺钉的螺纹的一部分那样,不过螺旋桨是在水中运动的,水取代的螺帽的地位。

四,船用螺旋桨的有关几何参数。

桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。

直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。

螺距:它是桨叶角的另一种表示方法。各种意义的螺矩与桨叶角的关系。

实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相似。随实度增加拉力系数和功率系数增大。

桨叶角(β):桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。习惯上以70%直径处桨叶角值为该桨桨叶角的名称值。

五,船用螺旋桨的效率问题。

船舶主机产生的动力经过主轴传递到达艉部,要有传递的能量损失,所以有一个传递效率的问题,同时推进器本身也有一个效率问题。把这些损失综合起来,就是个总效率问题,也就是说机器功率要比推船前进的有效功率大得多,可用下式表示:p1=p2/p3,

式中:

p2——有效功率;

P3——机器功率;

P1——推进系数,它是各种效率相乘的综合之称;p1数值愈大,表示船的推进性能愈好。

船舶推进器是将主机发出的功率转化为推船前进的推力装置。从上面分析可见,为改善船舶的快速性,除应具备良好的船型以降低航行时的阻力外,还必须配以性能良好、效率较高的推进器,这样才能收到较好的效果。为了增大效率,可以在螺旋桨的外面套上一个截面为机翼形状的圆形套筒(称为导管),导管的外径一头较大,另一头较小,其最小内径比螺旋桨的直径稍大。导管的作用是造成一个有利于螺旋桨工作的流畅。这种就叫做龙叶导管螺旋桨。

水气喷旋式螺旋桨是装于船舶舰艇上的螺旋桨结构的改进。在螺旋桨主体上装有3~9片桨叶,螺旋桨主体装在主轴上,主轴是双层空心轴,中心是通气道,与桨叶背面的喷气口相连通,包在中心通气道外围的是圆环形通水道,与喷水口相连通。

优点是减小阻力,增加轴向推力,可以节约能耗,提高航速。这种螺旋桨很好的提高了效率。

螺旋桨设计计算说明书.

某沿海单桨散货船螺旋桨设计计算说明书 姓名: XXX 班级:XXX 学号:XXX 联系方式:XXX 日期:XXX

1.已知船体的主要参数 船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米 由模型试验提供的船体有效马力曲线数据如下: 航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 4045 2.主机参数 型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.98 3.相关推进因子 伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0 船身效率 0777.111=--=w t H η 4.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算: 项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn 9.373 10.094 10.815 11.536 Bp=NP D 0.5/V A 2.5 42.34 35.18 29.60 25.19

Bp 6.51 5.93 5.44 5.02 MAU 4-40 δ75.82 70.11 64.99 60.75 P/D 0.640 0.667 0.694 0.720 ηO0.5576 0.5828 0.6055 0.6260 P TE =P D ·η H ·η O hp 2862.09 2991.44 3107.95 3213.18 MAU 4-55 δ74.35 68.27 63.57 59.33 P/D 0.686 0.713 0.741 0.770 ηO0.5414 0.5672 0.5909 0.6112 P TE =P D ·η H ·η O hp 2778.94 2911.36 3043.28 3137.21 MAU 4-70 δ73.79 67.79 63.07 58.70 P/D 0.693 0.723 0.754 0.786 ηO0.5209 0.5456 0.5643 0.5828 P TE=P D ·η H ·η O hp 2673.71 2800.49 2891.86 2991.44 据上表的计算结果可绘制PT E、δ、P/D及η O 对V的曲线,如下图所示。

螺旋桨课程设计

螺旋桨图谱课程设计天津大学仁爱学院 姓名:陈旭东 学号:6010207038 专业:船舶与海洋工程 班级:2班 日期:2013.6.30

螺旋桨图谱课程设计 一.已知船体的主要参数 船 型:双机双桨多用途船 总 长: L=150.00m 设计水线长: WL L =144.00m 垂线 间长: PP L =141.00m 型 深: H=11.00m 设计 吃水: T=5.50m 型 宽: B=22.00m 方形 系数: B C =0.84 菱形 系数: P C =0.849 横剖面系数: M C =0.69 排水 量: ?=14000.00t 尾轴距基线距离: P Z =2.00m 二.主机参数 额定功率: MCR=1714h 额定转速: n=775r/min 齿轮箱减速比: i=5 旋向: 右旋 齿轮箱效率: G η=0.97 三.推进因子的确定 伴流分数 ω=0.248 ;推力减额分数 ; t=0.196 相对旋转效率 R η=1.00 ;船身效率 ;H η=11t ω --=1.0691 四.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备为10% ,轴系效率S η=0.97 ,螺旋桨转速N=n/i=155r/min 螺旋桨敞水收到马力:D P = 1714 * 0.9 * S η*R η*G η =1714 * 0.9 * 0.97*1.00*0.97 =1451.43 (hp) 根据MAU4-40、MAU4-55、MAU4-70的P B δ-图谱列表计算如下:

