2-cell超导腔的高阶模分析

2-cell超导腔的高阶模分析
2-cell超导腔的高阶模分析

半波长型超导腔的等离子体清洗工艺及机理研究

半波长型超导腔的等离子体清洗工艺及机理研究经过半个世纪的发展,超导射频(Superconducting radio frequency,SRF)腔体已成为一般现代粒子加速器装置的核心部件。同常温腔体相比,超导腔具有较大束流孔径、更低的功率损耗等特性,使得其在长脉冲(连续)、高流强加速器装置中具有诸多优势。然而,基于目前的技术水平,场致发射效应依然是限制超导腔加速性能的主要因素,并给加速器的实际运行带来诸多不稳定因素。场致发射效应的产生通常与腔体内表面的污染有关。 例如,外部金属、灰尘等颗粒物在腔体内表面的附着导致的表面峰值电场的放大,大量的实践表明,此类较大颗粒的污染问题可采用高压水冲洗(High pressure rinsing,HPR)解决。但是,来源于环境周围的化学污染物,诸如碳氢化合物以及各种残余气体在内表面的吸附等问题却难以通过标准的清洗方法得到有效地去除。为了提高超导腔在线运行中的加速性能,SRF科学共同体经过多年的努力和探索,诸多原位在线清洗技术得以发展,主要以射频功率锻炼(连续波以及高功率脉冲锻炼)、低温氦清洗两大技术手段为主。两种在线清洗手段的实现机理均为通过对腔体表面形貌的改善以降低场增强因子,从而达到缓解场致发射效应的目的。 然而,这两种技术属于物理手段,对于腔体内表面的碳化物污染以及残余气体的吸附并不能得到完全有效的清除。近年来,基于活性氧等离子体的在线清洗技术得到发展,作用机理为利用具有氧活性的等离子体与腔体表面的碳氢化合物发生氧化反应生成具有挥发性的物质,使碳氢化合物污染较为彻底的从腔体表面清除,以达到缓解或消除场致发射效应的目的,其效果已在多-Cell椭球腔上得 到验证。由中国科学院近代物理研究所主导、并同其他合作单位共同研发的我国加速器驱动次临界核嬗变系统(Chinese-Accelerator Driven System,C-ADS)已完成25MeV超导质子直线加速器原型样机的建设和调试,并实现了170μA连续质子束的运行。然而,实验发现加速器的失束和不稳定性主要来源于半波长型(Half wave resonator,HWR)超导腔的场致发射效应而导致的系统故障。 因此,为减少场致发射导致的故障问题、提高C-ADS加速器的运行稳定性,基于半波长型超导腔的等离子体在线清洗技术被提出,促使了本论文的形成。首先,为考察在线运行条件下HWR腔体中的等离子体的特性,搭建了基于恒温器工

HFSS报告,波导腔体内场分析

实验11 波导腔体内场分析 建立一个T型波导模型,利用HFSS软件求解、分析,观察T型波导的场分布情况。 设计步骤: 一、创建工程和设计 第1步:打开HFSS并保存新工程 运行HFSS软件后,自动创建一个新工程:Project1的新工程和名称为HFSSDesign1的新设计。由主菜单选File/Save as,保存在USER(E:)盘自建文件夹内,命名为Ex11_Tee。在工程树中选择HFSS Design1,点击右键,选择Rename项,将设计命名为TeeModel。 第2步:选择求解类型 由主菜单选HFSS/Solution Type,在弹出对话窗选择Driven Modal项。 第3步:设置单位 由主菜单选3D Modeler/Units,在Set Model Units 对话窗中选择in项。 二、创建模型 第一步:创建长方体 绘制一个长方体:由主菜单选Draw/Box:按下Tab键切换到参数设置区(在工作区的右下角),设置长方体的基坐标(x,y,z)为(0,-0.45,0),数据输入时用Tab键左右移动,按下Enter键确认后,输入长方体的长和宽(dx,dy,dz)为(2,0.9,0)再按下Enter键确认,输入高度(0,0,0.4),按Enter键确认。注意:在设置未全部完成时不要在绘图区中点击鼠标! 定义长方体属性:设置完几何尺寸后,自动弹出该长方体的属性对话框。选择Attribute 标签页,讲Name项改为Tee,Material项保持为Vacuum不变,点击Transparent项的数值条,在弹出的窗口移动滑条使其值为0.4,提高透明度。设置完毕后,按下Ctrl+D键,将长方体适中显示,如图1a所示。 定义波形端口:按下F键切换到面选择状态,选中长方体平行于yz面、x=2的平面,再点右键,选择Assign Excitation/Wave Port项,弹出Wave Port界面,输入名称Port1,点Next;点击Integration Line项选择New Line,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,0.4)处,作为端口终点。此时,弹出Wave Port对话窗,默认设置,点Next,点Finish结束,在工程树中选Teemodel/Excitations/Port1项,可选中该端口,如图1 b所示。 图1a 图1b

