高中物理矢量三角形法应用

高中物理矢量三角形法应用
高中物理矢量三角形法应用

高中物理矢量三角形法应用

河北

石晓兵

物体在三个非平行力的作用下平衡时,这三个力必在同一平面内共点。根据共点力的平衡条件可知,其合力为零,三个力组成一个封闭三角形。解答此类题目时,用矢量三角形分析一些动态变化,使得定性分析的解答过程简捷、直观、明了,使得定量计算的解答过程远比解析法简便得多。尤其是遇到物体在共点力的作用下平衡时求极值的题目,用矢量三角形可以大大简化解题过程,避免用解析法通过三角函数求极值的繁琐过程,能收到事半功倍的效果。

1. 共点力平衡时力变化的定性讨论 例1 用一根细绳把重为G 的小球挂在竖直光滑的墙壁上,如图1所示,若改用较长的细绳,使α角变小时,细绳对小球的拉力及墙壁对小球的弹力如何变化?

图1 解析 选小球为研究对象,小球在重力G 、细绳拉力T F 、墙壁弹力F N 三个力作用下始终处于共点力的平衡状态,G 的大小和方向都确定。F N 的方向确定,但大小不定,T F 的大小和方向都不定。根据图中力的封闭矢量三角形可以看出,α角较小时,细绳对小球的拉力和墙壁对小球的弹力均减小。

例2 如图2所示,一轻杆O 端用铰链固定于墙壁上,A 端用轻绳拉紧使OA 杆保持水平,若在A 端挂重物G ,当把重物的悬点A 点向O 点逐渐缓慢移动时,绳对A 点的拉力和铰链对杆的作用如何变化?

图2

解析 选杆为研究对象,杆在拉力)G F (F 1T 1T 、拉力2T F 和铰链作用力N F 三个力作用下始终处于平衡状态。1T F 的大小和方向都确定,2T F 的方向确定,但大小不定,N F 的大小和方向都不定。根据图3中力的封闭矢量三角形可以看出,当把重物的悬点从A 点向O 点逐渐缓慢移动时,2T F 一直减小,N F 先减小后增大。

图3

2. 共点力平衡时力变化的定量计算 例3 如图4所示,质量为m 的物体与水平地面的动摩擦因数为μ,物体在与水平面成θ角的斜向上的拉力F 作用下沿水平面匀速运动,问θ为多大时F 有最小值?F 的最小值是多少?

图4 解析 将地面对物体的支持力N F 和地面对物体的摩擦力f F 合成为一个力R ,R 与F N 夹角μ?arctan F F arctan N

f ==,这样物体在重力m

g 、地面对物体的作用力R 及拉力F 三个力作用下处于共点力的平衡状态,其中mg 的大小和方向都确定,R 的方向确定,但大小不定,F 的大小和方向都不定。根据图5中力的封闭矢量三角形可以看出,当F 垂直于R ,即μ?θarctan ==时,F 有最小值,最小值为2min 1mg

sin mg F μμ?+==。

图5

点评 凡遇到物体受三个力作用而共点力的平衡题目时,若一个力的大小和方向确定,另一个力的方向也确定,求这个力的大小及第三个力的大小如何变化时,利用矢量三角形定性讨论比较方便。若遇到物体受四个力作用时共点力的平衡题目时,如果物体受滑动摩擦力,可将支持力和滑动摩擦力合成为一个力,将其转化为物体受三个力作用而共点力的平衡题目来处理。