项目 单位 数值 假定航速V kn 11 12 13 A V =(1-ω)V kn 8.27 9.02 9.78 0.5 2.5/P D A B NP V = 30.024 24.166 19.742 P B 5.479 4.916 4.443 MAU4-40 δ 65.4 59.732 54.377 P/D 0.692 0.728 0.764 0η 0.613 0.632 0.66 TE P =2D P ×H η×0η hp 1902.4 1961.38 2048.28 MAU4-55 δ 64 58.2 53.535 P/D 0.738 0.778 0.80 0η 0.588 0.614 0.642 TE P =2D P ×H η×0η hp 1824.83 1905.61 1992.41 MAU4-70 δ 63.3 57.4 52.8 P/D 0.751 0.796 0.842 0η 0.565 0.582 0.607 TE P =2D P ×H η×0η hp 1753.45 1806.21 1883.79 根据上表中的计算结果可以绘制TE P 、δ、P/D 及0η对V 的曲线,如图1所示。

船用螺旋桨的设计关键分析

船用螺旋桨的设计关键分析 船、机、桨系统中,船体是能量的需求者,主机是能量的发生器,螺旋桨是能量转换装置,三者之间是相互紧密联系的,但同时又要遵从各自的变化特性。 1.螺旋桨 民用船使用的图谱桨,一般以荷兰的B型桨和日本的AU桨为主。AU桨为等螺距桨、叶切面为机翼型;B型桨根部叶切面为机翼型、梢部为弓形,除四叶桨0.6R至叶根处为线性变螺距外,其余均为等螺距,桨叶有15°的后倾。为便于设计方便,由.KT、KQ——J敞水性征曲线图转换为BP一δ图谱。 桨与船体各自在水中运动时,都会形成一个水流场。水流场与桨的敞水工作性能和船的阻力性能密切相关。当桨在船后运动时,2个原本独立的水流场必然会相互作用、相互影响。船体对螺旋桨的影响体现在2个方面:(1)伴流。由于船尾部螺旋桨桨盘处因水的粘性等因素作用,形成一股向前方向的伴流,使得螺旋桨的进速小于船速。(2)伴流的不均匀性。船后桨在整个桨盘面上的进速不等(在实用上可取相对旋转效率为1)。 2.螺旋桨对船体的影响 由于螺旋桨对水流的抽吸作用,造成桨盘处的水流加速,由伯努利定律可知,同一根流线上,水质点速度加快,必然会导致压力下降,从而造成船的粘压阻力增加。也就是桨产生的推一部分用于克服船体产生的附加阻力。 如果用伴流分数ω表征伴流与船速的比值,用推力减额t表征船体附加阻力与船体自身阻力的比值。那么,敞水桨与船后桨的差别就在于一个船身效率(1一t)/(1一ω)从中可以看出,伴流分数ω越大、推力减额t越小,则船身效率越高。 从螺旋桨图谱可以看出,横坐标的参数为√BP或BP。BP称为收到功率系数(或称为载荷系数),其值为:BP=NPD0.5 /VA2.5式中:N为螺旋桨转速;PD为螺旋桨敞水收到功率;VA为螺旋桨进速。 BP值越小,对应的螺旋桨敞水效率越高;反之,则螺旋桨效率越低。从个体因素来讲,N值和PD0.5 /VA2.5值越小,BP 值就越小。PD和VA参数有联动关系,在相对低速的范围内,PD值变大、BP值变小;在相对高速的范围内,PD值变大、BP值也变大。这取决于船的阻力特性。 实际船螺旋桨设计时,还要考虑以下的先决条件:螺旋桨直径有无限制、船舶航速的具体要求。 一般情况下,螺旋桨设计工况都对应船舶满载航行的状态,在该航行状态下,主机发出预定功率、螺旋桨效率达到最佳,船、机、桨匹配理想。但如果设计参数选择不当,就会造成螺旋桨产生“轻载”或“重载”的现象,“轻载”是指螺旋桨达到设计转速后,不能充分吸收主机的转矩,主机发不出预定功率;“重载”是指螺旋桨还未达到设计转速时,主机转矩已达到最大值,主机同样发不出预定功率。 螺旋桨设计产生“轻载”还是“重载”现象,主要取决于2个方面:(1)伴流分数ω、推力减额t取值是否正确。(2)船舶阻力计算的误差。 如选取的伴流分数ω大于船后实际值,则螺旋桨不能吸收预定的功率和发出要求的推力,从而无法达到预定的航速,螺旋桨处于“轻载”状态;反之螺旋桨处于“重载”状态。

船用推进器

本科毕业设计(论文) 船用推进器方向控制装置设计

船用推进器方向控制装置设计 摘要 直翼摆线推进器(Cycloidal Propelle)作为一种性能优异的船舶推进器,被广泛应用于拖船、扫雷舰艇、浮吊、动力定位等高控制要求的场合。 本文简述了船用直翼推进器的基本概念和研究意义,以及国内外直翼推进器方向控制机构的研究现状,此外介绍了船用推进器的工作原理以及它的运动规律,总结两种常用方向控制装置:凸轮式和连杆式。给出了船用推进器方向控制机构的总体设计方案,设计控制机构的关键部件,还有绘制出装配总图。 关键字:直翼摆线推进器连杆机构伺服电机全方向推进器 The Design of Propeller Direction Dontrol Device

