微纳光电子复习资料

微纳光电子复习资料
微纳光电子复习资料

一、简答题:

1. 套准精度的定义,套准容差的定义。大约关键尺寸的多少是套准容差.

套准精度是测量对准系统把版图套准到硅片上图形的能力。

套准容差描述要形成图形层和前层的最大相对位移。

一般,套准容差大约是关键尺寸的三分之一。

2. 亚波长结构的光学特性。

亚波长结构的光学特性:

-- 光波通过亚波长结构时,光的衍射消失,仅产生零级反射和透射,等效为薄膜,可用于抗反射元件和双折射元件;

-- 采用空间连续变化的亚波长结构可获得偏振面的衍射,形成新型偏振器件;

-- 表面等离子波亚波长光学利用表面等离子体波共振(SPR)原理:波导,小孔增强,局域增强等

4. 微电子的发展的摩尔定律是什么?何谓后摩尔定律?

集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小倍,这就是摩尔定律

5. 单晶、多晶和非晶的特点各是什么?

单晶:几乎所有的原子都占据着安排良好的规则的位置,即晶格位置;——有源器件的衬底

非晶:如SiO2, 原子不具有长程有序,其中的化学键,键长和方向在一定的围变化;

多晶:是彼此间随机取向的小单晶的聚集体,在工艺过程中,小单晶的晶胞大小和取向会时常发生变化,有时在电路工作期间也发生变化。

6. 半导体是导电能力介于___导体_____和___绝缘体_____之间的物质;当受外界光和热作用时,半导体的导电能力___明显变化______; _______往纯净的半导体中掺入某些杂质_______可以使半导体的导电能力发生数量级的变化。

7. 在光滑的金属和空气界面,为什么不能激发表面等离子体波?

对于光滑的金属表面,因为表面等离子体波的波矢大于光波的波矢,所以不能激发表面等离子体波。

8. 磁控溅射镀膜工艺中,加磁场的主要目的是什么?

将电子约束在靶材料表面附近,延长其在等离子体中运动的轨迹,提高与气体分子碰撞和电离的几率

9. 谐衍射光学元件的优点是什么?

高衍射效率、优良的色散功能、减小微细加工的难度、独特的光学功能10.描述曝光波长与图像分辨率的关系,提高图像分辨率,有哪些方法?

K1 is the system constant 工艺因子:0.6~0.8

NA = 2 ro/D, 数值孔径

改进分辨率的方法

增加NA

减小波长

减小K1

11. 什么是等离子体去胶,去胶机的目的是什么?

氧气在强电场作用下电离产生的活性氧,使光刻胶氧化而成为可挥发的CO2、H2O 及其他气体而被带走;

目的是去除光刻后残留的聚合物

12. 硅槽干法刻蚀过程中侧壁是如何被保护而不被横向刻蚀的?

通过控制F/C的比例,形成聚合物,在侧壁上生成抗腐蚀膜

13. 折衍混合光学的特点是什么?

折衍混杂的光学系统能突破传统光学系统的许多局限,在改善系统成像质量减小系统体积和质量等诸多方面表现出传统光学不可比拟的优势

14. 刻蚀工艺有哪两种类型?简单描述各类刻蚀工艺。

干法刻蚀:在气态等离子体中,通过发生物理或化学作用进行刻蚀湿法刻蚀:采用液体腐蚀剂,通过溶液和薄膜间得化学反应就能够将暴露得材料腐蚀掉

15. 微纳结构光学涉及三个理论领域,其中标量衍射理论适用于设计___d>=10λ___ 的微纳光学器件;矢量衍射理论适用于设计___d~λ__的微纳光学器件;等效介质折射理论适用于设计__d<=λ/10 __的微纳光学器件。

16.在紫外光刻中,正性光刻胶曝光后显影时将被__溶解___,负性光刻胶曝光后显影时将被__保留下来__.

17. 光刻中,g 线波长是指_436_nm,i 线是指_365_nm。

18.干法刻蚀中的负载效应是指__刻蚀速率和刻蚀面积成反比_.

19. 连续面形浮雕结构的制作方法有:______

基于灰阶掩膜的投影法和采用电子束或激光束的束能直写法__.

20.在下图中画出曝光后剩余的图形。并指出曝光中驻波效应产生的原因和解决办法。

正性光刻胶曝光显影时将被溶解,负性光刻胶曝光后显影时将被保留下来

在光刻胶曝光的过程中,透射光与反射光(在基底或者表面)之间会发生干涉。这种相同频率的光波之间的干涉,在光刻胶的曝光区域出现相长相消的条纹。光刻胶在显影后,在侧壁会产生波浪状的不平整。解决方案:a、在光刻胶加入染色剂,降低干涉现象;b、在光刻胶的上下表面增加抗反射涂层;c、后烘和硬烘。

21.何谓表面等离子体波,激发表面等离子体波有哪几种方法?为什么说表面等离子体光学可以突破衍射极限?

(1)等离子体中粒子的各种集体运动模式

(2)棱镜耦合波导结构衍射光栅结构强聚焦光束近场激发(3)垂直方向的传播是倏逝场

22. 为什么镀膜时镀膜室要具有一定的真空度?