高中物理知识点题库 矢量和标量GZWL008

1.飞机的起飞过程是从静止出发,在直跑道上加速前进,等达到一定速度时离地.已知飞机加速前进的路程为1600 m ,所用的时间为40 s .假设这段运动为匀加速直线运动,用a 表示加速度,v 表示离地时的速度,则 ( ) A .a =2 m/s2,v =80 m/s B .a =1 m/s2,v =40 m/s C .a =2 m/s2,v =40 m/s D .a =1 m/s2,v =80 m/s 答案:A 解析:飞机做匀加速直线运动过程的初速度为零,位移为1600 m ,运动时间为40 s .根据 方程x =12at2,可得a =2x t2=2×1600402 m/s2=2 m/s2.再根据v =at ,可得v =2×40 m/s =80 m/s.故A 正确. 题干评注:矢量和标量 问题评注:矢量不仅有大小,而且有方向的物理量。标量:只有大小,没有方向的物理量。 2.如图所示为物体做直线运动的v -t 图象.若将该物体的运动过程用x -t 图象表示出来(其中x 为物体相对出发点的位移),则图中的四幅图描述正确的是 ( ) 答案:C 解析:0~t1时间内物体匀速正向运动,故选项A 错;t1~t2时间内,物体静止,且此时离出发点有一定距离,选项B 、D 错;t2~t3时间内,物体反向运动,且速度大小不变,即x -t 图象中,0~t1和t2~t3两段时间内,图线斜率大小相等,故C 对. 题干评注:矢量和标量 问题评注:矢量不仅有大小,而且有方向的物理量。标量:只有大小,没有方向的物理量。 3.一枚火箭由地面竖直向上发射,其速度和时间的关系图线如图所示,则( ) A .t3时刻火箭距地面最远 B .t2~t3时间内,火箭在向下降落

高中物理中的矢量与标量

力(重力,弹力,摩擦力,电场力,磁场力,洛仑兹力),速度(平均,瞬时),速度变化量,加速度,位移,动量,动量变化量,冲量,线速度,角速度是矢量,既要有大小,又要有方向, 速率,质量,密度,时间,能量,磁通量等等是标量关于电流问题,是比较复杂的,它的纠纷很多.就高中层面而言,它的方向不是真正意义上的方向.(电流有大小又有方向,也遵循平行四边形定则,)在高中层面上你先认为不遵循吧,它所谓的正向不过是"正电沿规定正方向运动这一电荷移动放向的描述" 不知道你懂向量吗 .向量是矢量的数学抽象.两向量相乘的数字两失量相乘也得标量向量乘数字得向量 ?力(重力,弹力,摩擦力,电场力,磁场力,洛仑兹力),速度(平均,瞬时),速度变化量,加速度,位移,动量,动量变化量,冲量,线速度,角速度是矢量,既要有大小, 又要有方向, 速率,质量,密度,时间,能量,磁通量等等是标量 关于电流问题,是比较复杂的,它的纠纷很多.就高中层面而言,它的方向不是真正意义上的方向.(电流有大小又有方向,也遵循平行四边形定则,)在高中层面上你先认为不 遵循吧,它所谓的正向不过是"正电沿规定正方向运动这一电荷移动放向的描述" 不知道你懂向量吗 .向量是矢量的数学抽象.两向量相乘的数字 两失量相乘也得标量向量乘数字得向量 ?矢量: 位移、速度、力、加速度、电场强度、磁感应强度(其实就是要带带方向的); 标量: 质量,体积,密度,长度,时间,速率,功,能,温度,磁通量……标量无穷多; 附:力矩大学里是算矢量的,高中各个是尽量避免提及的,高中说不清。 最后劝句:别死记,有无方向是标准,还是很好判断的。 高中学生在处理矢量问题上的几种典型失误??????????? ?由于高中学生在初中阶段没有接触过有方向的物理量,高中数学中也没有涉及矢量问题,因而他们在处理矢量问题上存在着种种失误, 今举几例如下。????一.忘记了矢量的方向性[例] 一质点分别沿同高度但倾斜角不同的光滑斜面滑到斜面底端时,关于质点,下列物理量相同的是:????A 动量 B 动能 C 加速度 D 位移????[分析] 对于该题,相当多的学生在选答案B?的同时也选了答案A,他们认为,由于机械能守恒,滑到底端时速度大小是一样的,因而动量也是相同的。其实,?他们忘记了动量是一个矢量,仅仅大小相同是不行的。很明显两者方向是不同的,因而选A是错误的。????二.习惯用标量的眼光看待矢量问题????[例] 一质量为m的物体,以速度V做半径为R?的匀速圆周运动,在1/4个周期内,其动量变化量为: ????A 0 B mv C πmv D 2mv ????[分析] 对于该题,相当多的同学错选了答案A,分析其原因,是因为他们认为,匀速圆周运动过程中,?速度大小是不变的,因而动量的变化量为零。事实上,由于动量是矢量,其变化量不能简单的用大小去相减,?而应按矢量法则去运算。正确的答案应选B。他们之所以犯错误,主要是矢量“意识”不浓,习惯用“标量” 的眼光看待“矢量”问题. ????三.不善于用符号来进行矢量的运算????[例] 一质量为m的小球,以水平速度v垂直撞击墙壁,结果以原速率弹回,则其在此过程中受到的冲量为:(选原速度方向为正方向) ????A 0 B mv C 2mv D -2mv ????[分析] 很多的学生错选了答案A,?原因是他们在使用动量定理求冲量的时候,忘记了用负号表达反弹后的动量。正确的解式应是:(-mv)-mv=-2mv,而不是:mv-mv=0。本题的正确答案应是D而不是A。?????四.不能正确理解矢量负号的意义???? [例]有两个质点A和B分别作S=3+2t-5t和S=4+5t-3t的匀变速直线运动,则两者加速度的关系为: ???? A A的大于B的 B A的小于B的???? C A的等于B的 D 无法确定???? [分析] 对于本题,不少学生错选了B,他们认为,从各自的解析式可得:A的加速度为-10,B的加速度-6,而-6>-10,故而选B。他们之所以产生上述错误观念,?主要是对矢量中的负号的意义没有理解透。在矢量中,正负号只代表方向,不代表大小,这正是矢量与标量不同的地方,因而本题应选A。????五.平均速率是平均速度的大小吗????[例] 一质量为m的物体,以速度V做半径为R?的匀速圆周运动,在一个周期内,其平均速率为: ?? A 0 B V C 2V D V/2 ??? [分析]?由于许多学生误认为平均速率是平均速度的大小,因而误选答案A。实际上,即时速率虽然是即时速度的大小,但平均速率却不是平均速度的大小,平均速率应是质点经历的路程与时间的比,因而正确答案应是B。????????????