Student: Jiaao Wan Advisor: Dr.Changjing Ou College of Engineering Zhejiang University of Technology Abstract Cycloidal propeller is a performance ship propulsion,and the demand of offshore drilling platforms, semi-submersible vessels, lifeboats,platform supply vessels,cabling ships and other marine engineering equipment is increasing sharply. This paper presented the basic concepts of cycloidal propeller and the importance of cycloidal propeller sudy and analyzed the present research situation of cycloidal propeller. This paper introduced cycloidal propeller's working principle and law of motion,and summarized the two commom direction control device:cam-tape and link-tape.It proposed the overall design of marine propulsion direction and control institutions,designed the key components of control institutions and drawed the assembly drawing. Keywords:Cycloidal propeller; Linkage; Servo motor; Omni-directional thrusters 目录 摘要 (i)

浅谈船舶螺旋桨的设计

浅谈船舶螺旋桨的设计 目录 目录 (1) 2 摘要 ...................................................... 关键词 (2) 引言 (2) 1结构与计算要素 .......................................... 1.1结构组成 ............................................ 1.2计算要素 ............................................ 2项目设计过程及结果与分析 ................................ 2.1船体估算数据 ....................................... 2.2螺旋桨要素选取及结果与分析 .......................... 2.3推力曲线及自由航行计算及结果与分析 .................. 2.4计算总结 ............................................ 2.5螺旋桨模型的敞水实验 ................................ 3螺旋桨设计的发展 ....................................... 3.1节能减排促使螺旋桨加快创新 ......................... 结束语 ................................................... 3 3 3 5 6 6 7 9 9 11 11 13 14 14 14 参考文献 ................................................. 致谢 ..................................................... 附录 .....................................................

船舶螺旋桨螺距及拱度的优化设计研究

船舶螺旋桨螺距及拱度的优化设计研究 2010年6月11日 摘要 基于螺旋桨水动力性能的升力面理论预报程序,利用iSIGHT软件进行指定负荷分布形式下桨叶螺距及拱度的优化设计研究,并对设计结果进行粘流CFD计算验证。以某集装箱船螺旋桨为母型桨,保持其原有的径向负荷分布形式,指定不同的弦向负荷分布形式,采用上述方法进行螺距及拱度的优化设计(桨叶其它参数与母型桨相同)。CFD计算表明,通过指定适当的负荷弦向分布,可以在保证效率的同时使桨叶表面压力分布更加均匀,从而推迟桨叶空化。 关键词:船舶、舰船工程;螺旋桨;优化;设计;升力面理论;CFD 0引言 随着船舶向大型化、高速化发展,对螺旋桨的综合性能要求日益提高。现代船舶螺旋桨设计在追求高推进效率的同时,还必须在复杂的船尾流场中尽量推迟乃至避免空化的发生,从而降低螺旋桨诱发的船体振动及噪声。为了满足这些相互制约的要求,螺旋桨优化设计方法的研究日益受到船舶工程界的重视。 传统的螺旋桨设计方法分为图谱设计和理论设计两大类,前者无法直接用于适伴流及大侧斜桨的设计,后者可分为升力线、升力面及面元方法等,能够处理伴流及侧斜问题,但对负荷面分布形式的处理比较单一,应用也不够广泛。近年来,优化方法在螺旋桨设计中的应用研究开始出现,性能计算采用系列桨性能试验回归公式或升力面、CFD等数值方法,优化采用遗传算法、序列二次规划法、DOE方法等,优化目标包括推力、效率、激振力或其组合,但尚未形成比较成熟的体系,与工程应用的要求也有较大距离。 Benini开发了基于遗传算法的系列螺旋桨多目标优化方法,采用试验数据的回归公式计算敞水性能。以敞水效率和推力最大化为目标、Keller空泡限界公式为限制条件,对B

文献综述 船用推进器

本科毕业设计(论文) 文献综述 题目:船用推进器方向控制装置设计 学院:机械工程学院 专业:机械工程及自动化 班级: 2008级 1 班 学号: 200802070121 学生姓名:万家傲 指导老师:欧长劲 提交日期: 2012年 2 月 22 日

船用推进器方向控制装置设计 1研究的背景及意义 水上资源是人类的财富,人类的发展离不开对水资源的利用,最直接的就是捕捉水生食物,那么渔船就诞生了,如美国研究出得一种踏板控制方向的渔船【1】,大大方便渔民,提高了生产率。但是对水资源的利用,可不仅仅是捕鱼这么一说,比如说运输、能源开采等等,总之水上资源是无比巨大的,人类对他的使用只是很小的一部分,还需要继续去发掘,去开拓。 就我国而言,我国也是一个水资源大国,长江、黄河、雅鲁藏布江......但是我国极浅水河流众多,这些河流的弯多流急,有些地段河道坡度较大,由于内河航道窄、弯道多、吃水浅,这就要求航行船舶应具有良好的操纵性来保证航行安全。普通螺旋桨船舶在这些地区的推进效率较低,操纵性能不佳,导致上滩能力不强,流急弯多处不易操纵,给水路运输带来了极大的困难。这些地区水路运输的客观现实迫切需要开发一种适合这些地区的性能较好的船用推进装置。因此,直翼推进器在内河运输船舶上的应用具有广阔的前景[2]。 目前,螺旋桨是海洋工程装备中普遍使用的船舶推进器。装备螺旋桨推进器的船舶在低速航行时,控制性能下降明显,其原因是船舵产生的横向力的大小与船速有关。在船舶经过海峡或者返回港口,与其它的船舶靠近的时候都是低速航行,此时船舵产生的横向力变小,导致船舶控制力不足。直翼摆线推进器弥补了螺旋桨的不足,无需船舵就能够在360 方向上快速改变推进力方向和大小,在任意航速下船舶都具有良好的控制力[3]。 2 直翼推进器相关技术的国内外发展概况 优异的操控性能使得直翼摆线推进器非常适合配备在特种船舶上,例如反鱼雷舰艇、灭火船、拖船、动力定位系统等。直翼线推进器相比于喷水推进器、全回转推进器、螺旋桨等推进器,具有操纵灵活方便、动态拖力大、抗风浪能力强、设备故障率低、维修成本低等优点[4]。直翼摆线推进器应用于动力定位系统,推进器数量大幅减少,有效降低系统成本与能耗。但是国内关于它的研究却很匮乏,或者说没有完整的一套系统。 (a) 拖船 (b)摆渡船