超导原理

超导原理 超导的发生,是核外电子运动所引起的物质特性明显的变化的结果:在很低的温度下,价电子运转在固定的平面上,达到临界温度,运转速率更低。核心习惯于常温下的核外电子快速运转,低速运转的电子形成了核外电子的缺失。核心就挪用相邻核心的外电子,接着形成所有核心连续地挪用相邻电子——形成外电子公用。核心把公用的电子当成自己所需求的电子一部分,用核心的库仑力去顺势输运它,让其在自己身边流过,于是就形成了电子流——超导电流。 核心把外来(公用)的电子流当成自己所需求的电子一部分,用核心的库仑力(原子核吸引核外电子使电子绕核运转的力)去顺势输运它,让其在自己身边流过,在顺序排列的原子核库仑力的接力输送下,电子直截在其间畅通无阻,于是超导电流不仅不受到阻力,而且还获得了一份来自核心的输运力。在顺序排列的原子核库仑力的接力输送下,电子直截在其间畅通无阻,形成了电阻为零的超导现象。 正因为超导电流获得了核心的输运力,所以它能像核外电子那样永恒不断的运动,流速均衡、电阻为零,保持永恒的电流。 尽管库伯对理论获得了诺贝尔奖,也实在不敢恭维,首先,两个电子如何能紧密结成对?这直接违背同性相斥的自然原理。其次,超导体的电流走的不是匀速直线,必定有能量损失,所谓理论连核心的输运力都没有想到、没有提到,说的再复杂,再冠冕堂皇,不符合自然能量守恒法则肯定不是事实。 由于超导发生是大量的电子群集流动。大量电子的定向运动,伴

生着很强的电磁波,伴生着极强的磁场。磁共振成像的磁场就是由超导原理提供。 物质的超导特性与温度密切相关,而且极具规律。再一次为核外电子的运转线路、速率决定物质的各种特性;线路、速率的变化改变物质特性的论点提供了有力的例证。 超导的抗磁性 超导时大量电子在物体内均衡畅通地在核心边流动,成了核外电子的组成部分,大量电子的定向流动伴生着很强的磁场。外磁场会干扰电子的定向运动,所以伴生的磁场必须把外磁场抵制在外,于是就形成了很强的抗磁性。 实验表明,金属物体(第一类超导体)在超导时,外磁场从超导体内完全排出,表现出很强的抗磁性,又称迈斯纳效应。若外磁场太强,干扰电子不能形成整齐的定向运动,即使到了临界低温,超导也不能发生。这种情况正好映证以上讲的电—磁伴生现象。 同样,内磁场强的物体也难以发生超导,铁磁性或反铁磁性金属因其内部结构元的排列使得部分价磁力叠加,内磁场较强,阻止电子直线定向流动,因而不具有超导性能。而且磁性物质的微粒——杂质也会阻断核外电子共用,影响超导发生。 第二类超导体 大自然往往是戏剧性的展示其风采,近些年发现的超导材料并不是在传统上被认为良导体的金属及其合金中,而是在常态下导电性能很差的氧化物体系的陶瓷中,这就是所谓第二类超导体。

实验11波导腔体内场分析

实验11 波导腔体内场分析 一、设计要求 建立一个T型波导模型,利用HFSS软件求解、分析,观察分布情 T 型波导的场况。 二、实验仪器 硬件:PC机 软件:HFSS软件 三、设计步骤 1. 创建工程 第 1 步:打开HFSS 软件并保存新工程。 第 2 步:插入HFSS 设计 第 3 步:选择求解类型 第 4 步:设置单位 2. 创建模型 第 1 步:创建长方体 第 2 步:复制长方体 第 3 步:组合长方体 第 4 步:创建间隔 从而得到如下所示的模型图:

O 1 2(H) 3.创建模型 第1步:添加求解设置 第2步:确认设计 第3步:分析,对设计的模型进行三维场分析求解第4步:移动间隔的位置 第5步:重新进行分析 重新进行3D场的分析求解 4.比较结果