课程标准高中物理教科书(人教版)

课程标准高中物理教科书(人教版) 必修1、必修2编写思想 人民教育出版社物理室张大昌 自2003年初以来,编者以《普通高中物理课程标准(实验)》为依据,编写了全套《普通高中课程标准实验教科书?物理》。本文结合共同必修《必修1》和《必修2》两本书,谈一谈编者在落实新课程理念时的想法和所做的努力,希望能与老师、学生们交流,也希望更多地听到大家的意见。 一、循序渐进,步步登高 任何教学活动都要使学生学会所教的内容,对于高中物理课程来说,就是要学会物理学的内容,否则无论知识与技能还是过程与方法、情感态度价值观的教育都无从谈起。落实三维课程目标的前提是学懂物理学! 要学懂物理学,有很多应该注意的事情,但有极其重要的一条,那就是循序渐进。一个5米高的峭壁,没有专门的工具、没有经过专门训练的人难以攀登,而泰山高1 524米,一般的人都能爬上去,这是因为泰山路上开凿了所有健康人都能接受的台阶。 教学也是这样。凡是教学中的难点,一般说来都是新内容与学生已有的认知之间存在较大的落差。正确分析这个落差,搭好合适的“台阶”,正是教学艺术性之所在。教科书的作用之一是做好教师的助手。编者在分析难点,帮助教师搭设教学台阶这方面做了很多工作。 1. 矢量的教学 编者是通过以下几个阶段来引导学生学习的。

(1)通过位移初步接触矢量 几十年来,我国高中物理教科书既有从力开始的,也有从运动学开始的;国外教科书也是这样。两种安排各有道理。课标教科书从运动学开始,目的之一是使矢量的教学能循序渐进。 在高中阶段,对矢量的认识要突出两点:方向性和加法法则。对于高一学生来说,两者都不容易。如果先学力,学了方向性后,几乎立即就要学习相加的法则,两个难点相距太近。因此,新教科书先学位移,通过位移初步接触矢量。在《必修1》第一章第2节说“像位移这样的物理量叫做矢量,它既有大小又有方向……”这里描述了矢量的一个特征,但不是下定义。 (2)通过思考与讨论?领悟?到矢量相加具有特殊的规律 《必修1》第一章第2节有个“思考与讨论”:一位同学从操场中心A出发,向北走了40 m,到达C点,然后又向东走了30 m,到达B点……你能通过这个实例总结出矢量相加的法则吗? 这里并不要求学生完整地得出平行四边形或三角形的法则,但一定要让学生思考。只要能够认识到最终的位移并不是把40 m与30 m相加就可以得到的,这就可以了。教学中要设法让学生心里存疑。新课程不是鼓励学生的探究精神吗?存疑就是教师预先埋伏下的问题,探究的开始。学生会不自觉地对这个问题做出或浅或深的猜想与假设……这对于后来的学习是很有意义的。 (3)通过实验探索矢量相加的法则 《必修1》第三章,学生通过实验了解了力相加的法则,为矢量的完整定义打下了基础。 (4)矢量的定义