船用螺旋桨推进器探讨

船用螺旋桨推进器探讨 一,船用推进器的发展历程。 船舶推进器的种类很多,最古老的要算篙了,它可撑着船前进。后来又发明了桨和橹,它们一直沿用至今。随后是利用风帆作为推进工具,出现了多种形式的帆船。随着机器在船上的应用,就出现了明轮推进器。19世纪初出现了螺旋桨推进器。为了证明螺旋桨的优越性, 英国海军组织了一场有趣比赛:把动力相当的“响尾蛇号”螺旋桨轮船和“爱里克托号”明轮进行了竞赛。两艘船的船尾用粗缆绳系起来,让它们各朝相反的方向驶去。“响尾蛇号”的螺旋桨飞快地旋转,“爱里克托号”的明轮猛烈地向后拨水。先是互不相让,但过了一会儿,“响尾蛇号”就把“爱里克托号”拖走了。这场比赛证明了螺旋桨的优越性。从此,螺旋桨轮船就取代了明轮。 二,螺旋桨的基本构造与在船舶中的应用基本知识。 螺旋桨俗称车叶,由若干桨叶所组成。桨叶的数目通常为三叶、四叶或五叶,各叶片之间相隔的角度相等。螺旋桨通常装在船的尾部,螺旋桨与艉轴的连接部分称为毂,桨叶就固定在毂上。有船尾向船首看时,所看到的螺旋桨桨叶的一面称为叶面(压力面),另一面称为叶背(吸力面)。桨叶的外端为叶梢,而与毂的连接处称为叶根。螺旋桨旋转时叶梢的圆形轨迹为梢圆,此圆称为螺旋桨桨盘,直径称为螺旋桨直径,其面积称为盘面积。 螺旋桨正车旋转时,有船尾向船首看所见到的旋转方向为顺时针方向的称为右旋桨,反之为左旋桨。双桨船的螺旋桨装在船尾二侧,正常旋转时,若其上都向着船中线转动的称为内旋桨,反之为外旋桨。螺旋桨直径的大小往往受到船舶吃水的限制。一般来说,螺旋桨直径愈大转速愈低,其效率愈高。螺旋桨与船的尾框要有良好的配合,避免叶尖露出水面而影响效率。螺旋桨船体间隙要适当,以避免引起严重的振动。 三,船用螺旋桨的工作原理。 螺旋桨旋转时,把水往后推。根据力的作用与反作用的原理,水给螺旋桨以反作用力,这就是推力,推船前进。螺旋桨的运动情况同螺钉的运动情况极为相似。把螺钉旋转一圈,它就在螺帽中向前推进一段距离,这段距离称为螺距。螺旋桨的桨叶叶面(压力面)通常是螺旋面的一部分,就像螺钉的螺纹的一部分那样,不过螺旋桨是在水中运动的,水取代的螺帽的地位。 四,船用螺旋桨的有关几何参数。 桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。 螺距:它是桨叶角的另一种表示方法。各种意义的螺矩与桨叶角的关系。 实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相似。随实度增加拉力系数和功率系数增大。 桨叶角(β):桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。习惯上以70%直径处桨叶角值为该桨桨叶角的名称值。

