腐蚀的分类

腐蚀的分类
腐蚀的分类

简介:1 腐蚀的分类及特点 1.1 点蚀点蚀又称坑蚀和小孔腐蚀。点蚀有大有小,一般情况下,点蚀的深度要比其直径大的多。点蚀经唱法生在表面有钝化膜或保护膜的金属上。由于金属材

料中存在缺陷、杂质和溶质等的不...

1 腐蚀的分类及特点

1.1 点蚀

点蚀又称坑蚀和小孔腐蚀。点蚀有大有小,一般情况下,点蚀的深度要比其直径大的多。点蚀经唱法生在表面有钝化膜或保护膜的金属上。

由于金属材料中存在缺陷、杂质和溶质等的不均一性,当介质中含有某些活性阴离子(如Cl-)时,这些活性阴离子首先被吸附在金属表面某些点上,从而使金属表面钝化膜发生破坏。一旦这层钝化膜被破坏又缺乏自钝化能力时,金属表面就发生腐蚀。这是因为在金属表面缺陷处易漏出机体金属,使其呈活化状态,而钝化膜处仍为钝态,这样就形成了活性—钝性腐蚀电池,由于阳极面积比阴极面积小得多,阳极电流密度很大,所以腐蚀往深处发展,金属表面很快就被腐蚀成小孔,这种现象被称为点蚀。

在石油、化工的腐蚀失效类型统计中,点蚀约占20%~25%。流动不畅的含活性阴离子的介质中容易形成活性阴离子的积聚和浓缩的条件,促使点蚀的生成。粗糙的表面比光滑的表面更容易发生点蚀。

PH值降低、温度升高都会增加点蚀的倾向。氧化性金属离子(如Fe3+、Cu2+、Hg2+等)能促进点蚀的产生。但某些含氧阴离子(如氢氧化物、铬酸盐、硝酸盐和硫酸盐等)能防止点蚀。

点蚀虽然失重不大,但由于阳极面积很小,所以腐蚀速率很快,严重时可造成设备穿孔,使大量的油、水、气泄漏,有时甚至造成火灾、爆炸等严重事故,危险性很大。点蚀会使晶间腐蚀、应力腐蚀和腐蚀疲劳等加剧,在很多情况下点蚀是这些类型腐蚀的起源。

1.2 缝隙腐蚀

在电解液中,金属与金属或金属与非金属表面之间构成狭窄的缝隙,缝隙内有关物质的移动受到了阻滞,形成浓差电池,从而产生局部腐蚀,这种腐蚀被称为缝隙腐蚀。缝隙腐蚀常发生在设备中法兰的连接处,垫圈、衬板、缠绕与金属重叠处,它可以在不同的金属和不同的腐蚀介质中出现,从而给生产设备的正常运行造成严重障碍,甚至发生破坏事故。对钛及钛合金来说,缝隙腐蚀是最应关注的腐蚀现象。介质中,氧气浓度增加,缝隙腐蚀量增加;PH值减小,阳极溶解速度增加,缝隙腐蚀量也增加;活性阴离子的浓度增加,缝隙腐蚀敏感性升高。但是,某些含氧阴离子的增加会减小缝隙腐蚀量。

1.3 应力腐蚀

材料在特定的腐蚀介质中和在静拉伸应力(包括外加载荷、热应力、冷加工、热加工、焊接等所引起的残余应力,以及裂缝锈蚀产物的楔入应力等)下,所出现的低于强度极限的脆性开裂现象,称为应力腐蚀开裂。

应力腐蚀开裂是先在金属的腐蚀敏感部位形成微小凹坑,产生细长的裂缝,且裂缝扩展很快,能在短时间内发生严重的破坏。应力腐蚀开裂在石油、化工腐蚀失效类型中所占比例最高,可达50%。

应力腐蚀的产生有两个基本条件:一是材料对介质具有一定的应力腐蚀开裂敏感性;二是存在足够高的拉应力。导致应力腐蚀开裂的应力可以来自工作应力,

也可以来自制造过程中产生的残余应力。据统计,在应力腐蚀开裂事故中,由残余应力所引起的占80%以上,而由工作应力引起的则不足20%。

应力腐蚀过程一般可分为三个阶段。第一阶段为孕育期,在这一阶段内,因腐蚀过程局部化和拉应力作用的结果,使裂纹生核;第二阶段为腐蚀裂纹发展时期,当裂纹生核后,在腐蚀介质和金属中拉应力的共同作用下,裂纹扩展;第三阶段中,由于拉应力的局部集中,裂纹急剧生长导致零件的破坏。

在发生应力腐蚀破裂时,并不发生明显的均匀腐蚀,甚至腐蚀产物极少,有时肉眼也难以发现,因此,应力腐蚀是一种非常危险的破坏。

一般来说,介质中氯化物浓度的增加,会缩短应力腐蚀开裂所需的时间。不同氯化物的腐蚀作用是按Mg2+、Fe3+、Ca2+、Na1+、Li1+等离子的顺序递减的。发生应力腐蚀的温度一般在50℃~300℃之间。

防止应力腐蚀应从减少腐蚀和消除拉应力两方面来采取措施。主要是:一要尽量避免使用对应力腐蚀敏感的材料;二在设计设备结构时要力求合理,尽量减少应力集中和积存腐蚀介质;三在加工制造设备时,要注意消除残余应力。

1.4 腐蚀疲劳

腐蚀疲劳是在腐蚀介质与循环应力的联合作用下产生的。这种由于腐蚀介质而引起的抗腐蚀疲劳性能的降低,称为腐蚀疲劳。疲劳破坏的应力值低于屈服点,在一定的临界循环应力值(疲劳极限或称疲劳寿命)以上时,才会发生疲劳破坏。而腐蚀疲劳却可能在很低的应力条件下就发生破断,因而它是很危险的。

影响材料腐蚀疲劳的因素主要有应力交变速度、介质温度、介质成分、材料尺寸、加工和热处理等。增加载荷循环速度、降低介质的PH值或升高介质的温度,都会使腐蚀疲劳强度下降。材料表面的损伤或较低的粗糙度所产生的应力集中,会使疲劳极限下降,从而也会降低疲劳强度。

1.5 晶间腐蚀

晶间腐蚀是金属材料在特定的腐蚀介质中,沿着材料的晶粒间界受到腐蚀,使晶粒之间丧失结合力的一种局部腐蚀破坏现象。受这种腐蚀的设备或零件,有时从外表看仍是完好光亮,但由于晶粒之间的结合力被破坏,材料几乎丧失了强度,严重者会失去金属声音,轻轻敲击便成为粉末。

据统计,在石油、化工设备腐蚀失效事故中,晶间腐蚀约占4%~9%,主要发生在用轧材焊接的容器及热交换器上。

一般认为,晶界合金元素的贫化是产生晶间腐蚀的主要原因。通过提高材料的纯度,去除碳、氮、磷和硅等有害微量元素或加入少量稳定化元素(钛、铌),以控制晶界上析出的碳化物及采用适当的热处理制度和适当的加工工艺,可防止晶间腐蚀的产生。

1.6 均匀腐蚀

均匀腐蚀是指在与环境接触的整个金属表面上几乎以相同速度进行的腐蚀。在应用耐蚀材料时,应以抗均匀腐蚀作为主要的耐蚀性能依据,在特殊情况下才考虑某些抗局部腐蚀的性能。

1.7 磨损腐蚀(冲蚀)

由磨损和腐蚀联合作用而产生的材料破坏过程叫磨损腐蚀。磨损腐蚀可发生在高速流动的流体管道及载有悬浮摩擦颗粒流体的泵、管道等处。有的过流部件,如高压减压阀中的阀瓣(头)和阀座、离心泵的叶轮、风机中的叶片等,在这些部位腐蚀介质的相对流动速度很高,使钝化型耐蚀金属材料表面的钝化膜,因受