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来

浅谈高中物理矢量教学

龙源期刊网 https://www.360docs.net/doc/6645587.html, 浅谈高中物理矢量教学 作者:杨庆华 来源:《速读·上旬》2017年第06期 摘要:在高中物理教学中矢量贯穿始终,是高中物理的重点和难点之一。矢量教学需要 循序渐进,让同学们一步一步地厘清矢量概念,掌握矢量运算的法则,提高运用矢量规律分析解决问题的能力。 关键词:矢量;概念;运算法则;误区;应用 在高中物理教学中矢量贯穿始终:运动学中有位移、速度、加速度;力学中有力、动量、冲量;电磁学中有电场强度、磁感应强度等。矢量是高中物理的基础知识,用矢量规律分析解决问题是学生必备的能力。矢量作为高中物理的重点和难点之一,如何进行教学,笔者作了如下的尝试。 1矢量概念的教学 学生在初中物理学习中,没有接触过有方向的物理量,进入高中后,开始涉及矢量问题。让学生建构一个良好的矢量观,为以后的高中物理矢量学习打好基础,高一物理矢量概念的教学显得尤为重要。 在人教版《物理必修1》出现的第一个矢量是位移,教学中让学生结合生活实际理解位移的概念,然后比较矢量与标量的不同:在物理学中,像位移这样的物理量叫矢量,它既有大小又有方向;而温度、质量这些物理量叫标量,它们只有大小,没有方向。这样使学生对矢量有一个初步的认识,知道矢量的方向性。学习到的另一个矢量是速度,对速度和速率这两个概念应进行严格的区分,速度是矢量,既有大小,又有方向,而速率是不强调方向。进一步加深学生对矢量方向性的印象。 加速度是高中物理学习中最重要的概念之一,加速度是速度的变化量与发生这一变化所用时间的比值。要理解加速度的方向性,必须先理解速度变化量的方向性,加速度的方向与速度变化量的方向一致。所以在加速度的教学中,特别重视直线运动中加速度的方向与速度大小变化的讨论,进一步强调加速度是矢量,它不仅有大小,也有方向。 严谨的矢量概念安排在第三章——相互作用,力描述的是物理间的相互作用,力的概念很抽象,力的矢量运算较复杂。在学习到本章第四节——力的合成,可以得出完整的矢量概念:既有大小又有方向,运算时遵从平行四边形定则的物理量叫做矢量。至此矢量概念教学才算完成,学生也才会真正清楚什么是矢量。 2矢量运算法则的教学