船舶推进器螺旋桨研究

船舶推进器螺旋桨研究 一,船用推进器的发展历程。 船舶推进器的种类很多,最古老的要算篙了,它可撑着 船前进。后来又发明了桨和橹,它们一直沿用至今。随后是 利用风帆作为推进工具,出现了多种形式的帆船。随着机器 在船上的应用,就出现了明轮推进器。19世纪初出现了螺旋 桨推进器。为了证明螺旋桨的优越性, 英国海军组织了一场 有趣比赛:把动力相当的“响尾蛇号”螺旋桨轮船和“爱里克 托号”明轮进行了竞赛。两艘船的船尾用粗缆绳系起来,让 它们各朝相反的方向驶去。“响尾蛇号”的螺旋桨飞快地旋 转,“爱里克托号”的明轮猛烈地向后拨水。先是互不相让,但过了一会儿,“响尾蛇号”就把“爱里克托号”拖走了。 这场比赛证明了螺旋桨的优越性。从此,螺旋桨轮船就取代 了明轮。 二,螺旋桨的基本构造与在船舶中的应用基本知识。 螺旋桨俗称车叶,由若干桨叶所组成。桨叶的数目通常为 三叶、四叶或五叶,各叶片之间相隔的角度相等。螺旋桨通常 装在船的尾部,螺旋桨与艉轴的连接部分称为毂,桨叶就固定 在毂上。有船尾向船首看时,所看到的螺旋桨桨叶的一面称为 叶面(压力面),另一面称为叶背(吸力面)。桨叶的外端为 叶梢,而与毂的连接处称为叶根。螺旋桨旋转时叶梢的圆形轨 迹为梢圆,此圆称为螺旋桨桨盘,直径称为螺旋桨直径,其面 积称为盘面积。 螺旋桨正车旋转时,有船尾向船首看所见到的旋转方向为 顺时针方向的称为右旋桨,反之为左旋桨。双桨船的螺旋桨装 在船尾二侧,正常旋转时,若其上都向着船中线转动的称为内 旋桨,反之为外旋桨。螺旋桨直径的大小往往受到船舶吃水的 限制。一般来说,螺旋桨直径愈大转速愈低,其效率愈高。螺 旋桨与船的尾框要有良好的配合,避免叶尖露出水面而影响效率。螺旋桨船体间隙要适当,以避免引起严重的振动。 三,船用螺旋桨的工作原理。

船舶快速性螺旋桨设计

课程设计成果说明书 题目:散货船螺旋桨设计 学生姓名:杨再晖 学号:101306119 学院:东海科学技术学院 班级:C10船舶1班 指导教师:应业炬 浙江海洋学院教务处 2013年 6月 21日

浙江海洋学院课程设计成绩评定表 2012 —2013 学年第 2 学期 学院东海科学技术学院班级 C10船舶1班专业船舶与海洋工程

摘要 螺旋桨是船舶的重要组成部分之一,没有它,船舶就无法快速的前行,是造船行业必备的推进部位。螺旋桨设计是船舶设计过程中有关船舶快速性性能设计的重要组成部分,它的设计精度将直接影响船的推进效率。 在船舶线型初步设计完成后,通过有效马力的估算或船模阻力试验,得出该船的有效马力曲线。在此基础上,设计一个效率最佳的螺旋桨,既能达到预定的航速,又要使消耗的主机功率小;或者当主机已选定,设计一个在给定主机条件下使船舶能达到最高航速的螺旋桨,本次课程设计属于第二种。 影响螺旋桨性能的因素有很多,主要有螺旋桨的直径,螺距比,盘面比,桨叶轮廓形状等因素。本次课程设计是用船体的主要参数、主机与螺旋桨螺旋桨参数、设计工况算出以上数据,设计一个螺旋桨,并用CAD软件画出螺旋桨的外形。 关键词:螺旋桨设计;图谱;AUTOCAD

目录 1、已知船体的主要参数 (1) 2、主机与螺旋桨参数 (1) 3、设计工况 (1) 4、按船型及经验公式确定推进因子 (2) 5、可以达到最大航速的计算 (2) 6、桨叶空泡校核,确定螺旋桨主要参数 (4) 7、桨叶强度校核 (6) 8、螺距修正 (8) 9、重量及惯性矩计算 (8) 10、绘制螺旋桨水动力性能曲线 (9) 11、系柱特性与航行特性计算并绘制航行特性曲线图 (10) 12、航行特性计算时取3挡转速按下表进行: (11) 13、螺旋桨计算总结 (13) 14、感想 (14) 15、参考资料 (14)

DWT油污水接收船螺旋桨设计书

1145 DWT油污水接收船螺旋桨设计书 指导老师: 专业班级: 学生姓名: 学号: 邮箱: 完成日期:2013/4/24

目录 1.船型............................. 错误!未定义书签。2.主机参数. (4) 3.推进因子的确定 (4) 4.桨叶数Z的选取 (4) 5.AE/A0的估算 (4) 6.桨型的选取说明 (5) 7.根据估算的AE/A0选取2~3张图谱 (5) 8.列表按所选图谱(考虑功率储备)进行终结设计 (5) 9.空泡校核 (6) 10.计算与绘制螺旋桨无因次敞水性征曲线 (8) 11. 船舶系泊状态螺旋桨计算 (9) 12.桨叶强度校核 (9) 13.桨叶轮廓及各半径切面的型值计算 (10) 14.桨毂设计 (10) 15.螺旋桨总图绘制 (11) 16.螺旋桨重量及转动惯量计算 (11) 17.螺旋桨设计总结 (12) 18.课程设计总结 (12)

1. 船型 单甲板,流线型平衡舵,柴油机驱动,适于油污水接收的中机型单桨船。 1.1艾亚法有效功率估算表:(按《船舶原理(上)》P285实例计算)(可以自主选定一种合适的估算方法,例如泰勒法。)