第1步:创建一个S参数的矩形曲线图

在上面矩形图中显示不同间隔的S参数曲线。 第2步:创建一个场覆盖图 如下图显示,在T接头的上表面显示场的分布情况 F Ffeld(V 1.7Z I Ie 5,, 9 i r11∣≡ 釘77?Heι0aj Z. 37S3e +□BΞ: Z, IElBe+0EK 1. eω7β?ma 1. TBUMBan IL莊即亡"虚泊 JL 3E7≡e→00Ξ: i. Lfr?Gf +B3Ξ! 几沪帥的? S . g*?BΞe +□G3∑ 5. ?L55e÷a32 I-鸟H 吉7<≡1 IMi 2 .∣ ∏j 第3步:动态演示场覆盖图 分别定义场间隔位置为O和0.2时候动态演示场覆盖图。观察场分布情况, 重点比较2、3端口场的分布差异。具体的图形在第四步的数据记录以及分析里面有详细的演示记录 四、数据记录及分析 (1)在矩形框中间隔位置分别为0和0.2的时候,S11、S12、S13的参数

高温超导材料的特性与表征

四川理工学院 材料物理性能 高温超导材料论文 【摘要】 在本实验中我们的主要目的是通过通过氧化物高温超导材料特性的测量和演示,加深理解超导体的两个基本特性,即零电阻完全导电性和完全抗磁性。我们还通过此实验对不同的温度计(铂电阻温度计和硅二极管温度计)进行比较。我们采用的是四引线测量法,利用低温恒温器和杜瓦容器测量了超导电性,绘制了超导样品的电阻温度曲线,验证了超导在高温冷却电阻突然降为零的电特性。我们也绘制了磁悬浮力与超导体-磁体间距的关系曲线,对其进行了分析。在进行磁悬浮的实验中我们验证了超导体的混合态效应和完全抗磁性。 关键词: 超导体零电阻温度完全磁效应磁场 一、引言: 1911年H.K.Onnes首次发现在4.2K水银的电阻突然消失的超导现象,此温度也被称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。

但这里所说的高温,其实仍然是远低于冰点0℃的,对一般人来说算是极低的温度。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。此后,科学家们几乎每隔几天,就有新的研究成果出现。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。 高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。 本实验中,我们通过对氧化物超导材料特性的测量和演示,加深理解超导体的两个基本特性;了解金属和半导体的电阻随温度的变化及温差电动势;了解超导磁悬浮的原理;掌握液氮低温技术。 二、原理: 物理原理: 1.超导现象及临界参数 (1)零电阻现象 1911年,卡麦林·翁纳斯用液氮冷却水银线并通以几毫安电流,在测量其电压时发现,当温度稍低于液氮沸点时,水银电阻突然降为零,这就是零电阻现象或超导现象。具有此现象的物体称为超导体。只有在直流条件下才会存在超导现象,在交流下电阻不为零。 临界温度是指当电流,磁场及其他外部条件保持为零或不影响测量时,超导体呈现超导态的最高温度。我们用电阻法测定超导临界温度。 (2)MERSSNER效应 1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,而且,不管加磁场的顺序如何,超导体内磁场总为零。这种现象称为抗磁性即MERSSNER效应。 3)超导体分类 超导体分为两类第1类超导体是随温度变化只分为超导态和正常态,第2类是在超导态和正常态中间部分还存在混合态。 纯金属材料的电阻特性 纯金属材料的电阻产生于晶体的电子被晶格本身和晶格中的缺陷的热振动所散射。ρ=ρL(T)+ρ R,其中ρL(T)表示晶格热振动对电子散射引起的电阻率,与温度有关。ρ r表示杂质和缺陷对电子的散射所引起的电阻率,不依赖与温度,与杂质和缺陷的密度成正比,称为剩余电阻率。 半导体材料电阻温度特性 ρi=1/nie(μe+μp) 本征半导体的电阻率ρi与载流子浓度ni及迁移率μ=μe+μp有关, 因ni随温度升高而成指数上升,迁移率μ随温度增高而下降较慢,故本证半导体电阻率随温度上升而电调下降。 实验仪器及其原理:

高温超导体基本特性的测量

高温超导体基本特性的测量 1911年,荷兰物理学家昂尼斯(H.K.Onnes)发现,利用液氮把汞冷却到4.2K左右时,水银的电阻率突然有正常的剩余电阻率减小到接近零,以后在其它的一些物质中也发现了这一现象。由于这些超导体的临界温度T C很低,人们称这些需在液氦温区运行的超导体为低温超导体。1986年6月,贝德诺(J.G..Bednorz)和缪勒(K.A.Muler)发现金属氧化物Ba-La-Cu-o 材料具有超导电性,其超导起始转变温度为35K,在13K达到零电阻,这一发现时超导体的研究有了突破性的进展,随后美中科学家分别独立地发现了Y-Ba-Cu-O体系超导体,起始温度92K以上,在液氮温区,以后的十年间,还发现其他系超导体,常压下T C最高达133K,这些T C高于液氮温度的氧化物超导体称为高温超导体。 一、实验目的 1.(利用直流测量法)测量超导体的临界温度; 2.观察磁悬浮现象; 3.了解超导体的两个基本特性—零电阻和迈斯纳效应。 二、实验仪器 测量临界温度和阻值的成套仪器、迈斯纳效应成套仪器、计算机、CASSY传感器 三、实验原理 1.零电阻现象 处于绝对零度的理想的纯金属,其规则排列的原子(晶格)周期场中的电子的状态是完全确定的,因此电阻为零。温度升高时,晶格原子的热振动会引起电子运动状态的变化,即电子的运动受到晶格的散射而出现电阻Ri。然而,通常金属中总是含有杂质的,杂质对电子的散射会造成附加的电阻。在温度很低时,例如在4.2K以下,晶格散射对电阻的贡献趋于零,这时的电阻完全由杂质散射所引起的,我们称之为剩余电阻Rr,它几乎与温度无关。所以总电阻可以近似表达为 R=Ri(T)+Rr (1) 当温度下降到某一确定Tc(临界温度)时,物质的直流电阻率转变为零的现象被称为零电阻效应。临界温度Tc是由物质自身的性质所确定参量。如果样品结构规整且纯度非常高,在一定温度下,物质由常规电阻状态急剧的转变为零电阻状态,称之为超导态。如果材料化学成分不纯或晶体结构不完整等因素的影响,超导材料由常规电阻状态转变为零电阻状态是在一定的温度间隔中发生的。如图1,我们把温度下降过程中电阻温度曲线开始从直线偏离出的温度的温度称为起始转变温度。我们将电阻缓慢地变化部分(常规电阻状态下)拟合成直线Ⅰ,将电阻急剧变化部分拟合成直线Ⅱ,直线Ⅰ与直线Ⅱ的交点所对应的电阻为正常态

波导场方程

波导场方程 波导场方程:是波动光学方法的最基本方程。它是一个典型的本征方程,其本征值为c或β。当给定波导的边界条件时,求解波导场方程可得本征解及相应的本征值。通常将本征解定义为“模式” 射线方程 物理意义: ?将光线轨迹(由r描述)和空间折射率分布(n)联系起来; ?由光线方程可以直接求出光线轨迹表达式; ?dr/dS是光线切向斜率, 对于均匀波导,n为常数,光线以直线形式传播;对于渐变波导,n是r的函数,则dr/ds为一变量, 这表明光线将发生弯曲。而且可以证明,光线总是向折射率高的区域弯曲。 模式的基本特征 ----每一个模式对应于沿光波导轴向传播的一种电磁波; ----每一个模式对应于某一本征值并满足全部边界条件; ----模式具有确定的相速群速和横场分布. ----模式是波导结构的固有电磁共振属性的表征。给定的波导中能够存在的模式及其性质是已确定了的,外界激励源只能激励起光波导中允许存在的模式而不会改变模式的固有性质。 模式命名 ?根据场的纵向分量E z和H z的存在与否,可将模式命名为: (1)横电磁模(TEM): E z=H z=0; (2)横电模(TE): E z=0, H z≠0; (3)横磁模(TM): E z≠0,H z=0; (4)混杂模(HE或EH):E z≠0, H z≠0。 ?光纤中存在的模式多数为HE(EH)模,有时也出现TE(TM)模。 典型光线传播轨迹

重要参数 ?归一化工作频率: ? ?归一化横向传播常数: ? ?归一化横向衰减常数: ?数值孔径: 定义光纤数值孔径NA为入射媒质折射率与最大入射角的正弦值之积,即 ?相对折射率差: ? 光线分类判据 判据: 当g(r)≥0时,光线存在; 当g(r)<0时,为光线禁区; 当g(r) = 0时,为内外散焦面。 约束光线 条件: n2<n(r0) cosθz(r0)<n1 光线存在区域: r g1 < r < r g2

矩形波导的设计讲解

矩形波导模式和场结构分析 第一章 绪论 1.1选题背景及意义 矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的内导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。 矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。 本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国内外研究概况及发展趋势 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。 英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面和矩形截面“空柱”中的电磁振动, 它们对应后来的矩形波导和矩波导, 并引进了