受力分析的矢量三角形法运用练习题

九、力的矢量三角形定则运用 1.如图所示,光滑水平地面上放有柱状物体A ,A 与墙面之间放一光滑的圆柱形物体B ,对A 施加一水平向左的力F ,整个装置保持静止.若将A 的位置向左移动稍许,整个装置仍保持平衡,则( ) A.水平外力F 增大 B.墙对B 的作用力减小 C.地面对A 的支持力不变 D.B 对A 的作用力增大 2. 如图所示,用一根长为L 的细绳一端固定在O 点,另一端悬挂质量为m 的小球A ,为使 细绳与竖直方向夹300角且绷紧,小球处于静止,则需对小球施加的最小力等于( ) A .mg 3 B .m g 23 C .m g 3 3 D .mg 21 3.如图4所示,在倾角为α的斜面上,放一质量为m 的小球,小球和斜坡及挡板间均无摩擦,当档板绕O 点逆时针缓慢地转向水平位置的过程中 ( ) A.斜面对球的支持力逐渐增大 B.斜面对球的支持力逐渐减小 C.档板对小球的弹力先减小后增大 D.档板对小球的弹力先增大后减小 4.将一个已知力F,分解成两个分力,其中一个分力F 1的方向与已知力的方向成θ=30o ,另一个分力大小为F 2= F 3 3 ,则F 1大小可能为 A 、 F 33 B 、 F 21 C 、 F 23 D 、F 3 32 5.已知两个共点力的合力为50N ,分力F 1的方向与合力F 的方向成30 角,分力F 2的大小为30N 。则( ) A .F 1的大小是唯一的 B.F 2的方向是唯一的 C. F 2有两个可能的方向 D.F 2可取任意方向 6.将力F 分解为两个分力,已知其中一个分力F 1的方向与F 的夹角为一锐角θ,则:( ) A .只要知道另一个力的方向,就可得到确定的两个分力 B .只要知道F 1的大小,就可得到确定的两个分力 C .如果知道另一个分力的大小,就可得到唯一确定的两个分力 D .另一个分力的最小值是F 1sin θ 7.如图所示,AB 为可绕B 转动的挡板,G 为圆柱体.夹于斜面与挡板之间.若不计一切摩擦,使夹角β由开始时较小的某一角度逐渐增大到90°的过程中,挡板AB 受到的压力:( ) A .不断增大 B .不断减小 C .先增大后减小 D .先减小后增大 图4

高中物理中符号的使用规则

1 符号的使用规则 中学物理中的“+-、”号通常有三种情况: (1)表示物理量之间的运算关系.(2)表示矢量的方向或标量的正、负.(3)表示物理量的变化情况.在应用时,要具体问题具体分析. 1. 表示物理量之间的运算关系 标量之间的“+-、”为代数运算.矢量之间的“+-、”为矢量运算,遵从平行四边形定则或三角形定则,但在一条直线上矢量之间的“+-、”可转化成代数运算. 2. 表示矢量的方向或标量的正、负 (1)表示矢量的方向:在规定正方向后,凡与正方向相同的矢量取正值,相反的矢量取负值;所求矢量为正值者,表示其方向与正方向相同,为负值者,表示其方向与正方向相反. (2)表示标量的正、负.例如功和能都是标量,都有正、负之分.①对功来说,W >0,表示力对物体做正功;W <0,表示力对物体做负功;W =0,表示力对物体不做功.②能量是一个相对量,可取正值、负值或零.例如: 卫星绕地球旋转时,卫星和地球组成系统的总能量为(取无穷远处为零势点): ()22k p GMm GMm GMm E E E r r r =+= +-=-卫;其中G 为万有引力常量、M 为地球质量、m 为卫星质量、r 为卫星绕地球做匀速圆周运动的轨道半径. 氢原子核式结构模型中,氢原子的总能量为(取无穷远处为零势点): 222 '' ()22k p ke ke ke E E E r r r =+=+-=-氢.(也可以用能级公式计算)其中k 为静电引力常量、e 为电子所带电量、r 为电子绕核运动的轨道半径. 显然,卫星和电子的动能都是正值,系统的势能和总能量都是负值. 势能的情况较为复杂.势能为物体系所共有,与零势面的选取有关(势能的变化与零势面的选取无关),在规定了零势面后,可以判断某处势能的多少和正负.①对地球表面附近的物体来说,重力势能的计算式是P E mgh =(g 视为常量).当物体位置高于零势面(通常取地面为零势面)时h 取正值,h 越大势能越大;反之,h 取负值,h 的绝对值越大,势能就越小.②对弹性势能来说,一般取原长时弹性势能为零,则212 P E kx =(x 是形变量),弹性势能只有正值,没有负值.③对分子势能来说,一般取无穷远处分子势能为零,则11p s t E r r λ μ--=-.当0r r =时,分子力为零,分子势能最小且为负值;当分子间距离增大(但小于分子直径的10倍)时,分子势能也增大,但仍为负值;当分子间距离减小时,分子势能仍增大且为负值,当分子间距离减小到一定程度时,分子势能由负值逐渐增大到零,此后再减小分子间距离,分子势能表现为正值且逐渐增大.④电势和电势能也有正、负之分,在规定了零势面后,可以判断电场中某点电势或电势能的正负和高低.通常取无穷远处为零势 面,则点电荷的电势和电势能公式为:12,p p kq q kq E r r φ==.p φ和p E 的正、负分别由q 和1q 、2q 的正、负决定,正电荷周围的电势为正,负电荷周围的电势为负.正电荷在正电势的地方电势能为正,负电荷在负电势的地方电势能也为正;反之为负. 3.表示物理量的变化 矢量的变化既表示矢量变化的方向又表示矢量变化的大小,其运算遵从平行四边形或三