到过分的机械冲刷作用而不易恢复,腐蚀率会明显加剧,如果腐蚀介质中存在着固相颗粒,会大大加剧磨损腐蚀。

1.8 氢脆

金属材料特别是钛材一旦吸氢,就会析出脆性氢化物,使机械强度劣化。在腐蚀介质中,金属因腐蚀反应析出的氢及制造过程中吸收的氢,是金属中氢的主要来源。金属的表面状态对吸氢有明显的影响,研究表明,钛材的研磨表面吸氢量最多,其次为原始表面,而真空退火和酸洗表面最难吸氢。钛材在大气中氧化处理能有效防止吸氢。

泵阀常用耐腐蚀材料

1 腐蚀的分类及特点

1.1 点蚀

点蚀又称坑蚀和小孔腐蚀。点蚀有大有小,一般情况下,点蚀的深度要比其直径大的多。点蚀经常发生在表面有钝化膜或保护膜的金属上。

由于金属材料中存在缺陷、杂质和溶质等的不均一性,当介质中含有某些活性阴离子(如Cl-)时,这些活性阴离子首先被吸附在金属表面某些点上,从而使金属表面钝化膜发生破坏。一旦这层钝化膜被破坏又缺乏自钝化能力时,金属表面就发生腐蚀。这是因为在金属表面缺陷处易漏出机体金属,使其呈活化状态,而钝化膜处仍为钝态,这样就形成了活性—钝性腐蚀电池,由于阳极面积比阴极面积小得多,阳极电流密度很大,所以腐蚀往深处发展,金属表面很快就被腐蚀成小孔,这种现象被称为点蚀。

在石油、化工的腐蚀失效类型统计中,点蚀约占20%~25%。流动不畅的含活性阴离子的介质中容易形成活性阴离子的积聚和浓缩的条件,促使点蚀的生成。粗糙的表面比光滑的表面更容易发生点蚀。

PH值降低、温度升高都会增加点蚀的倾向。氧化性金属离子(如Fe3+、Cu2+、Hg2+等)能促进点蚀的产生。但某些含氧阴离子(如氢氧化物、铬蒜盐、硝酸盐和硫酸盐等)能防止点蚀。

点蚀虽然失重不大,但由于阳极面积很小,所以腐蚀速率很快,严重时可造成设备穿孔,使大量的油、水、气泄漏,有时甚至造成火灾、爆炸等严重事故,危险性很大。点蚀会使晶间腐蚀、应力腐蚀和腐蚀疲劳等加剧,在很多情况下点蚀是这些类型腐蚀的起源。

1.2 缝隙腐蚀

在电解液中,金属与金属或金属与非金属表面之间构成狭窄的缝隙,缝隙内有关物质的移动受到了阻滞,形成浓差电池,从而产生局部腐蚀,这种腐蚀被称为缝隙腐蚀。缝隙腐蚀常发生在设备中法兰的连接处,垫圈、衬板、缠绕与金属重叠处,它可以在不同的金属和不同的腐蚀介质中出现,从而给生产设备的正常运行造成严重障碍,甚至发生破坏事故。对钛及钛合金来说,缝隙腐蚀是最应关

注的腐蚀现象。介质中,氧气浓度增加,缝隙腐蚀量增加;PH值减小,阳极溶解速度增加,缝隙腐蚀量也增加;活性阴离子的浓度增加,缝隙腐蚀敏感性升高。但是,某些含氧阴离子的增加会减小缝隙腐蚀量。

1.3 应力腐蚀

材料在特定的腐蚀介质中和在静拉伸应力(包括外加载荷、热应力、冷加工、热加工、焊接等所引起的残余应力,以及裂缝锈蚀产物的楔入应力等)下,所出现的低于强度极限的脆性开裂现象,称为应力腐蚀开裂。

应力腐蚀开裂是先在金属的腐蚀敏感部位形成微小凹坑,产生细长的裂缝,且裂缝扩展很快,能在短时间内发生严重的破坏。应力腐蚀开裂在石油、化工腐蚀失效类型中所占比例最高,可达50%。

应力腐蚀的产生有两个基本条件:一是材料对介质具有一定的应力腐蚀开裂敏感性;二是存在足够高的拉应力。导致应力腐蚀开裂的应力可以来自工作应力,也可以来自制造过程中产生的残余应力。据统计,在应力腐蚀开裂事故中,由残余应力所引起的占80%以上,而由工作应力引起的则不足20%。

应力腐蚀过程一般可分为三个阶段。第一阶段为孕育期,在这一阶段内,因腐蚀过程局部化和拉应力作用的结果,使裂纹生核;第二阶段为腐蚀裂纹发展时期,当裂纹生核后,在腐蚀介质和金属中拉应力的共同作用下,裂纹扩展;第三阶段中,由于拉应力的局部集中,裂纹急剧生长导致零件的破坏。

在发生应力腐蚀破裂时,并不发生明显的均匀腐蚀,甚至腐蚀产物极少,有时肉眼也难以发现,因此,应力腐蚀是一种非常危险的破坏。

一般来说,介质中氯化物浓度的增加,会缩短应力腐蚀开裂所需的时间。不同氯化物的腐蚀作用,是按Mg2+、Fe3+、Ca2+、Na1+、Li1+等离子的顺序递减的。介质温度升高,易发生应力腐蚀,但温度过高由于全面腐蚀却抑制了应力腐蚀。Cr—Ni奥氏体不锈钢发生应力腐蚀的温度范围在50℃~300℃之间。

金属腐蚀机理及分类

1.1 金属的腐蚀机理 1.1.1 金属腐蚀的定义 金属及其制品在生产和使用过程中,在周围环境因素的作用下,发生破坏变质,改变了原有的化学、物理、机械等特性,称为金属腐蚀。 根据金属腐蚀过程,可以把腐蚀分为化学腐蚀和电化学腐蚀两大类。 1.1.2 化学腐蚀 化学腐蚀是金属与环境介质直接发生化学反应而产生的损伤。 特点:○1在腐蚀过程中没有电流产生,○2腐蚀产物直接产生并覆盖在发生腐蚀的地方。○3化学腐蚀往往在高湿的气体介质中发生。 钢铁在高温气体环境中很容易被腐蚀,如果同时有盐类或含硫物质存在,则会加速高温氧化,这称为热腐蚀。 1.1.3 电化学腐蚀 航空器上所发生的腐蚀大多数属于电化学腐蚀。 一、原电池 凡能将化学能转变为电能的装置称作原电池。 电化学腐蚀的最显著的特征是电化学腐蚀过程中有自由电子流动,产生电流。 二、电化学腐蚀与腐蚀电池 电化学腐蚀就是在金属上产生若干原电池(实际上是短路原电池,即称腐蚀电池),金属成为阳极,遭到溶解而发生腐蚀。 形成原电池的条件:1、两种金属(或两个区域)之间存在电位差;2、两种金属之间有导电通路;3、有腐蚀环境或腐蚀溶液。 铝合金的电化学腐蚀: 含有铜的铝合金构件处在潮湿的大气中,在其表面形成一层电解质溶液薄膜。这就构成了腐蚀电池。该腐蚀电池的阳极为电位较低的基体铝(-1.66V),阴极为电位较高的添加元素铜(+0.337V)。 电子由铝流向铜,铝遭到溶解。 根据组成腐蚀电池的大小,可以把腐蚀电池分为宏电池及微电池两类。 造成金属表面电位不同,形成微电池的原因很多,常见的有: (1)金属表面化学组成不均,夹杂有杂质。 (2)金属表面组织不均。 (3)金属表面生成氧化膜不均匀。 (4)金属表面物理状态不均匀。金属在机械加工过程中,受到拉、压、剪切作用,或由于热处理不均匀,造成不同部位表面的内应力和变形不同。通常,变形大,内应力高的地方为阳极,易受到腐蚀。 常见金属及其合金的电位: 一、Mg及其合金,铝合金5052、5056、5036、6061、6063、5356 二、Zn、Cd、除以上6种以外的铝合金 三、除不锈钢之外的碳钢、合金钢、Fe、Pb、Sn 四、Cu、Cr、Ni、Ag、Au、Pt、Ti、钴、铑、不锈钢 同一组中,电位基本一致,基本不发生电化学腐蚀;不同组中,第一组电位最低,为阳极,被腐蚀。

硫化氢腐蚀的机理及影响因素..