射频超导技术与ERL技术新进展

C hi ne se Phy si cs C(H E P&N P)V01.32,增刊I,M ar.,2008 射频超导技术与ER L技术新进展 郝建奎1’赵夔 (核物理与核技术国家重点实验室,北京大学重离子物理研究所北京100871) 摘要射频超导谐振腔可以工作在连续波或长宏脉冲模式.射频超导技术已发展为加速各种带电粒子束的重要手段.射频超导技术发展的前期受材料性能、腔的处理以及加工安装水平等的限制.经过几十年的不断改进,射频超导技术获得了重大突破.射频超导腔应用到超导加速器上并成功运行,积累了腔的质量控制工艺和工业化制备的大量经验.近期国际上面对未来大科学装置项目,在射频超导技术方面进行了大量的研发工作,主要包括提高超导腔加速梯度的新腔型研究和采用新型材料(大晶粒铌材)超导腔的研究.能量回收直线加速器(ER L)技术是近年来获得发展的重要加速器技术.E RL具有高效、节能、稳定性好、低辐射水平等优势,被越来越多地应用到先进光源和自由电子激光装置中. 关键词射频超导能量回收直线加速器加速梯度 1射频超导与E R L的优势 射频超导谐振腔最人的优越之处在于它可以工作在连续波(C W)模式或长宏脉冲模式下,提供高的加速梯度【l J.超导腔的表面电阻比铜腔的小5个量级,其品质因数Q。一般大于10。,采用高纯材料制成的射频超导腔,由于其剩余电阻很小,在2K以下超低环境中Q。能够超过10加.即使计入液氦制冷系统消耗的功率,同样规模的超导腔的总功耗也只有铜腔的几百分之一.R F加速结构会影响束的品质,如能散度、发射度、束晕、最大流强等等.要得到好的束流品质,对加速器提出了非常高的要求.超导腔高的加速梯度能减少腔的数目,缩短了C W加速器的长度.由于超导腔壁损耗极小,腔形易优化,超导腔束孔大,减弱了束腔相互作用. 由于射频超导的优异性能,超导加速器越来越广泛地成为大科学工程的加速结构,为加速器技术在高新前沿领域的发展提供了支撑点.超导加速器技术成熟,走向大规模工业化制造.全世界用于电子加速器的超导腔总长度已超过了1000m,加速电压超过5G V.目前最人的超导加速器C E B A F,L E P—I I运行多年,状态良好.从低p至高D,已建造了并正在建造一批基于超导加速器的前沿科学装置,包括采用射频超导技术的对撞机,采用射频超导技术提升光源性能的储存环,强流质子直线加速器,自由电子激光装置等等.采用的射频超导腔有纯铌超导腔、铜铌溅射/复合超导 2008—01—07收稿 1)E-m ai l:j k hao@p ku.edu.cn 腔等. 2004年全世界科学家达成共识,将在全球建立一台T e v能量的国际直线对撞机(I LC),由于超导腔的巨大优势,该装置将采用射频超导加速结构. 超导加速器在F EL领域取得了里程碑的成果.推动了FEL的发展.2004年7月30日,美国J L a b获得10kW高平均功率FE L输出悼j.德国D ESY的TTF/FL A SH自由电子激光向短波长FEL迈进,目前已经实现了波长13nm的自由电子激光输出pJ. E N E R G Y R E C o V E R Y L I N A C 图1E R L原理图 未来光源要求高品质电子束具有低的电子束发射度、高亮度、高相干性和超短时问结构.光阴极电子枪加上超导直线加速器可以提供高品质电子束.而高光子通量需要高流强电子束,仅仅是使用直线加速器需要非常大的电力资源.能量回收直线加速器(E R L)技术解决了上述问题.图1是E R L的原理图,与波荡器作用产生自由电子激光输出后,电子束返航注入主 200.-——203

超导材料基础知识介绍

超导材料基础知识介绍 超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。 ①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 ②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。 ③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量有以下 3个基本临界参量。 ①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。 ②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。 ③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic 称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶

圆波导公式

由于圆柱形波导是单导体波导,其中不能传播TEM 波,只能传播TM 波和TE 波。求解圆柱形波导内TM 波和TE 波的场量分布方法与求矩形波导内场量分布的方法类似,不同的是应采用圆柱坐标系。下面仅对TM0m 波简单介绍。 对于TM 波,z H =0,z E 满足的方程和边界条件为 0k z 2z 2=+?E E (1) 0z ==a E ρ (2) 在圆柱坐标系下,以上方程应为 0112222222z 2=+??+??+??+??z z z z E k z E E E E φρρρρ (3) 考虑z z e E z E γφρφρ-=),(),,(,则式(3)变为 01122222z 2=+??+??+??z c z z E k E E E φ ρρρρ (4) 式中 222k k c +=γ (5) 应用分离变量法解得 ???=) sin()cos()(),(φφρφρm m k J E E c m m z (6) 式中m J 为m 阶第一类贝塞尔函数,m E 由激励源强度决定。 考虑到βγj =,可得圆柱形波导中TM 波的场分量为

???=) φφρφρm m k J E E c m m z sin()cos()(),( (7a ) ???=)sin()cos()()(-'φφρρφρρm m k J E k j E c m m c ),( (7b ) ???-=)cos()sin()()( ),(2φφρρβφρφm m k J E k m j E c m m c (7c ) φρβεE w H -= (7d ) ρφβεE w H = (7e ) 0=z H (7f ) 由边界条件0==a z E ρ可得截止波数 a p k mn mn c =)( (8) 式中mn p 为m 阶贝塞尔函数的第n 个零点。将上式代人式(7a )-(7f ),则得圆柱形波导中得TMmn 模场分布。表1给出了mn p 的前几个值。 表1 圆波导TM 模的nm p 值 01p 02p 03p 04p 2.405 5.520 8.654 11.792

毫米波微带波导过渡设计

毫米波微带波导过渡设计 喻梦霞 徐 军 薛良金 (电子科技大学物理电子学院,四川,成都,610054) 摘要 利用高频分析软件HFSS仿真分析了K a频段对脊鳍线微带波导过渡结构.将仿真结果对影响过渡性能的几个因素进行了分析,得出了可供工程应用参考的设计曲线,并根据曲线设计了微带波导过渡,在整个K a频段内,插入损耗小于1dB.实验结果与设计曲线结果相符. 关键词 毫米波,过渡,HFSS仿真,对脊鳍线. MI LLIMETE D WAVE WAVEGUIDE2TO2MICR OSTRIP TRANSITION DESIGN Y U Meng2X ia X U Jun X UE Liang2Jin (C ollege of Physical E lectronics,The University of E lectronic Science and T echnology of China, Chengdu,S ichuan610054,China) Abstract A K a2band antipodal finline waveguide2to2microstrip transition was analyzed and simulated by HFSS s oftware.The sev2 eral factors of simulation result for affecting per formance of transition are analyzed,and a design curve of transition available for project application is obtained.Based on the curve,the waveguide2to2microstrip transition is designed.The insertion loss of transi2 tion is below1dB in the K a2band.Experimental results coincide well with the design curve. K ey w ords millimterwave,transition,HFSS simulation,antipodal finline. 引言 随着毫米波技术在无线通讯和雷达系统中应用的不断增多,低成本、高可靠性的毫米波单片集成电路(M MIC)的使用也日趋广泛.在使用M MIC的毫米波接收系统中,对各个M MIC之间的连接采用的是微带线.而现有的毫米波测试系统采用的是矩形波导接口,这就要求在使用M MIC的系统中寻找一种低成本、低损耗、易制造的宽带矩形波导到微带过渡.目前常用的过渡结构有:阶梯脊波导过渡[1]、对脊鳍线过渡[2~4]、耦合探针过渡[5,6]等.这些过渡结构带宽较宽(在10~20%的带宽内回波损耗在15dB 以下),插入损耗小.其中阶梯脊波导过渡加工复杂,耦合探针过渡因波导出口方向与电路平行,使其不满足很多系统结构的要求,而对脊鳍线过渡,因其可以采用微波印制版技术制作在价廉的软基片上,现在已成为一种普遍运用的过渡结构. 最初由J.H.C.van Heuven[2]提出的对脊鳍线过渡,经M.Dydyk、B.D.M oore[3]、G.E.P onchak和Alan N.D owney[4]等人的不断完善和发展,现已可获得较宽的工作带宽.但是由于这种结构形式的过渡要产生一系数的谐振模式,如果某一谐振频率正好落入与其相连的器件的工作带宽,就可能使其对器件产生偶合,从而影响器件的性能.这就使得其设计变得复杂,因而妨碍了它的应用.为此,本文通过高频分析软件HFSS对引起过渡谐振的几个参数进行了分析,得出了可供工程应用参考的设计曲线以满足工程设计的应用. 1 过渡物理模型分析 本文采用了由G eorge E.P onchak和Alan N. D owney提出的过渡结构.在这个由波导到微带的过渡结构中,对脊鳍线的2个金属鳍逐渐渐变成微带线.制作在基片正反面的渐变鳍线构成了一圆弧形谐振区,谐振区内的金属块是用来抑制谐振的(如图1所示).过渡长度L,谐振区长度X及谐振块与金 第22卷第6期2003年12月红外与毫米波学报 J.In frared Millim.Waves V ol.22,N o.6 December,2003 稿件收到日期2002209209,修改稿收到日期2003202224Received2002209209,revised2003202224