高中物理模型组合27讲(Word下载)矢量运算模型

高中物理模型组合27讲(Word 下载)矢量运算模 型 [模型概述] 矢量及运确实是高中物理的重点和难点之一,常见的矢量有位移、速度、加速度、力、动量、电场强度、磁感应强度等,由于其运算贯穿整个中学物理,因此在进行模块讲解之前,我们有必要熟练把握矢量的运算规律。 [模型讲解] 例. 〔2005年安丘市统考〕 如图1所示,平行四边形ABCD 的两条对角线的交点为G 。在平行四边形内任取一点O ,作矢量OA 、OB 、OC 、OD ,那么这四个矢量所代表的四个共点力的合力等于〔 〕 图1 A. 4OG B. 2AB C. 4GB D. 2CB 解析:如图2所示,延长OG 至P ,使GP =OG ,连结PA 、PB 、PC 、PD ,得平行四边形AODP 和平行四边形COBP 。由力的平行四边形定那么明白,矢量OA 、OD 所代表的两个共点力F F A D 、的合力F AD 可用矢量OP 表示,即F OP OG AD ==2。 图2 同理,矢量OB 、OC 所代表的两个共点力F F B C 、的合力F BC 也可用矢量OP 表示,即F OP OG BC ==2。 从而,F F F F A B C D 、、、四个共点力的合力F F F OG AD BC =+=4。因此A 项正确。 评点:由于题中的O 点是任取的,各力的大小和方向无法确定,通过直截了当运算确信行不通。但考虑到平行四边形的对角线互相平分这一特点咨询题就解决了。事实上对该部分的考查往往是从专门的角度进行的,如θ=0°,90°,120°,180°等。 总结:〔1〕当两分力F 1和F 2大小一定时,合力F 随着θ角的增大而减小。当两分力间

力的三角形法则

力的三角形法则 一个物体在三个力的作用下,保持平衡,这三个力构成一个封闭的矢量三角形。力的三角形法则有三种常见题型 题型一:两个力方向不变,第三个力的方向改变,且在改变过程中,物体一直处于平 衡状态,寻求第三个力的方向在改变过程中,该力的最小值。 1.如图所示,一小球用轻绳悬于O 点,用力F 拉住小球,使悬线保持偏离竖直方向75°角,且小球始终处于平衡状态,为了使F 有最小值,F 与竖直方向的夹角θ应该是(B ) A .90° B .15° C .45° D .0° 2.如图所示,将两个质量均为m 的小球a 、b 用细线相连并悬挂于O 点,用力F 拉小球a 使整个装置处于平衡状态,且悬线Oa 与竖直方向的夹角为θ=60°,则力F 的大小可能为 A. 3mg B .mg C. 32 mg D. 33mg ABC 3、如图所示,质量为m 的球放在倾角为α的光滑斜面上, 试分析挡板AO 与斜面间的倾角β多大时,AO 所受 压力最小? 答案:当β=900时,挡板AO 所受压力最小, 最小压力N 2min =mgsin α. 题型二:两个力方向不变,第三个力的方向逐渐变化,且在变化过程中,物体一直处于平衡 状态,分析在此过程中,各力的大小变化规律 4、如图所示,将一个重物用两根等长的细绳OA 、OB 悬挂在半圆形的 架子上,在保持重物位置不动的前提下,B 点固定不动,悬点A 由位置C 向位置D 移动,直至水平,在这个过程中,两绳的拉力如何 变化? 答案:OB 绳子中的拉力不断增大,而OA 绳中的拉力先减小后增大, 当OA 与OB 垂直时,该力最小。