硫化氢腐蚀的机理及影响因素 作者:安全管理网来源:安全管理网 1. H2S腐蚀机理 自20世纪50年代以来,含有H2S气体的油气田中,钢在H2S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。虽然现已普遍承认H2S不仅对钢材具有很强的腐蚀性,而且H2S本身还是一种很强的渗氢介质,H2S腐蚀破裂是由氢引起的;但是,关于H2S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。 因此,在开发含H2S酸性油气田过程中,为了防止H2S腐蚀,了解H2S腐蚀的基本机理是非常必要的。 (1) 硫化氢电化学腐蚀过程 硫化氢(H2S)的相对分子质量为34.08,密度为1.539kg/m3。硫化氢在水中的溶解度随着温度升高而降低。在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。 1

在油气工业中,含H2S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt等提出的H2S04中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。研究表明,阳极反应是铁作为离子铁进入溶液的,而阴极反应,特别是无氧环境中的阴极反应是源于H2S中的H+的还原反应。总的腐蚀速率随着pH的降低而增加,这归于金属表面硫化铁活性的不同而产生。Sardisco,Wright和Greco研究了30℃时H2S-C02-H20系统中碳钢的腐蚀,结果表明,在H2S分压低于0.1Pa时,金属表面会形成包括FeS2,FeS,Fe1-X S在内的具有保护性的硫化物膜。然而,当H2S分压介于0.1~4Pa时,会形成以Fe1-X S为主的包括FeS,FeS2在内的非保护性膜。此时,腐蚀速率随H2S浓度的增加而迅速增长,同时腐蚀速率也表现出随pH降低而上升的趋势。Sardisco和Pitts发现,在pH处于6.5~8.8时,表面只形成了非保护性的Fe1-X S;当pH处于4~6.3时,观察到有FeS2,FeS,Fe1-X S形成。而FeS保护膜形成之前,首先是形成Fe S1-X;因此,即使在低H2S浓度下,当pH在3~5时,在铁刚浸入溶液的初期,H2S也只起加速腐蚀的作用,而非抑制作用。只有在电极浸入溶液足够长的时间后,随着FeS1-X逐渐转变为FeS2和FeS,抑制腐蚀的效果才表现出来。根据Hausler等人的研究结果,尽管界面反应的重 2

常用非金属材料介绍

塑料的优点 1;重量轻,一般塑料的比重约在0.83-2.2之间。 2;比强度高,即强度与密度之比,其中玻璃纤维增强塑料的比强度达到甚至超过了钢材的水平。 3;优良的耐磨、自润滑和吸震性能,因而在电子设备的传动机构和摩擦机构中得到广泛应用。如齿轮、齿条、蜗杆、滑轮、轴承等。 4;粘结能力强,一般的塑料都有一定的粘结能力。 5;优越的化学化工设备制造中有着极其广泛的用稳定性,一般塑料对酸、碱、盐等化学药物均具有一定的抗腐蚀能力,因而在途。 6;优良的电绝缘性能,某些塑料无论在高频,还是低频,高压还是低压情况下,绝缘性能都是十分优良的,所以广泛被用于电机、电器、电子工业中作为结构材料和绝缘材料。 7;有些塑料具有优良的光学性能 8;着色范围宽,可染成各种色调。 塑料的缺点 1;耐热性较差,所以塑件一般不能用在高温状态,否则易降解、老化。 2;导热性较差,所以在要求导热性好的场合不能用塑料 3;吸湿性大,容易发生水解老化。 4;易老化,所以对于使用寿命较长的场合一般还是用金属件。 塑料的成分 塑料的成分包括:1;树脂-塑料中主要成分,在塑料中的比例一般为40-60%,决定塑料的类和主要性能。2;填充剂-改善塑料的性能和扩大它的使用范围,又降低的成本。3;增塑剂-降低树脂的熔融粘度和熔融温度,改善其成型加工性能,改进塑件的柔韧性、弹性以及其它各种必要的性能。4;着色剂-又称色料,主要起美观和装饰作用,在塑料中加入色料不仅能使塑料鲜艳、美观,同时还能改善塑件的耐候性,即提高抗御紫外线能力。5;稳定剂-为了防止或抑制树脂因受外界因素(光、热、氧和霉菌等)作用所引起的破坏。包括光稳定剂、热稳定剂、抗氧剂。6;润滑剂-为改进塑料熔体的流动性,减少或避免对设备或模具的摩擦和粘附,以及改进塑件表面光整度而加入的一类添加剂。7;其它成分,如发泡剂、阻燃剂、防静电剂、增强剂、偶联剂、硬化剂等。 塑料的分类 一、热塑性塑料:这类塑料的合成树脂都是线型或支链型高聚物,因而受热变软,甚至成为可流动的稳定粘稠液体,在此状态时具有可塑性,可塑制成一定形状的塑 件,冷却后保持既得的形状,如再加热又可变软塑制成另一形状,如此可以反复进行多次。在这一过程是物理变化,无化学变化,因此其变化过程是可逆的。如ABS、PP、PE等。 二、热固性塑料:这类塑料的合成树脂是体型高聚物,因而在加热之初,因分子呈线型结构,具有可熔性和可塑性,可塑制成一定形状的塑件,当继续加热时,分子 1

腐蚀的基本类型

腐蚀的基本类型 论文导读:而引起的变质和破坏统称为腐蚀。材料腐蚀的现象和机理比较复杂。腐蚀控制技术涉及面广。腐蚀控制,免费论文,腐蚀的基本类型。关键词:腐蚀,材料腐蚀,腐蚀控制 一般而言,金属、混凝土、木材等材料受周围环境介质的影响而发生的化学、电化学和物理等反应,而引起的变质和破坏统称为腐蚀,其中也包括上述因素与机械因素、生物因素等的共同作用。金属腐蚀的主要对象,其中尤以钢铁的腐蚀最为常见,危害、损害性极大。 一、腐蚀的概念及分类 (一)腐蚀的概念 腐蚀是材料与其环境间的物理化学作用引起材料本身性质的变化,如铁的生锈是金属腐蚀的普遍形式,又如氢氧化钠破坏肌肉和植物纤维。材料的腐蚀是包括材料本身和环境介质两者在内的一个具有反应作用的体系,腐蚀反应的场所,首先是材料和腐蚀性介质之间相界面处。材料包括金属和非金属材料,如碳钢及其合金、有色金属、塑料、混凝土和木材等,在一个腐蚀系统中,对材料行为起决定性作用的是化学成分、组织结构和表面形态。材料的周围环境介质包括与其接触的气体、液体和固体以及周围环境条件,如温度、压力、速度、光照、辐射、生物条件等。这个作用包括化学的、电化学的、机械的、生物的以及物理的作用。 采用科学的方法防止或者控制腐蚀的危害作用的工程,称为腐蚀工程。(二)材料腐蚀的分类及特征