超导材料的特性及应用

浅谈超导材料的超导特性及应用 摘要:作为一种新型材料,超导材料越来越广泛地应用到各个领域,人类对超导电性及其应用将越来越重视。超导材料的应用有着巨大的潜力和发展前景,这是不容置疑的。超导的实用前景似乎既近既远,近者,在人类的生活中已得到了超导电技术带来的好处,如医用的核磁共振成像的超导磁体;同时,在电子器件上的应用,近几年将会在市场上出现。远者,人们会看到例如在微波通讯、计算机器件、储能及平衡电网方面的应用。在总结超导电性的同时,本文将就超导材料的应用作简要的介绍。 关键字:超导、特性、应用、前景 1、超导材料的超导特性 导体在温度下降到某一值时,电阻会突然消失,即零电阻,这一现象称为“超导现象”,将具有超导性的物质,称为超导体,超导体如钛、锌、铊、铅、汞等,在超导状态,当温度降至温度(超导转变温度)时,皆显现出某些共同特征。1.1电阻为零。一个超导体环移去电源之后,还能保持原有的电流。有人做过实 验,发现超导环中的电流持续了二年半而无显著衰减。 1.2完全抗磁性。这一现象是1933年德国物理学家迈斯纳等人在实验中发现的, 只要超导材料的温度低于临界温度而进入超导态以后,该超导材料便把磁力线排斥体外,因此其体内的磁感应强度总是零。这种现象称为“迈斯纳效应”。 2、超导材料的应用 2.1 超导应用的巨大潜力 超导态是物质的一种独特的状态,它的新奇特性,立刻使人想到要将它们应用到技术上。超导体的零电阻效应显示其具有无损耗输运电流的性质。工业、国防、科研上用的大功率发电机、电动机如能实现超导化,将大大降低能耗并使其小型化。利用超导隧道效应,人们可以制造出世界上最灵敏的电磁信号的探测元件和用于高速运行的计算机元件。用这种探测器制造的超导量子干涉磁强计可以测量地球磁场几十亿分之一的变化,也能测量人的脑磁图和心磁图。超导体用于微波器件可以大大改善卫星通讯的质量。 因此,超导体显示了巨大的应用潜力。 2.2 超导材料在强电方面的应用