在真空条件下成膜可减少蒸发材料的原子、分子在飞向基板过程中与分子的碰撞,减少气体中的活性分子和蒸发源材料间的化学反应(如氧化等),以及减少成膜过程中气体分子进入薄膜中成为杂质的量,从而提供膜层的致密度、纯度、沉积速率和与基板的附着力。

23. 何为反应溅射镀膜?

在溅射镀膜时,引入某些活性反应气体来改变或控制淀积特性,从而对薄膜的成分和性质进行控制

24. 制备连续浮雕面型结构有哪些方法?

基于灰阶掩膜的投影法

采用电子束或激光束的束能直写法

25.从微纳结构的光学原理出发解释孔雀的羽毛为什么会呈现不同的颜色。

26. 简述采用BOSCH 工艺制作高深宽比结构的技术原理。

二、论述题:

1. 以图解形式描述二元光学原理,并以八台阶为例简述器件的主要制作步骤。

上图为八相位微透镜阵列制作原理图。

制作工艺:先将基片清洗干净并吹干,在特定的位置涂覆光刻胶,将匀胶之后的基片进行曝光,之后再进行显影,反复多次就可以得到所需的透镜阵列。

2. 论述折衍混合光学元件的消色差和消热差原理。

消色差原理:衍射光学元件(DOE)具有负等效Abbe常数的特性,与折射光学元件相反,因此折衍混合可以消除色差。只需满足消色差方程即可:

消热差原理:对于折射光学系统,温度升高,折射率变小,光学系统光焦度变小,焦距变长,温度降低,焦距变小;衍射光学表面微结构对温度不敏感,且具有负热差特性,与折射光学组成折衍混合光学可消热差。

3. 何谓光子晶体?介绍光子晶体特点和应用。

①具有不同介电常数的介质材料随空间呈周期性的变化时,在其中传播的光波的色散曲线将成带状结构,当这种空间有序排列的周期可与光的波长相比位于同一量级,而折射率的变化反差较大时带与带之间有可能会出现类似于半导体禁带的“光子禁带”

(photonic band gap) ,这种光子禁带材料就是光子晶体,是一种新型的人工结构功能材料,通过设计可以人为调控经典波的传输。特点

②光子带隙:在一定频率围的光子在光子晶体的某些方向上是严格禁止传播的

微纳光子学

微纳光子学主要研究在微纳尺度下光与物质相互作用的规律及其光的产生、传输、调控、探测和传感等方面的应用。微纳光子学亚波长器件能有效提高光子集成度,有望像电子芯片一样把光子器件集成到尺寸很小的单一光芯片上。纳米表面等离子体学是一新兴微纳光子学领域,主要研究金属纳米结构中光与物质的相互作用。它具有尺寸小,速度快和克服传统衍射极限等特点,有望实现电子学和光子学在纳米尺度上的完美联姻,将为新一代的光电技术开创新的平台。金属-介质-金属F-P腔是最基本的纳米等离子体波导结构,具有良好的局域场增强和共振滤波特性,是制作纳米滤波器、波分复用器、光开关、激光器等微纳光器件的基础。但由于纳米等离子体结构中金属腔的固有损耗和能量反射,F-P腔在波分复用器应用中透射效率往往较低,这给实际应用带来不利。 最近,科研人员提出了一种提高表面等离子体F-P腔波分复用器透射效率的双腔逆向干涉相消法。该方法能有效避免腔的能量反射,使入射光能完全从通道端口出射,极大增强了透射效率。此设计方法还能有效的抑制噪声光的反馈。同时,科研人员利用耦合模方法验证了这种设计方法的可行性。这种波分复用器相比目前报道的基于F-P单腔共振滤波的波分复用器的透射效率提高了50%以上。相关的成果于2011年6月20日发表在Optics Express上,论文题目为:Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities。 “新兴光器件及集成技术专题报告会”上发布《纳米光子学对光子技术更新换代的重要作用》精彩演讲。报告摘要;从上世纪70年代开始,光子学进入微光子学阶段,经过40年的研究,现在已经比较成熟。以半导体激光器为重点的研究已经逐渐转向对激光控制问题的研究和激光应用的研究。同时,光子技术已经进入光电子技术阶段,其特点是研究开发以电控光、光电混合的器件和系统。光电子技术已经逐步占领了电子技术原有的阵地。它的应用领域已经扩大到人类社会生活的各方面,如光通信与光网,平板显示、半导体照明、光盘存储、数码相机等。光电子产业迅速发展壮大起来。在经济发达国家,光电子产业的总产值已经可以与电子产业相比,甚至超过电子产业。近十年来,国际学术界开始大力发展纳光子学及其技术,使光电子技术与纳米技术相结合,对现有光电子技术进行升级改造。 与国际上科技发达的国家相比,目前我国微纳光子学的研究还不算落后,这从我国在微纳光子学领域发表的论文数量和投稿的杂志级别就可看出。但是我国的光子学研究论文大部分是理论方面的,大多数是跟踪国外的。由于国内缺乏先进的科学实验平台,特别是缺乏制备微纳光子学材料和器件的工艺条件,实验方面的论文比较少(除了少数与国外合作研究的论文),创新的思想无法得到实验验证。微光子学方面的情况尚且如此,在纳光子学方面,由于对仪器、设备、工艺和技术的要求更高,与国外的差距正在加大。 在光电子技术方面,由于国际经济的全球化和我国的改革开放形势,吸引跨国公司将制造、加工基地向我国转移。21世纪初光电子企业的大公司纷纷落户我国。而且大量资金投向我国沿海经济发达地区(如广东、上海和京津地区),建立起一大批中外合资或独资企业。但是这些外国企业或技术人员,控制着产业的高端技术,对我国实行技术垄断,使我国的光电子技术至今还处于“下游”,成为外向加工企业。大多数光电子企业采用这样的生产模式:购买国外的芯片进行器件封装,或者购买国外的器件进行系统组装。目前我国光电子企业严重缺乏核心技术和自主知识产权,无法抵御国际经济危机,面临着很大的风险。 为了加快我国的微纳光子学与相关光子技术的发展,我国应该集中投入一部分资金,凝聚一批高水平研究人才,在某些光电子企业集中的地区,依托光子学研究有实力的单位,采用先进的管理模式,建设我