材料腐蚀的现象和机理比较复杂,材料腐蚀的分类方法也有许多,根据不同的起因、机理和破坏形式而有各种方法。以下介绍几种常用的分类方法。 1.按腐蚀机理分类 通常材料腐蚀按照腐蚀机理可以分为金属化学腐蚀、金属电化学腐蚀、结晶腐蚀、物理化学复合腐蚀。 (1)化学腐蚀:是指金属表面与非电解质直接发生纯化学反应而引起的破坏、其特点是在反应过程中没有电流产生。如铝在四氯化碳、三氯甲烷或乙醇中的腐蚀,镁或钛在甲醇中的腐蚀、物理化学复合腐蚀。 (2)电化学腐蚀:是指金属表面与离子导电的介质发生化学反应而产生的破坏。在反应过程中有电流产生,腐蚀金属表面上存在着阴极和阳极。阳极的反应是金属原失去电子而成为离子状态转移到介质中,成为阳极氧化反应。阴极反应是介质中的去极化剂吸收来自阳极的电子,成为阴极还原过程。这两个反应是相互独立而又同时进行的,称之为一对共轭反应。有阴阳极组成了短路电流,腐蚀过程中有电流产生。如金属在潮湿大气、海水、土壤及酸、碱、盐溶液中的腐蚀均属这一类。电化学腐蚀比较普遍,对金属结构的危害比较严重。 (3)结晶腐蚀:是指因酸、碱、盐等腐蚀介质侵入到建筑物或材料内部生成结晶盐,由于结晶盐的体积膨胀作用使建筑物或材料内部产生应力而引起的破坏现象。结晶腐蚀是工业厂房、非金属设备常见的腐蚀类型。

非金属材料

非金属材料 1 非金属材料常用种类 2 常用非金属材料的特性和应用 2.1 橡胶 橡胶分为天然橡胶和合成橡胶;从性能上分为普通橡胶、耐酸碱橡胶、耐油橡胶、耐热橡胶。 主要特性及应用:具有高弹性,有良好的耐磨性、绝缘性和阻尼性;用作动静态密封件,减震、防震件,传动件及各种耐磨件等。 天然橡胶可塑性和工艺加工性能好;但不耐老化,且耐热性、耐酸性、耐油性差。合成橡胶加工性能差,其种类不同,性能也有区别。其中丁腈橡胶有优异的耐油性,广泛用于耐油橡胶制品;氯丁橡胶耐老化性极好,耐热性、耐燃性好;用途极为广泛。 比如现场中使用的油封、O形橡胶密封圈所用橡胶需耐油性好的耐油橡胶; 2.2 氟橡胶 应用范围为-40℃~230℃。氟橡胶是含有氟原子的橡胶统称,耐高温,耐蚀性良好,耐各类酸、碱、盐、石油产品、烃类等,但耐溶剂性不及氟塑料。在化工方面可用于耐高温和强腐蚀环境。

2.3 塑料 2.3.1 分类 常用塑料有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、有机玻璃、尼龙(PA)、聚四氟乙烯(F4)、酚醛塑料(PF)等。 2.2.2 特性及应用 2.4 聚四氟乙烯(F4) 2.4.1 特点 1.聚四氟乙烯素称“塑料王”,具有高度的化学稳定性,对强酸、强碱、强氧化剂、有机溶剂军耐腐蚀,只有对熔融状态的碱金属及高温下的氟元素才不耐蚀; 2.有异常好的润滑性; 3.可在260℃长期连续使用,也可在-250℃的低温下满意的使用;4优异的电绝缘性;耐大气老化性能非常好;6.突出的表面不粘性,几乎所有粘性物质都不能附在它的表面上;7.其缺点:强度低,刚性差,冷流形大,必须用冷压烧结法成型,工艺较麻烦。 2.4.2 用途

腐蚀机理

混凝土盐渍土腐蚀机理及影响因素 [摘要]通过对盐渍土地区混凝土腐蚀的机理分析, 指出了西部盐渍区富含的硫酸盐是造成混凝土物耐久性差的主要原因; 并详细阐述了国内外关于混凝土硫酸盐侵蚀影响因素的现状研究。 [关键词]盐渍土耐久性硫酸盐侵蚀 盐渍土就是指含盐分较高的土壤, 一般超过3% 的盐含量就可归结到盐渍 土的范围。我国西部地区盐渍土分布广泛, 新疆、青海、西藏、甘肃、宁夏以及内蒙古等地均有大面积的盐渍区。我国正在实施西部大开发战略, 因此大量基础设施就要建于盐渍土之上。以往的资料和调查表明, 一些道路、桥梁、建筑物、地下管道乃至电线杆等, 仅使用几年就遭受严重的腐蚀破坏, 不得不进行工程修复, 造成巨大经济损失。因此, 研究抗腐蚀混凝土在盐渍地区的耐久性问题, 具有非常重要的现实意义和深远的社会影响。 1、盐渍土对混凝土结构的腐蚀机理 盐渍土含盐量及含盐种类有很大差别, 其腐蚀性也有差异。氯盐主要腐蚀混凝土中的钢筋从而引起结构破坏; 硫酸盐主要是通过物理、化学作用破坏水泥水化产物, 使混凝土分化、脱落和丧失强度。1. 1 硫酸盐的化学腐蚀机理实际上硫酸盐侵蚀是一个比较复杂的过程。硫酸盐侵蚀引起的危害性包括混凝土的整体开裂和膨胀以及水泥浆体的软化和分解。不同的Ca、N a、K、M g 和Fe 的阳离子会产生不同的侵蚀机理和破坏原因, 如硫酸钠和硫酸镁的侵蚀机理就截然不同。1) 硫酸钠侵蚀首先是N a2SO 4 和水泥水化产物Ca (OH) 2 的反应, 生成的石膏(CaSO4·2H2O ) , 再与单硫型硫铝酸钙和含铝的胶体反应生成次生的钙矾石, 由于钙矾石具有膨胀性, 所以钙矾石膨胀破坏的特点是混凝土试件表面出现少数较粗大的裂缝。当侵蚀溶液中SO 2-4 浓度大于1000mg?L 时, 水泥石的毛细孔若为饱和石灰溶液所填充, 不仅有钙矾石生成, 而且在水泥石内部还会有二水石膏结晶析出。从氢氧化钙转变为石膏, 体积增大为原来的两倍, 使混凝土因内应力过大而导致膨胀破坏。石膏膨胀破坏的特点是试件没有粗大裂纹但遍体溃散。B iczok 认为: 侵蚀溶液浓度改变, 反应机理也发生变化。以N a2SO 4 侵蚀为例, 低SO 2-4 浓度(< 1000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 而在高浓度下(> 8000mg?L SO 2-4 ) , 主要产物是石膏; 在中等程度浓度下(1000mg? L~8000mg?L SO 2-4 ) , 钙矾石和石膏同时生成。在M gSO4 侵蚀情况下, 在低SO 2-4 浓度(< 4000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 在中等程度浓度下(4000mg? L~7500mg?L SO 2-4 ) , 钙矾石和石膏同时生成; 而在高浓度下(> 7500mg?L SO 2-4 ) , 镁离子腐蚀占主导地位。2) 硫酸镁与水化水泥产物的反应方程式如下:Ca (OH) 2+ M gSO4+ 2H2O→CaSO4·2H2O + M g (OH) 2 (3)硫酸镁侵蚀首先发生上式的反应, 然而上式生成的M g(OH) 2 与N aOH 不同, 它的溶解度很低(0. 01g?L , 而Ca (OH ) 2是1. 37g?L ) , 饱和溶液的PH 值是10. 5 (Ca (OH) 2 是12. 4,N aOH是13. 5) , 在此PH 值下钙矾石和C- S- H 均不稳定, 低的PH 值环境将产生以下结果: (1) 次生钙矾石不能生