8_18GHz同轴_波导转换器的分析与设计

第24卷增刊微波学报 V ol.24 Supplement 2008年10月 JOURNAL OF MICROW A VES Oct. 2008 8-18GHz同轴-波导转换器的分析与设计 魏振华田立松冯旭东尹家贤胡粲彬 (国防科学技术大学电子科学与工程学院一系,长沙410073) 摘要:同轴—波导转换器是微波系统中非常重要的元器件。基于脊波导和波导阶梯对导播系统中电磁波传播性能的影响,本文探讨了这两种结构应用在8-18GHz的宽带同轴—波导转换器设计中的情况。通过同轴—脊波导—矩形波导转换,并在脊波导上加载阶梯,很好地改善了阻抗匹配效果,提高了同轴—波导转换器的传输性能。仿真结果证明脊波导和波导阶梯在设计同轴—波导转换器中的有效性,在8-18GHz的倍频程带宽内驻波小于1.22,产生的高次模非常小。 关键词:同轴—波导转换,脊波导,波导阶梯阻抗变换 Analysis and Design on 8-18GHz Coaxial-Waveguide Transition WEI Zhen-hua, TIAN Li-song, FENG Xu-dong, YIN Jia-xian,HU Can-bin ( College of Electronic Science and Engineering, NUDT,Changsha 410073, China ) Abstract:Coaxial-waveguide transition plays an important role in microwave system.Based on the influence of ridge waveguide and waveguide ladder exerted on transmission performance of electromagnetic wave in guided wave system, this paper discussed the situations of these two structures applied in the 8-18 GHz broadband coaxial-waveguide converter designation. Through the conversion of coaxial - ridge waveguide - rectangular waveguide, and ladder loading of ridge waveguide, the effectiveness of impedance matching is well-improved,and the transmission performance of coaxial-waveguide converter is highly-advanced. Simulation results proved the effectiveness of ridge waveguide and waveguide ladder in designing coaxial- waveguide converters.The VSWR of coaxial-waveguide transition designed in this paper is less than 1.22 in the 8-18 GHz octave bandwidth, and the high modulus produced is very small. Key words:Coaxial-waveguide transition, Ridge waveguide, Waveguide ladder impedance transformation 引言 同轴波导转换器在微波系统中应用非常广泛,是雷达设备、精确制导和微波测试电路中的重要无源连接器件。其设计的基本要求是:低驻波、低插入损耗。 同轴波导转换器的相对带宽比较小,驻波小于1.1时最多可以达到10%的带宽[1];在同轴腔体内设置周期性光带隙(PBG)的内导体介质支撑垫、矩形波导内设置阶梯阻抗变换,这种设计方法在25-40GHz的带宽内驻波小于1.25,但相对带宽只有46%[2];利用波导阶梯变换,在714-2500MHz的带宽内驻波小于1.74,但是驻波小于1.22的带宽范围只有其中的850-1150 MHz[3]。但是以上两种设计在超过倍频程的带宽时产生的高次模会比较大,影响传输性能。 本文所设计的8-18GHz的超宽带同轴波导转换器,工作频带超过倍频程,相对带宽达到72%,设计要求频带内驻波小于 1.22(即回波反射小于-20dB),而且要求频带内高次模非常小。同轴电缆采用常用的外半径为2mm,内半径为0.6mm,介电常数为2.08的标准50Ω同轴电缆。 1 理论分析 矩形波导中插入了探针,并在宽壁上开孔,这在波导同轴转换处引入了电抗,造成波的反射,使 *收稿日期:2008-04-06

毫米波圆极化介质复合波导缝隙阵列 天线的HFSS设计

ANSYS 2011中国用户大会优秀论文 毫米波圆极化介质复合波导缝隙阵列天线的HFSS设计 刘吕昕] [闫丕贤埇 [北京理工大学信息与电子学院,北京 100081] [ 摘要 ] 本文利用ANSYS HFSS设计了一种工作于毫米波段的介质复合波导缝隙天线阵列,在介质覆铜板加工出缝隙并与波导槽复合形成辐射结构,利用HFSS软件仿真并分析缝隙导纳,泰勒加权 实现阵列综合。设计平面和差网络实现天馈系统一体化,利用介质覆铜板加工出圆极化栅,并 利用HFSS对整体天线进行了仿真调试。仿真结果与实物测试结果基本一致,验证了软件仿真 的准确性和设计的可行性。该天线成本低、一致性高、圆极化性能好,同时可以改善传统波导 缝隙天线成品率低、成本高和工作带宽窄的缺点,并将工作频带展宽至700MHz。 [ 关键词] ANSYS HFSS,毫米波,圆极化,波导缝隙天线 A Design of MMW Circular Polarization Dielectric Complex Waveguide Slot Array Antenna in HFSS [YAN Pixian, LIU Yong, LV Xin] [School of Information and Electronics, Beijing Institute of Technology, Beijing 100081] [ Abstract ] In this paper, a dielectric complex waveguide slot array antenna was studied by ANSYS HFSS, working in MMW-band. The radiating structure was formed by etching a slot in the copper which covered on the substrate composited with rectangular groove guide, then take a simulation and analysis of the slot admittance by software, combined with the array comprehension of HFSS. For the integration of antenna and feed network, compact structure was designed with a sum-difference network includes a flat magic T, and circular polarization grid machined with micro-strip substrate. Physical test results are basically consistent with the simulation results. The antenna offered advantages such as low cost, high consistency, circular polarization performance. It also improved the traditional waveguide slot antenna from low yield and high cost. [ Keyword ] ANSYS HFSS;MMW; circular polarization; waveguide slot array antenna 1前言 作为一种常用毫米波天线,波导缝隙天线加工成本高、成品率低。基于印刷缝隙的介质复合波导缝隙天线是将开缝的介质覆铜板复合到波导槽上,保有传统波导缝隙天线辐射效率的同时,还具有一致性好、生产工艺简单、成品率高、成本低等优点。有学者对覆介质的波导缝隙特性进行了一些辐射特性分析[1-2],加工实物的有单条复合缝隙阵[3]。本文

相关文档
最新文档