微纳结构光学及应用

王楠 1032011322017 光学工程 微纳光学结构及应用 摘要:微纳光学结构技术是指通过在材料中引入微纳光学结构,实现新型光学功能器件。其中表面等离子体光学、人工负折射率材料、隐身结构,都是通过引入微纳结构控制光的衍射和传播,从而实现新的光学性能。从这个角度来讲,微纳光学结构的设计和制造是微纳光学发展的共性关键技术问题,微纳光学是新型光电子产业的重要发展方向。 关键字:微纳光学;纳米制造;微纳光学产业; Abstract:Micro-nano optical structure technology refers to through the introduction of micro-nano optical structure in the material, implement new optical functional devices. The surface plasmon optics, artificial negative refractive index materials, stealth structure, through the introduction of micro-nano structure control of light diffraction and transmission, so as to realize the new optical performance. From this perspective, micro-nano optical structure design and manufacture is the universal key technical problems in the development of micro-nano optics, micro-nano optics is a new important development direction of optoelectronic industry. Key words : micro-nano optics; nanofabrication; micro-nano optical industry 1微纳光学技术的多种应用 1)加工新型光栅 借助于大规模集成电路工艺技术,可以加工出新型的光栅。光栅是个实用性很强的基本光学器件,在23ARTICLE | 论文激光与光电子学进展2009.10光谱仪、光通信波分复用器件、激光聚变工程、光谱分析等领域中大量使用。传统的表面光栅不论是机械刻画光栅,还是全息光栅,其表面的光栅结构是很薄的。明胶或光折变体全息光栅的光栅厚度较厚,由于制造工艺的一致性、温度稳定性和长期稳定性问题,在实际应用时仍然有限制。 2)制作深刻蚀亚波长光栅 采用激光全息、光刻工艺和半导体干法刻蚀工艺可以加工出深刻蚀亚波长光栅。

光电子微纳制造工艺平台2016年试卷(上半年)及导师确认说明-1

武汉光电国家实验室分数 光电子微纳制造工艺平台2016年试卷 名称:超净间基本规范及安全培训考试时间:2016年 单位:机械科学与工程学院导师姓名黄永安学生姓名尹锋一.单选择题(60分) 1.化学试剂溅到身上,立即采用(喷淋头),用水冲洗15分钟。冲洗后,不要擦拭皮肤,必要时前往医院治疗。 2.穿着超净服时,(用脚套包住裤腿)。 3.超净间内使用(圆珠笔)。 4.从(风淋室)进入超净间。 5对超净间内各处的门,(轻轻)关门。 6.穿着(洁净鞋或者鞋套)进入更衣间。 7.清洗间清洗槽的排气风扇因故障停止,(继续)清洗。 8.冲洗容器的稀释液倒入(排水槽)。 9.手套破损,(立即更换)。 10.酸、碱及有机溶剂容器的盖子,使用后(立即锁紧盖子)。 11.超声清洗及其它清洗中,通风柜的门(处于半关闭位置)。 12. 废液待温度降至室温时,倒入(收集桶)。 13.稀释酸液时,(将酸慢慢倒入水中)。 14.化学试剂不小心溅到脸上或眼睛里,立即采用(洗眼池),用大量水冲洗15 分钟以上。联系平台领导及工程师协助立即前往医院就医,同时通知导师。 15.进清洗间,(戴)防护眼镜或面罩、耐酸碱手套。 16.发生火警时,从(安全门)跑出超净间,在A区北面广场集合,便于清点人

数。 17. 在工艺设备发生火灾时,如果火苗较小且没有过多烟雾时,同学们可使用 (CO2灭火器)灭火。 18.密闭房间内,氮气泄漏有(窒息)威胁。 19.光刻工艺在(黄色光)条件下进行。 20.(取得)操作许可证,才能独立操作设备 21.超净间级别由低到高依次为:(10000级、1000级、100级)。 22.进入超净间的个人动作顺序为: 2)脱一次鞋→穿上净化服→戴上净化帽→洗手→戴上口罩手套→进风淋室→入室; 23.要带入超净间的仪器、工具、硅片和掩模盒,请在(更衣室)进行清洁。 24.所有的瓶罐,不论有无冲洗过,若没有贴上危险物质标示贴,只能由(工作 人员)用水清洗。 25.(用镊子)拿硅片。 26.(N2O)为低毒类气体,发生泄漏时,在安全区域佩戴简易防护面罩手套,然 后前往特气室关闭钢瓶阀门及供气面板输出阀门。 27.(H2)为易燃易爆气体,为防止火星,操作时禁止使用手机,禁止穿化纤服 装,禁止穿铁掌皮鞋。同学们不得自行操作此类气体。 28.(PH3)为剧毒性气体,操作时需要戴放毒面具。同学们不得自行操作此类气 体。 29.光刻工艺对环境洁净度、温湿度要求高,在(百级)间进行。 30.金相显微镜、光刻机使用完毕后,在后续(没有人)使用情况下,一定要关