无机非金属材料的分类

无机非金属材料的分类 (1)传统陶瓷(其中,瓷是在陶的基础上上一层釉) 陶瓷在我国有悠久的历史,是中华民族古老文明的象征。从西安地区出土的秦始皇陵中大批陶兵马俑,气势宏伟,形象逼真,被认为是世界文化奇迹,人类的文明宝库。唐代的唐三彩、明清景德镇的瓷器均久负盛名。 传统陶瓷材料的主要成分是硅酸盐,自然界存在大量天然的硅酸盐,如岩石、土壤等,还有许多矿物如云母、滑石、石棉、高岭石等,它们都属于天然的硅酸盐。此外,人们为了满足生产和生活的需要,生产了大量人造硅酸盐,主要有玻璃、水泥、各种陶瓷、砖瓦、耐火砖、水玻璃以及某些分子筛等。硅酸盐制品性质稳定,熔点较高,难溶于水,有很广泛的用途。 硅酸盐制品一般都是以黏土(高岭土)、石英和长石为原料经高温烧结而成。黏土的化学组成为Al?O3·2SiO?·2H?O,石英为SiO?,长石为K?O·Al?O3·6SiO?(钾长石)或Na2O·Al2O3·6SiO2(钠长石)。这些原料中都含有SiO2,因此在硅酸盐晶体结构中,硅与氧的结合是最重要也是最基本的。 硅酸盐材料是一种多相结构物质,其中含有晶态部分和非晶态部分,但以晶态为主。硅酸盐晶体中硅氧四面体[SiO4]是硅酸盐结构的基本单元。在硅氧四面体中,硅原子以sp杂化轨道与氧原子成键,Si—O键键长为162 pm,比起Si和O的离子半径之和有所缩短,故Si—O键的结合是比较强的。 (2)精细陶瓷 精细陶瓷的化学组成已远远超出了传统硅酸盐的范围。例如,透明的氧化铝陶瓷、耐高温的二氧化锆(ZrO2)陶瓷、高熔点的氮化硅(Si3N4)和碳化硅(SiC)陶瓷等,它们都是无机非金属材料,是传统陶瓷材料的发展。精细陶瓷是适应社会经济和科学技术发展而发展起来的,信息科学、能源技术、宇航技术、生物工程、超导技术、海洋技术等现代科学技术需要大量特殊性能的新材料,促使人们研制精细陶瓷,并在超硬陶瓷、高温结构陶瓷、电子陶瓷、磁性陶瓷、光学陶瓷、超导陶瓷和生物陶瓷等方面取得了很好的进展,下面选择一些实例做简要的介绍。 高温结构陶瓷汽车发动机一般用铸铁铸造,耐热性能有一定限度。由于需要用冷却水冷却,热能散失严重,热效率只有30%左右。如果用高温结构陶瓷制造陶瓷发动机,发动机的工作温度能稳定在1 300 ℃左右,由于燃料充分燃烧而又不需要水冷系统,使热效率大幅度提高。用陶瓷材料做发动机,还可减轻汽车的质量,这对航天航空事业更具吸引力,用高温陶瓷取代高温合金来制造飞机上的涡轮发动机效果会更好。 目前已有多个国家的大的汽车公司试制无冷却式陶瓷发动机汽车。我国也在1990年装配了一辆并完成了试车。陶瓷发动机的材料选用氮化硅,

金属腐蚀的分类

金属腐蚀的分类:按照反应的特性,金属腐蚀可分为1,化学腐蚀2,生物腐蚀3,电化学腐蚀。化学腐蚀是指氧化剂和金属表面接触,发生化学反应导致的腐蚀。生物腐蚀是指由各种微生物的生命活动引起的腐蚀。电化学腐蚀是指发生电化学反应导致的腐蚀。电化学腐蚀是最普遍和最严重的腐蚀,因此研究电化学腐蚀具有重要的意义! 电化学腐蚀的机理:金属材料与电解质溶液接触,通过电极反应产生的腐蚀。电化学腐蚀反应是一种氧化还原反应。在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。 在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显着差别,进行两种反应的表面位置不断地随机变动。如果金属表面有某些区域主要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。 当金属被放置在水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池(其电极习惯上称阴、阳极,不叫正、负极)。阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,一般只起传递电子的作用。腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中CO2,SO2,NO2等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(Fe3C)以及其它金属和杂质,它们大多数没有铁活泼。这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得 腐蚀不断进行。 (1)析氢腐蚀(钢铁表面吸附水膜酸性较强时) 阳极(Fe):Fe=Fe2++2e- Fe2++2H2O=Fe(OH)2+2H+ 阴极(杂质):2H++2e-=H2 电池反应:Fe+2H2O=Fe(OH)2+H2↑ 由于有氢气放出,所以称之为析氢腐蚀。

材料腐蚀的分类

材料腐蚀的分类 材料腐蚀类别与相应机理 金属和它所处的环境介质之间发生化学、电化学或物理作用,引起金属的变质和破坏,称为金属腐蚀。腐蚀现象是十分普遍的。从热力学的观点出发,除了极少数贵金属Au、Pt 等外,一般材料发生腐蚀都是一个自发过程。金属很少是由于单纯机械因素(如拉、压、冲击、疲劳、断裂和磨损等)或其他物理因素(如热能、光能等)引起破坏的,绝大多数金属的破坏都与其周围环境的腐蚀因素有关。 1.1金属的高温氧化腐蚀 1.1.1高温氧化腐蚀概念 在大多数条件下,使用金属相对于其周围的气态都是热不稳定的。根据气体成分和反应条件不同,将反应生成氧化物、硫化物、碳化物和氮化物等,或者生成这些反应产物的混合物。在室温或较低温干燥的空气中,这种不稳定性对许多金属来说没有太多的影响。因为反应速度很低。但是随着温度的上升,反应速度急剧增加。这种在高温条件下,金属与环境介质中的气相或凝聚相物质发生化学反应而遭受破坏的过程称高温氧化,亦称高温腐蚀。 从广义上看,金属的氧化应包括硫化、卤化、氮化、碳化,液态金属腐蚀,混合气体氧化,水蒸气加速氧化,热腐蚀等高温氧化现象;从狭义上看,金属的高温氧化仅仅指金属(合金)与环境中的氧在高温条件下形成氧化物的过程。 1.1.2高温氧化腐蚀机理 研究金属高温氧化时,首先应讨论在给定条件下,金属与氧相互作用能否自发地进行或者能发生氧化反应的条件是什么,这些问题可通过热力学基本定律做出判断。 金属氧化时的化学反应可以表示成: Me (s)+O 2(g)→MeO 2(g) 对该式来说: 可知,只要知道温度T 时的标准自由能变化值,即可得到该温度下的金属氧化物分解压,然后将其与给定条件下的环境氧分压比较就可判断金属氧化反应式的反应方向。 在一个干净的金属表面上,金属氧化反应的最初步骤是气体在金属表面上吸附。随着反应的进行,氧溶解在金属中,进而在金属表面形成氧化物薄膜或独立的氧化物核。在这