2.主机参数(设计航速约11kn ) 型号: 6L350PN 标定功率: P S2 = 650kw 标定转速: 362 r/min 3.推进因子的确定 (1)伴流分数w 本船为单桨内河船,故使用巴甫米尔公式估算 =0.165*C B x x=1 =0.1×(Fr-0.2)=0.1*(0.228-0.2)=0.0028 ω=0.185 (2)推力减额分数t 本船为有流线型舵使用商赫公式 t=k =0.111 k=0.6 (3)相对旋转效率: 近似地取为ηR =1.00 (4)船身效率 ηH =w -1t -1=1.091 4.桨叶数Z 的选取 根据一般情况,单桨船多用四叶,加之四叶图谱资料较为详尽、方便查找, 故选用四叶。 5.A E /A 0的估算 按公式A E /A 0 = (1.3+0.3×Z)×T / (p 0-p v )D 2 + k 进行估算, 其中:T =P E /(1-t)V= 346/((1-0.111)*11*0.515)=68.7028kN 水温15℃时汽化压力p v =174 kgf/m 2=174×9.8 N/m 2=1.705 kN/m 2 静压力p 0=p a +γh s =(10330+1000×2.5)×9.8 N/m 2=125.734kN/m 2

船舶设计原理课程大作业-螺旋桨设计

SHANGHAI JIAO TONG UNIVERSITY 螺旋桨设计计算书 姓名:王志强 学号:5130109174 课程:船舶原理(2) 专业:船舶与海洋工程 日期:2016年4月

一、船舶的主要参数船型:单桨集装箱船 二、最大航速确定

按满载工况、主机功率P s=0.85P max、螺旋桨转速102r/min,设计MAU型5叶右旋桨1只。 螺旋桨敞水收到功率: P D=0.85ηSηR P max=0.85×0.97×1.0×33000kW=27208.5kW 最大航速设计的步骤: 假定若干个盘面比( 0.5、0.55、0.6、0.65、0.7、0.75、0.8),对每一个盘面比进行以下计算: 1)假定若干直径(范围7.5m ~ 8.5m,每隔0.01米取一次值); 2)对每个直径,假定若干航速(范围21节~25节,每隔0.001节取一次值); 3)对每个直径与航速的组合,用回归公式计算设计进速系数下不同螺距比(范围0.4~1.6)螺旋桨的推力、扭矩,通过插值(或二分法)确定满足设计功率要求(即:螺旋桨要求的扭矩与设计功率与转速下的收到转矩平衡)的螺距及相应的有效推力与敞水效率; 4)对每个直径,根据阻力曲线及不同航速下的有效推力值,通过插值确定有效推力与阻力平衡的航速,以及对应的螺距和敞水效率; 5)根据航速(或敞水效率)与直径的关系,确定最大航速(或最高敞水效率)对应的直径,该直径即为所假定盘面比下的最佳直径。 三、空泡校核 柏立尔空泡限界线图 空泡校核计算结果: P0=P a+γ?s=10330+1025×(12.7?4.7)kgf/m2=18530kgf/m2=181594N/m2

船用发动机油的选择

船用发动机油的选择 1柴油机的转速和应用范围表见表1 表1 柴油机的转速和应用范围 2.船用油和陆用柴油机油有什么不同? 主要有三点不同: ①船用油根据使用燃料硫含量,满足中和燃料燃烧后生成的硫酸要求,有不同碱性产品: 气缸油碱性常用的是70 mgKOH/g,中速机油碱值常用的是25-30 mgKOH/g。 陆上柴油机油是根据柴油机是自然吸气、低增压还是中增压、功率大小等分类。 ②船用油尤其是中速机油和系统油不免要受到水的污染,所以要求有很好的抗乳化性能和分水性能,而且还要有良好的防腐性。而陆用柴油机油不要求这些性能。 ③船用油粘度分类没有多级只是单级,如气缸油常用的粘度是SAE 50,中速机油和系统油常用的是SAE30、SAE40。而陆上柴油机油有单级油和多级油。 3船用油的选择主要分两个方面: 第一,粘度级别。船用油的粘度级别较单一,系统油和中速机油分SAE30,SAE40两个级别,气缸油以SAE50居多,航行环境温度偏高,发动机工况稍差应选择粘度级别稍高些为宜,反之,可选用较低粘度油。 第二,质量等级。船用油的质量等级是以油品总碱值TBN(总碱值)的大小来区分的。油品碱值的选择十分重要。主要依据船舶使用燃料硫含量的高低来选用。一般说TBN过小,油品酸中和能力不足,会造成腐蚀、磨损;TBN过大,金属灰分高,也会造成磨损,同时由于添加剂加量大,油品成本会升高。

1).系统油的选用 系统油的选用主要根据柴油机的机型、运转工况、工作环境和所用燃油的质量而定。一般TBN选用10mg KOH/g以下,而粘度等级SAE 30 、40即可,粘度指数应大于80。 2).中速机油的选用 中速筒状活塞柴油机除了作为动力输出用在船舶上外,还可以作为电力输出装置用在发电机组上。中速机油的使用特点兼有气缸油和系统油的双重功能。因此在油品选择过程中需要重点考虑油品的碱值,中速机油的碱值选择可以参考表2。 表2 中速机油总碱值的选择 用户在使用过程中,应注意保持循环油箱中有一个稳定的TBN值。 3).船用气缸油的选用 船用气缸油用于低速十字头柴油主机气缸的润滑,TBN和所用燃料的硫含量是否匹配,是船用气缸油首选指标,见表3。 表3气缸油适宜碱值的选择 TBN太低,不能有效中和燃烧产物,造成严重的腐蚀磨损;TBN太高,不但不经济,过量碱值的气缸油在燃烧后,灰分增多。 (资料素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