微纳光电子复习资料

一、简答题: 1. 套准精度的定义,套准容差的定义。大约关键尺寸的多少是套准容差. 套准精度是测量对准系统把版图套准到硅片上图形的能力。 套准容差描述要形成图形层和前层的最大相对位移。 一般,套准容差大约是关键尺寸的三分之一。 2. 亚波长结构的光学特性。 亚波长结构的光学特性: -- 光波通过亚波长结构时,光的衍射消失,仅产生零级反射和透射,等效为薄膜,可用于抗反射元件和双折射元件; -- 采用空间连续变化的亚波长结构可获得偏振面的衍射,形成新型偏振器件; -- 表面等离子波亚波长光学利用表面等离子体波共振(SPR)原理:波导,小孔增强,局域增强等 4. 微电子的发展的摩尔定律是什么?何谓后摩尔定律? 集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小倍,这就是摩尔定律 5. 单晶、多晶和非晶的特点各是什么?

单晶:几乎所有的原子都占据着安排良好的规则的位置,即晶格位置;——有源器件的衬底 非晶:如SiO2, 原子不具有长程有序,其中的化学键,键长和方向在一定的围变化; 多晶:是彼此间随机取向的小单晶的聚集体,在工艺过程中,小单晶的晶胞大小和取向会时常发生变化,有时在电路工作期间也发生变化。 6. 半导体是导电能力介于___导体_____和___绝缘体_____之间的物质;当受外界光和热作用时,半导体的导电能力___明显变化______; _______往纯净的半导体中掺入某些杂质 _______可以使半导体的导电能力发生数量级的变化。 7. 在光滑的金属和空气界面,为什么不能激发表面等离子体波? 对于光滑的金属表面,因为表面等离子体波的波矢大于光波的波矢,所以不能激发表面等离子体波。 8. 磁控溅射镀膜工艺中,加磁场的主要目的是什么? 将电子约束在靶材料表面附近,延长其在等离子体中运动的轨迹,提高与气体分子碰撞和电离的几率 9. 谐衍射光学元件的优点是什么? 高衍射效率、优良的色散功能、减小微细加工的难度、独特的光学功能

微纳光电子练习题

一、简答题: 1. 套准精度的定义,套准容差的定义. 大约关键尺寸的多少是套准容差. 套准精度是测量对准系统把版图套准到硅片上图形的能力。 套准容差描述要形成图形层和前层的最大相对位移. 一般,套准容差大约是关键尺寸的三分之一。 2。亚波长结构的光学特性. 亚波长结构的光学特性: ——光波通过亚波长结构时,光的衍射消失,仅产生零级反射和透射,等效为薄膜,可用于抗反射元件和双折射元件; ——采用空间连续变化的亚波长结构可获得偏振面的衍射,形成新型偏振器件; ——表面等离子波亚波长光学利用表面等离子体波共振( SPR)原理:波导,小孔增强,局域增强等 4. 微电子的发展的摩尔定律是什么?何谓后摩尔定律? 集成电路芯片的集成度每三年提高4倍, 而加工特征尺寸缩小 倍, 这就是摩尔定律 5。单晶、多晶和非晶的特点各是什么? 单晶:几乎所有的原子都占据着安排良好的规则的位置,即晶格位置;——有源器件的衬底

非晶: 如SiO2, 原子不具有长程有序,其中的化学键,键长和方向在一定的范围内变化; 多晶:是彼此间随机取向的小单晶的聚集体,在工艺过程中,小单晶的晶胞大小和取向会时常发生变化,有时在电路工作期间也发生变化. 6。半导体是导电能力介于___导体_____和___绝缘体_____之间的物质;当受外界光和热作用时,半导体的导电能力___明显变化______; _______往纯净的半导体中掺入某些杂质_______可以使半导体的导电能力发生数量级的变化。 7。在光滑的金属和空气界面,为什么不能激发表面等离子体波?对于光滑的金属表面,因为表面等离子体波的波矢大于光波的波矢,所以不能激发表面等离子体波. 8。磁控溅射镀膜工艺中,加磁场的主要目的是什么? 将电子约束在靶材料表面附近,延长其在等离子体中运动的轨迹,提高与气体分子碰撞和电离的几率 9。谐衍射光学元件的优点是什么? 高衍射效率、优良的色散功能、减小微细加工的难度、独特的光学功能 10。描述曝光波长与图像分辨率的关系,提高图像分辨率,有哪