点蚀腐蚀机理

点蚀的理论模型 M M e +→+ 22244O H O e OH -++→ 点蚀研究方法: 1) 电化学方法 2) 氯化铁试验法: 试验溶液为10%FeCl ·6H2O 溶液,其中稍许加入1/20NHCl 溶液以进行酸化,根据试样的孔蚀数量、大小、深度或是重量的改变来评定。 2 应力腐蚀测试方法 1) 四点弯曲法: δ=12Ety/(3L 2-4A 2) L :外侧支点间的距离; A :内外支点间的距离。 2) C 形环法 Δ=d 0-d 外径=δπD 2/4EtZ ; 3) WOL 试样 3/2(3.46 2.38)I Pa H K BH a =+ Δ应力加载前后的外径变化,δ应力值,t 厚度,D 平均直径,Z 修正项,E 弹性系数。 环境脆化机理主要包括活性通道腐蚀机理(APC )和氢脆开裂(HE )。不足处是没有与裂纹内溶液化学性质的研究结合起来。 不锈钢的开裂主要理论有: 1) 吸附理论 B 原子吸附于裂纹尖端,造成A-A0之间的结合力下降和破坏。这个理论能很好的解释SC C 对环境物质的依赖关系以及很好的解释缓蚀剂的作用。 2) 电化学理论 应力腐蚀开裂是一种因金属表面阳极溶解而产生的现象,应力有加速阳极溶解的作用。 3) 膜破裂理论 应力作用导致膜破裂形成新鲜表面,促进阳极溶解。 4) 隧道腐蚀理论 腐蚀从(111)面上生成的蚀孔底部和缝隙部分开始发展,与此同时,在应力的作用下产生塑性破裂,左右隧道相互连接,在应力作用下产生塑性破裂,左右隧道相互连接,最后造成断裂。 5) 腐蚀产物楔入理论 裂纹内产生的腐蚀产物的楔入作用造成裂纹的扩展。 6) 氢脆理论 奥氏体主要是阳极溶解,但是马氏体容易形成氢脆。在裂纹尖端有与阳极反应相应的阴极反应,所生成的氢进入钢中。

无机非金属材料

无机非金属材料 以某些元素的氧化物、碳化物、氮化物、硼化物、硫系化合物(包括硫化物、硒化物及碲化物)和硅酸盐、钛酸盐、铝酸盐、磷酸盐等含氧酸盐为主要组成的无机材料的泛称。包括陶瓷、玻璃、水泥、耐火材料、搪瓷、磨料以及新型无机材料等。其中陶瓷一词,随着与陶瓷工艺相近的无机材料的不断出现,其概念的外延也不断扩大。最广义的陶瓷概念几乎与无机非金属材料的含意相同。无机非金属材料也和金属材料以及有机高分子材料等一样,是当代完整的材料体系中的一个重要组成部分。 普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。特种无机非金属材料的特点是:①各具特色,例如:高温氧化物等的高温抗氧化特性;氧化铝、氧化铍陶瓷的高频绝缘特性;铁氧体的磁学性质;光导纤维的光传输性质;金刚石、立方氮化硼的超硬性质;导体材料的导电性质;快硬早强水泥的快凝、快硬性质等。②各种物理效应和微观现象,例如:光敏材料的光-电、热敏材料的热-电、压电材料的力-电、气敏材料的气体-电、湿敏材料的湿度-电等材料对物理和化学参数间的功能转换特性。③不同性质的材料经复合而构成复合材料,例如:金属陶瓷、高温无机涂层,以及用无机纤维、晶须等增强的材料。 沿革旧石器时代人们用来制作工具的天然石材是最早的无机非金属材料。在公元前6000~前5000年中国发明了原始陶器。中国商代(约公元前17世纪初~约前11世纪)有了原始瓷器,并出现了上釉陶器。以后为了满足宫廷观赏及民间日用、建筑的需要,陶瓷的生产技术不断发展。公元 200年(东汉时期)的青瓷是迄今发现的最早瓷器。陶器的出现促进了人类进入金属时代,中国夏代(约公元前22世纪末至约前21世纪初~约前17世纪初)炼铜用的陶质炼锅,是最早的耐火材料。铁的熔炼温度远高于铜,故铁器时代的耐火材料相应地也有很大发展。18世纪以后钢铁工业的兴起,促进耐火材料向多品种、耐高温、耐腐蚀方向发展。公元前3700年,埃及就开始有简单的玻璃珠作装饰品。公元前1000年前,中国也有了白色穿孔的玻璃珠。公元初期罗马已能生产多种形状的玻璃制品。1000~1200年间玻璃制造技术趋于成熟,意大利的威尼斯成为玻璃工业中心。1600年后玻璃工业已遍及世界各地区。公元前3000~前2000年已使用石灰和石膏等气硬性胶凝材料。随着建筑业的发展,胶凝材料也获得相应的发展。公元初期有了水硬性石灰,火山灰胶凝材料,1700年以后制成水硬性石灰和罗马水泥。1824年英国J.阿斯普丁发明波特兰水泥(见水泥)。上述陶瓷、耐火材料、玻璃、水泥等的主要成分均为硅酸盐,属于典型的硅酸盐材料。 18 世纪工业革命以后,随着建筑、机械、钢铁、运输等工业的兴起,无机非金属材料有了较快的发展,出现了电瓷、化工陶瓷、金属陶瓷、平板玻璃、化学仪器玻璃、光学玻璃、平炉和转炉用的耐火材料以及快硬早强等性能优异的水泥。同时,发展了研磨材料、碳素及石墨制品、铸石等。 20世纪以来,随着电子技术、航天、能源、计算机、通信、激光、红外、光电子学、生物医学和环境保护等新技术的兴起,对材料提出了更高的要求,促进了特种无机非金属材料的迅速发展。30~40年代出现了高频绝缘陶瓷、铁电陶瓷和压电陶瓷、铁氧体(又称磁性瓷)和热敏电阻陶瓷(见半导体陶瓷)等。50~60年代开发了碳化硅和氮化硅等高温结

材料腐蚀的种类、危害和解决办法

材料腐蚀的种类、危害及解决办法 腐蚀是指材料受周围环境的 作用,发生有害的化学变化、电化学变化或物理变化而失去其 固有性能的过程。通常环境介质对材料有各种不同的作用,其 中有多种作用可导致材料遭受破坏,但只有满足以下两个条件,才称为腐蚀作用:①材料受介质作用的部分发生状态变化,转变成新相。②在材料遭受破坏过程中,整个腐蚀体系的自由能降低。 材料腐蚀发生在材料表面。按腐蚀反应进行的方式分为化学腐蚀和电化学腐蚀。前者发生在非离子导体介质中;后者发生在具有离子导电性的介质中,故可通过改变材料的电极电位来改变腐蚀速度。按材料破坏特点分为均匀腐蚀、局部腐蚀和选择性腐蚀。均匀腐蚀指材料表面各处腐蚀破坏深度差别很小,没有特别严重的部位,也没有特别轻微的部分。局部腐蚀是材料表面的腐蚀破坏集中发生在某一区域,主要有孔蚀、缝隙腐蚀、晶间腐蚀等。选择性腐蚀是金属材料在腐蚀介质中,其活性组元产生选择性溶解,由金属材料合金组分的电化学差异所致。按腐蚀环境又分为微生物腐蚀、大气腐蚀、土壤腐蚀、海洋腐蚀和高温腐蚀等。 金属材料以及由它们制成的结构物,在自然环境中或者在工况条件下,由于和其所处环境介质发生化学或者电化学作用而引起的变质和破坏,这种现象称为腐蚀,其中也包括上述因素和力学因素或者生物因素的共同作用。某些物理作用例如金属材料在某些液态金属中的物理溶解现象也可以归入金属腐蚀范畴。一般而言,生锈专指钢铁和铁基合金而言,它们在氧和水的作用下形成了主要由含水氧化铁组成的腐蚀产物铁锈。有色金属及其合金可以发生腐蚀但并不生锈,而是形成和铁锈相似的腐蚀产物,如铜和铜合金表面的铜绿,偶尔也被人称作铜锈。由于金属和合金遭受腐蚀后又回复到了矿石的化合物状态,所以金属腐蚀也可以说是冶炼过程的逆过程。上述定义不仅适用于金属材料,也可以广义地适用于塑料、陶瓷、混凝土和木材等非金属材料。例如,涂料和橡胶由于阳光或者化学物质的作用引起变质,炼钢炉衬的熔化以及一种金属被另一种金属熔融液态金属腐蚀,这些过程的结果都属于材料腐蚀,这是一种广义的定义。金属及其合金至今康 昆 勇