船舶推进习题及解析(上交教材)

第一章 1.除螺旋桨之外,船用推进器还有那些类型?简述他们的特点及所适用船舶类型? 螺旋桨,风帆,明轮,直叶推进器,喷水推进器,水力锥形推进器 螺旋桨:构造简单,造价低廉,使用方便,效率较高。 风帆:推力依赖于风向和风力以至于船的速度和操纵性都受到限制。仅在游艇,教练船和小渔船上仍采用 明轮:构件简单,造价低廉,但蹼板入水时易产生拍水现象,而出水时又产生提水现象,因而效率较低。目前用于部分内河船舶。 直叶推进器:可以发出任何方向的推理,操纵性好,推进器的效率高,在汹涛海面下,工作情况也较好,但构造复杂,造价昂贵,叶片保护性差极易损坏。用于港口作业船或对操纵性有特殊要求的船舶 喷水推进器:活动部分在船体内部,具有良好的保护性,操纵性能良好,水泵及喷管中水的重量均在船体内部,减少了船舶的有效载重量,喷管中水力损耗很大,故推进效率较低。多用于内河潜水拖船上,近年来也用于滑行艇,水翼艇等高速船上。 水力锥形推进器:构造简单,设备轻便,船内无喷管效率比一般喷水推进器为高,航行于浅水及阻塞航道中的船只常采用此种推进器。 何谓有效马力(有效功率)? v航行时所受到的阻力为R,则阻力R在单位时间内所消耗的功为Rv,而有效推力Te在单位时间内所作的功为Te*v,两者在数值上相等,故Te*v(或者R*v)称为有效功率。 阻力试验R和V都可测。 3.何谓收到马力?它与主机马力的关系如何? 收到马力:机器功率经过减速装置,推力轴承及主轴等传送至推进器,在主轴尾端与推进器连接处所量得的功率称为推进器的收到功率Pd表示。 Pd=Ps*ηs→传递效率或轴系功率 4.推进效率。推进系数如何定义?如何衡量船舶推进性能的优劣? 推进效率:由于推进器本身在操作时有一定的能量损耗,且船身与推进器之间有相互影响,故有效功率总是小于推进器所收到的功率,两者之比称为推进效率,以ηd表示。 推进系数:有效功率与机器功率之比称为推进系数以P.C表示 P.C=Pe/Ps P.C=ηdηs 5.何谓船舶快速性?快速性优劣取决于那些因素? 快速性:指船舶在给定主机功率情况下,在一定装载时于水中航行的快慢问题。 ①船舶于航行时所遭受的阻力要小,所谓优良船型的选择问题 ②选择推力足够,且效率较高的推进器 ③选择合适的主机 ④推进器与船体和主机之间协调一致 第二章 6.螺旋桨由那些部件构成?他们各起什么作用? 桨叶和桨毂构成(个人观点)桨叶:通过旋转产生推力桨毂:固定桨叶并传递来自尾轴的力和转矩。 7.与空气螺旋桨相比,船舶螺旋桨在几何特征上有何不同?思考其原因

某沿海单桨散货船螺旋桨设计计算说明书

某沿海单桨散货船螺旋桨 设计计算说明书 刘磊磊 2008101320 2011年7月

某沿海单桨散货船螺旋桨设计计算说明书 1.已知船体的主要参数 船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米 由模型试验提供的船体有效马力曲线数据如下: 航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 4045 2.主机参数 型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.98 3.相关推进因子 伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0 船身效率 0777.111=--= w t H η 4.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 hp

根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算: 项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn Bp=NP D 0.5/V A 2.5 Bp MAU 4-40 δ P/D ηO P TE =P D ·ηH ·ηO hp MAU 4-55 δ P/D ηO P TE =P D ·ηH ·ηO hp MAU 4-70 δ P/D ηO P TE =P D ·ηH ·ηO hp 据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如下图所示。