微纳光学结构及应用

1引言微纳光学主要指微纳米尺度的光学效应,以及利用微纳米尺度的光学效应开发出的光学器件、系统及装置。微纳光学不仅是光电子产业的重要发展方向之一,也是目前光学领域的前沿研究方向。微纳光学的发展是由大规模集成电路工艺水平的进步所推动的。早在20世纪50年代,德国著名教授A.W.Lohmann [1]就考虑到利用光栅的整体相移技术对光场相位编码,以实现对光波的人工控制。1964年夏季,A.W.Lohmann 教授指导大学生Byron ,利用IBM 当时先进的制版设备演示了世界上第一张计算机全息图。随后的衍射光学进展都可以看作是人为地控制或改变光的波前,从这个意义上说,这个工作具有革命性的意义。随着半导体工艺技术的进步,微米尺度的任意线 宽都可以加工出来。由此,达曼提出一种新型的微光学分束器件,后人叫做达曼光栅[2]。达曼光栅通过任意线宽的二值相位调制,将一束激光分成多束等强度的激光。其制作充分利用了微电子工艺技术,是一个典 型的微光学器件[3]。 达曼光栅一般能产生一维或者二维矩阵的光强分布。周常河等[4]提出了圆环达曼光栅,也就是不同半径的圆孔相位调制,实现多级等光强的圆环分布。我们知道,圆孔的傅里叶变换是贝塞尔函数,而矩形的傅里叶变换是SINC 函数,因此,虽然达曼光栅和圆环达曼光栅的物理本质一样,但是其数学处理却不相同[5]。随着制造技术水平的进步,出现了一些纳米光学领域的新概念:光子晶体(Photonic Crystal )[6]、 表面微纳光学结构及应用 Micro-&Nano-Optical Structures and Applications 摘要简短回顾微纳光学的几个重要研究方向,包括光子晶体、表面等离子体光学、奇异材料、负折射、隐身以及 亚波长光栅等。微纳光学不仅成为当前科学的热点研究领域,更重要的是,微纳光学是新型光电子产业的 发展方向,在光通信、光存储、激光核聚变工程、激光武器、太阳能利用、半导体激光、光学防伪技术等诸多 领域,起到了不可替代的作用。 关键词微纳光学;纳米制造;微纳光学产业 Abstract Important areas of micro -and nano -optics are introduced,which include photonics crystal, plasmonics,metamaterials,negative -index materials,cloaking,subwavelength gratings and others. Micro -and nano -optics is not only the hot subject of the current scientific research,and more importantly,it reflects the new direction of the optoelectronics industry,which will be widely used in optical communications,optical storage,laser fusion facility,laser weapon,utilization of solar energy, semiconductor laser,optical anti-faking and others areas. Key words micro-&nano-optics;nanofabrication;micro-&nano-optical industry 中图分类号TN25doi : 10.3788/LOP20094610.0022

2009硅基微纳光电子系统中光源的研究

https://www.360docs.net/doc/6617960062.html, 中国光学期刊网1引言硅材料在20世纪通过半导体集成电路垄断了数字电子工业,并改变了人们的生活方式以后,现在又成为光学及光电子学青睐的材料。成熟的大规模、低成本硅基半导体集成电路生产工艺是人们期望用硅材料来制备微纳光电子器件及系统的最主要原因之一。其目的就是要大幅度地降低目前基于III-V 族材料的微纳光电子器件及系统的成本。众所周知,硅在1.3~1.5m m 通信波段是非常好的低损耗传输介质。人们已经利用这种特性,开发出了微纳尺寸的光波导、分束器、耦合器、调制器以及 探测器等光通信用基础元器件[1,2]。锗硅探测器已达到40Gb/s 的指标[3]。如能实现硅基微纳放大器和激光器,与微电子集成类似的微光电子集成就不难实现了。然而,硅是一种间隙材料,单纯的体硅发光效率是非常低的。这也是目前硅基光电子学领域研究人员正 在集中攻关的重点之一。 为了能够将光源引入到单片硅基光电子系统中 去,人们采用了耦合、贴片及混合集成等方式[4,5],但大部分的努力仍然是希望通过单片集成的方式将光源 硅基微纳光电子系统中光源的研究现状及发展趋势周治平王兴军冯俊波王冰 (北京大学区域光纤通信网与新型光通信系统国家重点实验室,北京100871)Zhou Zhiping Wang Xingjun Feng Junbo Wang Bing (State Key Laboratory of Advanced Optical Communication Systems Networks,Peking University,Beijing 100871,China ) 摘要综合了微电子学及微纳光学的优势,硅基微纳光电子学正在快速走向实用阶段。与微电子制造技术兼容 的微纳光子器件,包括调制器、探测器、分束器以及耦合器等均取得了重要的突破。但硅基微纳光源的研 究则仍处在探索阶段。外部光源在多大程度上能代替片上光源?片上光源的最佳选择是什么?介绍、分 析了目前硅基微纳光源的研究现状及进展,并对片上光源的研究趋势进行展望。 关键词微纳光电子学;集成光学;硅基光源 Abstract Si based micro -nano optoelectronics is rapidly moving toward commercial applications.Nano - photonic devices compatible with the microelectronics manufacturing technology,including modulators, detectors,splitter and coupler,etc.have made an important breakthrough.However,research on Si light source is still in the exploratory stage.Is the external light source enough for chip size optoelectronic systems?What will be the better choice as the on-chip light source?This article will introduce the current research progress and development of Si based micro-nano light source,and prospect further outlook on-chip light source development trends. Key words micro-nano optoelectronic;integrated optics;Si based light source 中图分类号TN253doi :10.3788/LOP20094610.0028 Research Progress and Development Trends of Light Source for Silicon Based Micro-Nano Optoelectronic Systems