管道腐蚀

[日期:2010-08-16] 来源:中国路桥防水网作者:admin 由于腐蚀的危害性十分大,为了搞好防腐蚀工作,作为防腐施工的技术人员和工人对材料受到腐蚀的起因、原理等应进一步加深了解,以便合理地选择防腐蚀的方法。 一、腐蚀 腐蚀是指材料在环境的作用下引起的破坏或变质。这里所说的材料包括金属材料和非金属材料。 金属的腐蚀是指金属和周围介质发生化学或电化学作用而引起的破坏。有时还伴随有机械、物理和生物作用。 非金属腐蚀是指非金属材料由于直接的化学作用(如氧化、溶解、溶胀、老化等)所引起的破坏。 这里应当指出,单纯的机械磨损和破坏不属于腐蚀的范畴。 二、腐蚀分类 腐蚀在这里指金属腐蚀,金属腐蚀的分类方法很多。通常是根据腐蚀机理、腐蚀破坏的形式和腐蚀环境等几个方面来进行分类。 (1)按腐蚀机理分类从腐蚀机理的角度来考虑,金属腐蚀可分为化学腐蚀和电化学腐蚀两大类。 1 化学腐蚀金属的化学腐蚀是指金属和纯的非电解质直接发生纯化学作用而引起的金属破坏,在腐蚀过程中没有电流产生。例如,铝在纯四氯化碳和甲烷中的腐蚀,镁、钛在纯甲醇中的腐蚀等等,都属于化学腐蚀。实际上单纯的化学腐蚀是很少见的,原因是在上述的介质中,往往都含有少量的水分,而使金属的化学腐蚀转变为电化学腐蚀。 2电化学腐蚀金属的电化学腐蚀是指金属和电解质发生电化学作用而引起金属的破坏。它的主要特点是:在腐蚀过程中同时存在两个相对独立的反应过程———阳极反应和阴极反应,并有电流产生。例如,钢铁在酸、碱、盐溶液中的腐蚀都属于电化学腐蚀。金属的电化学腐蚀是最普遍的一种腐蚀现象,电化学腐蚀造成的破坏损失也是最严重的。 (2)按腐蚀破坏的形式分类金属腐蚀破坏的形式多种多样,但无论哪种形式,腐蚀一般都从金属表面开始,而且伴随着腐蚀的进行,总会在金属表面留下一定的痕迹,即腐蚀破坏的形式。可以通过肉眼、放大镜或显微镜等进行观察分析。根据腐蚀破坏的形式,可将金属腐蚀分为全面腐蚀和局部腐蚀两大类。 1 全面腐蚀金属的全面腐蚀亦称为均匀腐蚀,是指腐蚀作用以基本相同的速度在整个金属表面同时进行。如碳钢在强酸、强碱中发生的腐蚀一般都是全面腐蚀。由于这种腐蚀可以根据各种材料和腐蚀介质的性质,测算出其腐蚀速度,这样就可以在设计时留出一定的腐蚀裕量。所以,全面腐蚀的危害一般是比较小的。

腐蚀环境种类

环境种类 大气腐蚀环境 1.农村大气农村大气是最洁净的大气,空气中不含强烈的化学污染,主要含有有机物和无机物尘埃等。影响腐蚀的因素主要是相对湿度、温度和温差. 2.城市大气城市大气的主要污染物主要是城市居民生活所造成的大气污染,如汽车尾气、锅炉排放的SO2等。实际上,很多大城市往往也是工业城市,或者是海滨城市,所以大气环境污染的相当复杂。 3.工业生产区大气工业生产区所排放的污染物含有大量的SO2、H2S等含硫化合物,所以工业大气环境最大的特征是含有硫化物。他们易溶于水,形成的水膜成为强腐蚀介质,加速金属的腐蚀。随着大气相对湿度和温差的变化,这种腐蚀作用更强。很多石化企业和钢铁企业往往非常大,可以形成一个中等城市规模,大气质量相当差,对工业设备和居民生活造成的污染极其严重。 4.海洋大气其特点是空气湿度大,含盐分多。暴露在海洋大气中的金属表面有细小盐粒子的沉降。海盐粒子吸收空气中的水分后很容易在金属表面形成液膜,引起腐蚀。在季节或昼夜变化气温达到露点是尤为明显。同时尘埃、微生物在金属表面的沉积,会增强环境的腐蚀性。所以海洋大气对金属结构的腐蚀性比内陆大气,包括乡村大气和城市大气要严重的多.海洋的风浪条件、离海面的高度等都会影响到海洋大气腐蚀性。风浪大时,大气中的水分含盐量高,腐蚀性增加。据研究,离海平面7~8m处的腐蚀最强,在此之上越高腐蚀性越弱。雨量的大小也会影响腐蚀,频繁的降雨会冲刷掉金属表面的沉积物,腐蚀会减轻。相对湿度升高会使海洋大气腐蚀加剧。一般热带腐蚀性最强,温带次之,两级最弱。中国最典型的处于海洋腐蚀环境中的是杭州湾跨海大桥,地处亚热带海洋性季风气候。 5.处于海滨的工业大气环境,属于海洋性工业大气,这种大气中既含有化学腐蚀污染的有害物质,又含有海洋环境的海盐粒子。2种腐蚀介质的相互作用对混凝土的危害更大。 淡水腐蚀环境 混凝土碳化模型 国内外学者提出了许多混凝土碳化深度预测模型,这些模型大致可分为两类:一类是基于试验数据或实际结构的碳化深度实测值,采用数学统计或神经网络等方法拟合得到的经验模型;另一类为基于碳化反应过程的定量分析建立的理论模型。 灰色理论 它是一门研究信息部分清楚、部分不清楚并带有不确定性现象的应用数学学科。传统的系统理论,大部研究那些信息比较充分的系统。对一些信息比较贫乏的系统.利用黑箱的方法,也取得了较为成功的经验。但是,对一些内部信息部分确知、部分信息不确知的系统,却研究得很不充分。这一空白区便成为灰色系统理论的诞生地。在客观世界中,大量存在的不是白色系统(信息完全明确)也不是黑色系统(信息完全不明确),而是灰色系统。因此灰色系统理论以这种大量存在的灰色系统为研究而获得进一步发展。 基本观点 (1)灰色系统理论认为,系统是否会出现信息不完全的情况、取决于认识的层次、信息的层次和决策的层次,低层次系统的不确定量是相当的高层次系统的确定量,要充分利用已知的信息去揭示系统的规律。灰色系统理论在相对高层次上处理问题,其视野较为宽广; (2)应从事物的内部,从系统内部结构和参数去研究系统。灰色系统的内涵更为明确具体;

常用非金属材料一览表.docx

种类 普通工程朔料常见牌号名称 PVC聚氯乙烯 PE聚乙烯 UPE超高分子量聚乙烯 POM聚甲醛 POM+25%GF聚甲醛增强 DERLIN聚甲醛 PMMA聚甲基丙烯酸甲酯 PC 聚碳酸酯 PC+30%GF 聚碳酸酯增强 PP聚丙烯 俗称 PVC UPE 赛钢 亚加力 压克力 有机玻 璃 防弹胶 防弹玻 璃 百折胶 常用 代号英文名 PVC Polyvinyl Chloride PE Polyethylene Ultra-high molecular UHMWPE weight PE POM Polyoxymethylene polyacetal POM+25%GFPOM+25%Glass Fiber DERLIN PolymethylMethacrylate PMMA (Acrylic) PC Polycarbonate PC+30%GF PC+30%Glass Fiber PP Polypropylene