关于船用推进器种类以及用途

关于船用推进器 船用推进器分为主推,侧推,舵桨,等等这几种,主推又有可调螺距式和固定螺距式。 可调螺距式的一般广泛用于对船的灵活性要求比较高的船,比如为海上石油平台服务的 拖轮,以及轻型护卫舰等。它的主要的优点在:1::主机启动时对主机的冲击很小,因为它可以相对于零负荷启动(主要通过对桨叶角度的控制来实现)2:对于船在航行方面也很经济它可以通过对主机的联合控制来实现(和主机调速器的连接来实现)3:大大增强了船操作的灵活性,比如船在停靠码头或石油平台的时候,可以通过对桨叶角度的控制来实现船的动态(因为它可以通过改变桨叶的变化方向来实现船舶的进车和倒车,这样可以解放柴油机齿轮箱,大大减少轮机员的劳力)。4:可以和轴带发电机一起连用(对于对船电要求比较高的船它是不二选择)。它的缺点1:结构复杂,维护的时候比较困难。2:难用于高马力的船(一般用于2万吨以下的船)3:对于人员的操作要求也比较高。4:成本高。而对于固定桨推进器来说主要用于对马力要求比较大的船,且操作简单但是对于齿轮箱和离合器要求比较高和对船的灵活性要求不高的船。 侧推它的全名是侧向推进器,主要安装在船的艏部和艉部,英文名叫tunnel thruster。它也分定距桨和变距桨两种,变距桨主要通过液压系统来实现变距来改变功率,固定桨主要通过变频器来改变电机的速度来改变功率。现在跑国际航线的船一般都要求在船首安装侧推,主要是为了过运河方便安全。但它用的最多的场合在拖轮上,比如跑石油平台的,救生的,等等船。下面我就来介绍侧推在跑石油平台的船的应用:当船靠近石油平台的时候主推进器一般是没推力的或只有一点点推力,这时候主要用侧推来实现船的横向移动来慢慢靠近平台,一般像这种船都装有2个以上大功率的侧推来实现整个船的横向移动,在多数情况下平台是不允许船在其上面系缆的故对侧推要求非常高。 舵桨顾名思义就是舵和桨一体的推进器,主要用于对功率要求较小的船,它的舵可以360度旋转,它可以实现船的倒车和进车,平移。一般安装了舵桨的船都至少安装两台。使用最多的船就是渡轮了,渡轮上的舵桨的安装一般都对角安装。

飞机螺旋桨工作原理

飞机螺旋桨工作原理.txt吃吧吃吧不是罪,再胖的人也有权利去增肥!苗条背后其实是憔悴,爱你的人不会在乎你的腰围!尝尝阔别已久美食的滋味,就算撑死也是一种美!减肥最可怕的不是饥饿,而是你明明不饿但总觉得非得吃点什么才踏实。与现实中飞行技术的对比:飞机螺旋桨工作原理 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J =V/nD。式中D—螺旋桨直径。理论和 试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J?Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。此外还要考虑螺旋桨桨尖气流速

螺旋桨设计 作业

0.954000.90.98 1.04762.8D S s R P P hp ηη==???=某沿海单桨散货船螺旋桨设计计算说明书 1. 已知船体的主要参数 船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米 由模型试验提供的船体有效马力曲线数据如下: 航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 4045 2.主机参数 型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.98 3.相关推进因子 伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0 船身效率 0777.111=--=w t H η 4.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: 根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算: 项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn 9.373 10.094 10.815 11.536 Bp=NP D 0.5/V A 2.5 42.3368531 35.17684 29.60389 25.19283 Bp 6.50667758 5.931007 5.440946 5.019246

船舶推进课程设计8154L远洋渔船螺旋桨设计书

船舶与海洋工程学院船舶推进螺旋桨设计书8154L远洋渔船螺旋桨设计书 指导老师:xxx 专业班级:xxx 学生姓名:xxx 学号:xxx 邮箱:xxx 完成日期:2013/4/18

目录 1.船型 (2) 2.主机参数 (3) 3.推进因子的确定 (3) 4.桨叶数Z的选取 (3) 5.AE/A0的估算 (3) 6.桨型的选取说明 (4) 7.根据估算的AE/A0选取2~3张图谱 (4) 8.列表按所选图谱(考虑功率储备)进行终结设计 (4) 9.空泡校核 (5) 10.计算与绘制螺旋桨无因次敞水性征曲线 (7) 11. 船舶系泊状态螺旋桨计算 (7) 12.桨叶强度校核 (8) 13.桨叶轮廓及各半径切面的型值计算 (8) 14.桨毂设计 (9) 15.螺旋桨总图绘制 (10) 16.螺旋桨重量及转动惯量计算 (10) 17.螺旋桨设计总结 (11) 18.课程设计总结 (11)

8154L远洋渔船螺旋桨设计书 1. 船型 单桨单舵,前倾首柱,巡洋舰尾,柴油机驱动,尾机型远洋渔船。 艾亚法有效功率估算表:(按《船舶原理(上)》P285实例计算)(可以自主选定一种合适的估算方法,例如泰勒法。)

2.主机参数 3.推进因子的确定 (1)伴流分数w 本船为单桨渔船,故使用汉克歇尔公式估算 w=0.77×C P -0.28=0.77×0.569-0.28=0.158 (2)推力减额分数t 本船为单桨渔船,使用汉克歇尔公式 t=0.77×C P -0.30=0.77×0.569-0.30=0.138 (3)相对旋转效率: 近似地取为ηR =1 (4)船身效率 η H = w -1t -1=(1-0.158)/(1-0.138)=0.98 4.桨叶数Z 的选取 根据一般情况,单桨船多用四叶,加之四叶图谱资料较为详尽、方便查找, 故选用四叶。 5.A E /A 0的估算(注意:对于内河船及大径深比螺旋桨的船不一定适用!) 按公式A E /A 0 = (1.3+0.3×Z)×T / (p 0-p v )D 2 + k 进行估算, 其中:T= V t P E )1(-=350×0.735/((1-0.138)×13×0.5144)=44.63kN 水温15℃时p v =174 kgf/m2=174×9.8 N/m 2=1.705 kN/m 2 静压力p 0=p a +γh s =(10330+1025×2)×9.8 N/m 2=121.324 kN/m 2 k 取0.2 D 允许=0.7×T d =(0.7~0.8)×2.90=2.03m ~2.32m (单桨船)

相关文档
最新文档