2018年国家重点研发计划“光电子与微电子器件及集成”重点专项申报条件、时间、流程

2018年国家重点研发计划“光电子与微电子器件及集成” 重点专项申报条件、时间、流程 1.硅基光子集成技术 1.1硅基发光基础理论及器件关键技术(基础前沿类) 研究内容: 开展硅基高效发光材料的设计、制备和器件研制,解决硅基光子集成技术中缺乏硅基光源这一瓶颈问题。研究硅基掺杂与缺陷调控及高效发光机理;研究硅基纳米结构高效发光材料与器件;研究硅基稀土掺杂/缺陷电致发光材料及器件;研究锗锡Ⅳ族直接带隙发光材料能带调控和相关器件;硅衬底上Ⅲ-Ⅴ族等化合物半导体材料的外延生长和激光器。 考核指标: 突破硅基高效发光材料和器件难题,研制出硅衬底上的多种激光器。设计和实现基于能带工程、掺杂工程、缺陷工程的2 种以上新结构高效硅基发光材料;硅基纳米结构高效发光器件能量转移效率>65%,外量子效率>10%;研制的硅基稀土掺杂/缺陷电致发光器件800 小时效率衰减小于25%;制备出具有直接带隙的锗锡发光材料,实现光泵和电泵激射;研制出硅衬底上Ⅲ-Ⅴ族等化合物半导体激光器,实现室温连续激射,阈值电流密度<100A/cm2,输出光功率达到mW 量级。申请发明专利20 项以上。 1.2Tb/s 级光传输用光电子器件及集成(共性关键技术类,拟支持两项) 研究内容:

研究 括高消光比的偏振旋转与偏振分合束技术、高速调制器、波分复用器、高精度90 度混频技术、宽带探测器阵列集成技术;研制光调制和接收芯片的封装和模块,包括高速驱动电路与硅基相干光调制芯片的集成技术、高速TIA 等集成电路与硅基相干光接收芯片的集成技术、相干光通信模块功能测试分析、ESD 防护性能和可靠性评估技术。研究微米量级电光调制器的结构和机理,包括电场和光场的相互作用增强机制、新型高效电光调制方法、超小型高速电光调制器的制备工艺开发及测试等。 考核指标: 研制出总容量>1Tb/s 级传输的相干光收发芯片及模块,实现高速硅光调制器、探测器、波分复用器和偏振复用器等多种功能元件的片上集成及模块化封装。封装后模块的模拟调制带宽和相干接收带宽>28GHz。收发模块误码性能、可靠性和工作温度应符合商用标准;光信号谱间隔<300GHz,进行1Tb/s 级系统传输>600km 的应用验证。制备微米量级电光调制器,调制速率>40Gb/s,调制器有源区尺寸<10μm,器件带有C 波段信号波长跟踪和锁定功能。具备批量生产能力,实现批量推广应用,申请发明专利50 项以上。 1.3光接入用100G PON 核心硅基光电子器件(共性关键技术类,拟支持两项) 研究内容: 面向25/50/100G PON 光收发模块的需求,研究低损耗高消光比的 25Gb/s 硅基光调制器、高灵敏度的25Gb/s 锗硅光探测器,实现调制器、探测

面向高性能计算机超结点的关键微纳光电子器件及其集成技术研究

项目名称:面向高性能计算机超结点的关键微纳光 电子器件及其集成技术研究 首席科学家:郑婉华中国科学院半导体研究所起止年限:2012.1至2016.8 依托部门:中国科学院

一、关键科学问题及研究内容 拟解决的关键科学问题 围绕未来高性能计算机的重大需求,在研究超结点CPU间数据交换的硅基微纳光电子器件及集成技术中,我们需要重点解决下列三个关键科学问题。 (1)纳米光电子结构体系中的光电耦合、传输与共振机理 项目中所研究的纳米光电子器件要求高带宽、低延迟,纳米光电子结构体系中包含了量子阱、光子晶体、金属纳米结构、纳米线等微纳结构基本要素,每种要素都有其独特的物理机制、特性及应用目标,如何将上述基本要素进行有机结合,产生出全新的器件结构和优异的器件性能,探索该体系中的光电耦合、传输与共振机理是我们面对的首要科学问题。其中,如何控制量子阱与光子晶体复合结构中的辐射与损耗、如何采用特殊的光子晶体结构实现对光的减慢、色散、局域、隧穿等控制、如何基于等离激元效应与纳米波导结合解决光电耦合、光电共振、模式控制及倏逝场形成等,是剖析所构建的纳米光电子结构体系所必须解决的关键问题;同时,传统的物理模型已无法精确描述微纳尺度下材料与器件的工作机理,也无法对微纳尺度下材料与器件的多维特征进行表征和优化,研究新型微纳光电子器件的物理模型及其在四维空时体系中的表达,是必须解决的另一个关键问题。 (2)纳米光电子集成系统中的高速宽带光电转换机制 项目中所研究的纳米光电子集成系统要求高速高带宽,采用10~100 纳米尺度的新型波导结构的集成系统,其载流子和光场分布及相互作用机理与传统硅基波导有本质的区别,如何操控高速高效的电光转换和光信号路径、如何解决难以同时提高调制效率和响应速度的问题,探索纳米光电子集成系统中的高速宽带光电转换机制是我们面临的另一个关键科学问题。其中,如何解决单晶Si 体材料中无线性电光效应且Kerr效应和Franz-Keldysh效应弱、而基于等离子色散效应研制的调制器和光开关,受限于载流子的迁移率而导致的调制效率与响应速度难以同时兼顾的问题,是解决该科学问题的关键;如何在高集成度条件下,增强波导光学限制能力、提高电光调制效率等是解决该科学问题的又一关键。