通 工 程 朔 料 PS 聚苯乙烯 硬胶 PS Polystyrene 丙烯腈 . 丁二烯 . 苯 超不碎 Acrylonitrite Butadiene ABS 胶 ABS 乙烯 Styrene PA6 聚酰胺6 PA6 Polyamide-6(nylon) PA66 聚酰胺 66 PA66 Polyamide-66 PA66+30%GF 尼龙 PA66+30%GF PA66+30% Glass 聚酰胺 66 增强 Fiber(NYLATRON) PA-MC 聚酰胺 铸型 PA-MC Monomer casting nylon PTFE 聚四氟乙烯 朔料王 Polytetrafluoroethylene PTFE 铁氟龙 PET PET poly(Ethylene 聚对苯二甲酸乙二 涤纶 Terephthalate) PET+TX 醇酯 的确良 PET TX GRAU PET+30%GF PET+30%GF PET+30%Glass Fiber PBT 聚对苯二甲酸丁二 PBT Poly(Butylene 醇酯 Terephthalate) PEEK PEEK Polyetheretherketone PEEK1000 聚醚醚酮 PEEK1000 EKH-SS09 ESDPEEK PEI UL TEM1000 聚醚酰亚胺 PEI Poly(etherimide) UL TEM2300 PI 聚酰亚胺 PI Polyimide DERLIN AF 聚甲醛含氟合金 DERLIN AF

腐蚀机理(上篇)

由于腐蚀的危害性十分大,为了搞好防腐蚀工作,作为防腐施工的技术人员和工人对材料受到腐蚀的起因、原理等应进一步加深了解,以便合理地选择防腐蚀的方法。 一、腐蚀 腐蚀是指材料在环境的作用下引起的破坏或变质。这里所说的材料包括金属材料和非金属材料。 金属的腐蚀是指金属和周围介质发生化学或电化学作用而引起的破坏。有时还伴随有机械、物理和生物作用。 非金属腐蚀是指非金属材料由于直接的化学作用(如氧化、溶解、溶胀、老化等)所引起的破坏。 这里应当指出,单纯的机械磨损和破坏不属于腐蚀的范畴。 二、腐蚀分类 腐蚀在这里指金属腐蚀,金属腐蚀的分类方法很多。通常是根据腐蚀机理、腐蚀破坏的形式和腐蚀环境等几个方面来进行分类。 (1)按腐蚀机理分类从腐蚀机理的角度来考虑,金属腐蚀可分为化学腐蚀和电化学腐蚀两大类。 1 化学腐蚀金属的化学腐蚀是指金属和纯的非电解质直接发生纯化学作用而引起的金属破坏,在腐蚀过程中没有电流产生。例如,铝在纯四氯化碳和甲烷中的腐蚀,镁、钛在纯甲醇中的腐蚀等等,都属于化学腐蚀。实际上单纯的化学腐蚀是很少见的,原因是在上述的介质中,往往都含有少量的水分,而使金属的化学腐蚀转变为电化学腐蚀。 2电化学腐蚀金属的电化学腐蚀是指金属和电解质发生电化学作用而引起金属的破坏。它的主要特点是:在腐蚀过程中同时存在两个相对独立的反应过程———阳极反应和阴极反应,并有电流产生。例如,钢铁在酸、碱、盐溶液中的腐蚀都属于电化学腐蚀。金属的电化学腐蚀是最普遍的一种腐蚀现象,电化学腐蚀造成的破坏损失也是最严重的。 (2)按腐蚀破坏的形式分类金属腐蚀破坏的形式多种多样,但无论哪种形式,腐蚀一般都从金属表面开始,而且伴随着腐蚀的进行,总会在金属表面留下一定的痕迹,即腐蚀破坏的形式。可以通过肉眼、放大镜或显微镜等进行观察分析。根据腐蚀破坏的形式,可将金属腐蚀分为全面腐蚀和局部腐蚀两大类。 1 全面腐蚀金属的全面腐蚀亦称为均匀腐蚀,是指腐蚀作用以基本相同的速度在整个金属表面同时进行。如碳钢在强酸、强碱中发生的腐蚀一般都是全面腐蚀。由于这种腐蚀可以根据各种材料和腐蚀介质的性质,测算出其腐蚀速度,这样就可以在设计时留出一定的腐蚀裕量。所以,全面腐蚀的危害一般是比较小的。

汽车用非金属材料性能及应用

汽车用非金属材料性能及应用 一、非金属材料分类及在汽车上的应用概述 汽车工程材料包括金属材料和非金属材料。其中金属材料包括黑色金属和有色金属;非金属材料包括高分子材料、陶瓷材料、复合材料。 高分子材料又分为工程塑料、合成纤维、橡胶、胶粘剂、涂料。工程塑料主要指强度、韧性和耐磨性较好的,具有价廉、耐蚀、降噪、美观、质轻等特点,可用于汽车保险杠、汽车内饰件、高档车用安全玻璃、仪表板等零部件。合成纤维是指单体聚合而成具有很高强度的高分子材料,如尼龙、聚酯等,用于汽车座垫、安全带、内饰件等。橡胶具有高的弹性和回弹性,一定的强度,优异的抗疲劳,良好的耐磨、绝缘、隔声、防水、缓冲、吸振等特点,用于制造汽车的轮胎、内胎、防振橡胶、软管、密封带、传动带等零部件。各种胶粘剂起到粘结、密封等作用。涂料对车身的防锈、美化及商品价值有不可忽视的作用。 陶瓷材料分为陶瓷、玻璃,陶瓷用于制造火花塞、传感器等;玻璃用于制造汽车前后门窗、侧窗等。 复合材料包括非金属基复合材料、金属基复合材料,用于汽车车顶导流板、风挡窗框等车身外装板件。 二、塑料、橡胶在汽车上的应用 1.一些基本概念 应力和应变:当材料受到外力作用,而所处的条件使它不能产生惯性移动时,它的几何形状和尺寸将发生变化,这种变化就称为应变。材料发生宏观的变形时,其内部分子间以及分子内各原于间的相对位置和距离就要发生变化,产生了原子间及分子之间的附加的内力,抵抗着外力,并力图恢复到变化前的状态,达到平衡时,附加内力与外力大小相等,方向相反。定义单位面积上的附加内力为应力,显然,其值与单位面积上所受的外力相等。 弹性模量:对于理想的弹性固体,应力与应变关系服从虎克定律,即应力与应变成正比,比例常熟成为弹性模量。可见弹性模量是材料发生单位应变时的应力,它表征材料抵抗变形能力的大小,模量愈大,愈不容易变形,表示材料刚度愈大。 拉伸强度:是在规定的试验温度、湿度和试验速度下,在标被试样上沿轴向施加拉伸裁荷,直到试样被拉断为止,断裂前试样承受的最大载荷P与试样的宽度b和厚度d的乘积的比值。σt=P/(bd) 冲击强度:是衡量材料韧性的一种强度指标,表征材料抵抗冲击载荷破坏的能力。通常定义为试样受冲击载荷而折断时单位截面积所吸收的能量。σi=W/(bd) 硬度:是衡量材料表面抵抗机械压力的能力的一种指标。硬度的大小与材料的抗张强度和弹性模量有关,而硬度试验又不破坏材料、方法简便,所以有时可作为估计材料抗张强度的一种替代办法。硬度试验方法很多,加荷方式有动载法和静载法两类,前者用弹性回跳法和冲击力把钢球压入试样,后者则以一定形状的硬材料为压头,平稳地逐渐加荷将压头压入试样,通称压入法,因压头的形状不同和计算方法差异又有布氏、洛氏和邵氏等名称。布氏硬度试验是以平稳的裁荷将直径D一定的硬钢球压入试样表面,保持一定时问使材料充分变形,并测量压入深度h,计算试样表面凹痕的表面积,以单位面积上承受的载荷(公斤/毫米2)为材料的布氏硬度。 熔融指数:热塑性树脂和塑料在规定温度、恒定负荷下,熔体在一定时间内流过标淮出料模孔的重量。熔触指数可作为热塑性树脂质量控制和热塑性塑料成型加工工艺条件的参

相关文档
最新文档