微纳加工技术在光电子领域的应用

35卷(2006年)1期 htt p:ΠΠwww .wuli .ac .cn 微纳加工技术在光电子领域的应用 3 韩伟华 樊中朝 杨富华 (中国科学院半导体研究所 半导体集成技术工程研究中心 北京 100083) 摘 要 纳米光电子器件正在成为下一代光电子器件的核心.文章介绍了电子束光刻和电感耦合等离子体刻蚀为代表的微纳加工技术在光电子学器件中的应用,主要包括量子点激光器、量子点THz 探测器和光子晶体器件.关键词 纳米光电子器件,电子束光刻,电感耦合等离子体刻蚀,量子点器件,光子晶体 Appli ca ti on of nanofabri ca ti on to optoelectron i cs HAN W ei 2Hua FAN Zhong 2Chao Y ANG Fu 2Hua (Research Center of Se m iconductor Integrated Technology,Institute of Se m iconductors,Chinese A cade m y of Sciences,B eijing 100083,China ) Abstract Nano 2scale circuits are becom ing the core of op t oelectr onic devices of the next generation .Nano 2fabrication by means of electr on beam lithography and inductively 2coup led 2p las ma etching is reviewed,focussing mainly on the fabricati on of quantu m dot lasers,THz quantum dot detect ors and phot onic crystal devices .Keywords nano 2scale op t oelectronic devices,electron beam lithography,inductively coup led p las ma etch 2ing,quantum dot devices,phot onic crystal 3 国家自然科学基金(批准号:60506017)资助项目 2005-10-17收到  通讯联系人.Email:weihua@red .se m i .ac .cn 1 引言 在过去的50多年中,微纳加工技术的进步极大地促进了微电子技术和光电子技术的发展 [1] .微电 子技术的发展以超大规模集成电路为代表,集成度以每18个月翻一番的速度提高,使得以90n m 为最小电路尺寸的集成电路芯片已经开始批量生产.以光刻与刻蚀为基础的平面为加工技术已经成为超大规模集成电路的技术核心,随着电子束光刻技术和电感耦合等离子体(I CP )刻蚀技术的出现,平面微纳加工工艺正在推动以单电子器件与自旋电子器件为代表的新一代纳米电子学的发展.当微纳加工技术应用到光电子领域,就形成了新兴的纳米光电子技术,主要研究纳米结构中光与电子相互作用及其能量互换的技术.纳米光电子技术在过去的十多年里,一方面,以低维结构材料生长和能带工程为基础的纳米制造技术有了长足的发展,包括分子束外延(MBE )、金属有机化学气相淀积(MOCVD )和化学束外延(CBE ),使得在晶片表面外延生长方向(竖 直方向)的外延层精度控制到单个原子层,从而获 得了具有量子尺寸效应的半导体材料;另一方面,平面纳米加工工艺实现了纳米尺度的光刻和横向刻蚀,使得人工横向量子限制的量子线与量子点的制作成为可能.同时,光子晶体概念的出现,使得纳米平面加工工艺广泛地应用到光介质材料折射率周期性的改变中. 本文将重点阐述电子束光刻技术和I CP 刻蚀技术在新兴的纳米光电子学器件中的应用,主要包括量子点激光器、量子点T Hz 探测器和光子晶体器件. 2 电子束光刻技术 电子束光刻技术是利用电子束在涂有电子抗蚀 剂的晶片上直接描画或投影复印图形的技术[2] .电子抗蚀剂是一种对电子敏感的高分子聚合物,经过 ? 15?

专家呼吁制定我国微纳光学发展路线图

科学时报/2009年/9月/4日/第A01版 专家呼吁制定我国微纳光学发展路线图 ——上海东方科技论坛研讨“微纳光学的若干重要研究方向” 本报记者黄辛 在日前举行的主题为“微纳光学的若干重要研究方向”的130期东方科技论坛上,沈文庆、庄松林、金国藩、范滇元等院士和专家呼吁制定我国微纳光学的发展路线图,集中我国各大科研院所的优势,建立先进的微纳光学加工中心,力求在微纳光学器件开发、加工制造等相关工艺上缩小与发达国家的差距,以促进我国微纳光学产业的发展。 来自美国、澳大利亚以及国内清华、北大、复旦等20多家科研院所和高校的45位专家学者,围绕激光与光电子产业的基础性、关键性、带动性技术——微纳光学的若干重要研究方向进行了深入讨论,探讨我国微纳光学研究的重大科学问题和拟解决的关键技术。 “这对于我国经济的可持续发展具有重大的战略意义和现实意义。”国家自然科学基金委员会副主任沈文庆指出,微纳光学近年来取得了突飞猛进的发展,它是一个前沿科学领域,也涉及到多学科的交叉。因此我们对这个领域的发展给予高度的关注。他希望,“这次会议能够酝酿出一个重大的科学项目,为上海市和我国的科学发展起到推动作用”。 微纳光学主要研究的是微米乃至纳米尺度下的光学现象。“微纳米光学是光学科学与技术的前沿,极大推动了光电子产业的发展。”大会执行主席、中科院上海光机所研究员周常河在题为《微纳光学及应用》的报告中指出,微纳光学不仅是光电子产业的重要发展方向,而且是目前光学领域的重要前沿学科方向。微电子大规模集成电路技术取得的快速进步,同时也推动了微纳光学产业乃至光电子产业的发展。利用纳米光学结构丰富的色彩控制能力和数字化编码能力,将来有可能在高端光学防伪场合中应用,以及在光学显示娱乐产业、三维场景光学模拟中应用。“下一代光盘产业、光通信、激光武器、大气污染检测等多种应用场合,微纳米光学技术都将发挥重要作用。”周常河说。 论坛现场,周常河向与会者展示了一幅模拟“光打印”的梵高画像。“打印”所需的彩色光源由一种深刻蚀光栅“制造”,其材质为普通石英玻璃,线宽为几百纳米。不过,受现有技术水平的限制,眼下这道光栅还无法实现红、蓝、绿三种颜色的完全精确分离,“打印”出的梵高画像整体呈现蓝绿色调。 周常河告诉记者,科学家设想中的“光打印机”,可让印刷过程完全与油墨脱钩。“自然界拥有取之不尽的光资源,用‘光学颜料’代替化学油墨,一来节省资源,二来远离污染,可谓一举两得。”周常河表示,一旦“光打印”成为现实,将在印刷行业引发一场“绿色革命”。 微纳光学是下一代光存储、光显示、太阳能利用、光刻技术、光通信等应用所必须解决的关键核心技术,体现出多学科交叉的特点,将会对我国的科学技术发展起到重要的推动作用。微纳米光学不仅成为目前科学与技术的前沿,是Nature或Science等国际学术杂志或刊物的热点报道内容,而且由于微纳光学对于光电子产业发展的巨大推动作用,成为各国政府、科学界以及企业界高度重视的领域,目前已经在全世界范围内形成了一个微纳米光学的研究高潮。美国、日本、欧盟等发达国家不仅在微纳光学的基础研究领域处于领先,而且其微纳光学的成果能够及时转化为产业,使其在微纳光学领域处于领导地位。 我国在光学领域已有很好的研究基础,国内已有十几个科研院所、高等院校开展了微纳光学方面的研究和应用,并取得了一定的成果。但是,我国在微纳米光学领域的原创性技术太少,能够转化为产业、推动光电子产业发展的则更少。

光电子与微电子器件及集成重点专项2018年度项目申报指南

附件2 “光电子与微电子器件及集成”重点专项 2018年度项目申报指南 为落实《国家中长期科学和技术发展规划纲要(2006—2020年)》提出的任务,国家重点研发计划启动实施“光电子与微电子器件及集成”重点专项。根据本重点专项实施方案的部署,现提出2018年度项目申报指南。 本重点专项总体目标是:发展信息传输、处理与感知的光电子与微电子集成芯片、器件与模块技术,构建全链条光电子与微电子器件研发体系,推动信息领域中的核心芯片与器件研发取得重大突破,改变我国网络信息领域中的核心元器件受制于人的被动局面,支撑通信网络、高性能计算、物联网与智慧城市等应用领域的自主可控发展,满足国家发展战略需求。 本重点专项按照硅基光子集成技术、混合光子集成技术、微波光子集成技术、集成电路与系统芯片、集成电路设计方法学和器件工艺技术6个创新链(技术方向),共部署49个重点研究任务。专项实施周期为5年(2018—2022年)。 2018年,在6个技术方向启动26个研究任务,拟支持35—52个项目,拟安排国拨经费总概算为6.5亿元。凡企业牵头的项目须自筹配套经费,配套经费总额与国拨经费总额比例不低于1:1。 —1—

项目申报统一按指南二级标题(如1.1)的研究方向进行。除特殊说明外,拟支持项目数均为1—2项。项目实施周期不超过4年。申报项目的研究内容须涵盖该二级标题下指南所列的全部内容和考核指标。基础前沿类、共性关键技术类项目的参研单位总数不超过10个,应用示范类项目的参研单位总数不超过15个。项目设1名项目负责人,项目中每个课题设1名课题负责人。 指南中“拟支持项目数为1—2项”是指:在同一研究任务下,当出现申报项目评审结果前两位评分相近、技术路线明显不同的情况时,将同时支持这2个项目。2个项目将采取分两个阶段支持的方式。第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。 1.硅基光子集成技术 1.1硅基发光基础理论及器件关键技术(基础前沿类) 研究内容:开展硅基高效发光材料的设计、制备和器件研制,解决硅基光子集成技术中缺乏硅基光源这一瓶颈问题。研究硅基掺杂与缺陷调控及高效发光机理;研究硅基纳米结构高效发光材料与器件;研究硅基稀土掺杂/缺陷电致发光材料及器件;研究锗锡Ⅳ族直接带隙发光材料能带调控和相关器件;硅衬底上Ⅲ-Ⅴ族等化合物半导体材料的外延生长和激光器。 考核指标:突破硅基高效发光材料和器件难题,研制出硅衬—2—

相关主题
相关文档
最新文档