沪科版高中物理必修一第2讲《区分矢量与标量,理解位移与路程》教案

沪科版高中物理必修一第2讲《区分矢量与标量,理解位移与路 程》教案 高中阶段的物理量分为两类:一类是有大小、有方向的物理量,称为矢量;另一类是有大小、没有方向的物理量,称为标量.两类物理量在表达、运算、比较等方面都是不同的.1.矢量和标量 (1)矢量:既有大小又有方向的物理量.如:力、速度、位移等. ①矢量可以用带箭头的线段表示,线段的长度表示矢量的大小,箭头的指向表示矢量的方向. ②同一直线上的矢量,可用正、负表示方向.若矢量与规定的正方向相同,则为正;若矢量与规定的正方向相反,则为负. (2)标量:只有大小没有方向的物理量.如:长度、质量、温度等. ①有些标量也带正、负号,但标量的正、负号与矢量的正、负号意义是不同的,它不表示方向.对于不同的标量,正、负号的意义也是不同的,如:温度的正、负表示比零摄氏度高还是低,电荷量的正、负表示是正电荷还是负电荷. ②标量的运算遵从算术法则. (3)大小比较:①比较两个矢量大小时比较其绝对值即可;②比较两个标量大小时,需比较其代数值. 2.位移和路程 (1)位移:表示质点位置变化的物理量,是由初位置指向末位置的有向线段.线段的长度表示位移的大小,有向线段的指向表示位移的方向. (2)路程:物体运动轨迹的长度,它不表示质点位置的变化. 路程和位移的比较:

才等于路程.因此,质点运动过程中的位移大小总是小于或等于路程 对点例题 某学生参加课外体育活动,他在一个半径为R 的圆形跑道上跑步,从O 点沿圆形跑道逆时针方向跑了4.75圈到达A 点,求它通过的位移和路程. 思路点拨 位移是矢量,求某一过程的位移,既要求出大小,还要标明方向.描述物体在平面内的曲线运动时,需要建立平面直角坐标系.当物体做曲线运动时,其位移的大小与路程是不相等的,且路程大于位移的大小. 解题指导 如图所示,有向线段OA 即为该学生通过的位移 s =R 2+R 2=2R ,位移方向与x 轴的夹角为φ=45°. 通过的路程为L =4×2πR +34×2πR =192 πR . 答案 见解题指导 技巧归纳 解运动学问题时,画出运动示意图可帮助分析问题,特别是运动过程较复杂时,运动示意图可使运动过程清晰.此外,对于定量计算的问题,若是直线运动,就画直线坐标系;若是曲线运动,就画平面直角坐标系,并将运动的轨迹在坐标系上画出. 如图1所示,一边长为10 cm 的实心立方体木块,一只昆虫从A 点爬到G 点.求: 图1 (1)该昆虫的位移; (2)该昆虫的最短路程. 答案 (1)10 3 cm ,方向由A 指向G (2)10 5 cm 解析 (1)昆虫的位移为A 指向G 的有向线段,大小为10 3 cm ,方向由A 指向G

例说矢量三角形的使用

例说矢量三角形的使用 息烽县乌江复旦学校王清安 矢量三角形法则是从平行四边形法则演变来的,是矢量运算的法则。用矢量三角形分析和计算矢量的最小值,即简便又形象,有事半功倍的效果,下面举例分析。 一、求电场强度最小值 例1质量为m的带正电小球A悬挂在绝缘细线上,其电荷量为q,且处匀强电场中。当小球A静止时,细线与竖直方向成30°角,如图所示,求匀强电场强度E的最小值及其方向。 解析:由于小球受重力、电场力和绳的拉力处于静止状态,故小球所受的重力和电场力的合力一定沿绳的方向向下。根据三角形法则可做出重力、电场力及其合力的矢量三角形,如图。可见当电场力qE和合力F垂直时,电场力最小,即E最小。 由几何关系得:mgsin30°=qE 解得:E小=mg/2q 方向:垂直于绳向上 二、求速度最小值 例2有一小船在渡河,如图所示,在离对岸30m时,其下游40m处有一危险水域,假若水流速度为5m/s,为了使小船在危险水域之前到达对岸,求小船从现在起,相对于静水的最小速度。

解析:小船同时参与两个运动,随水流的运动和相对于水的运动,两分速度分别为v1和v2,与合速度v可组成矢量三角形,如图,当小船恰好在危险区登陆,且v2垂直于v时,v2最小。v2=v1sinα,由位移关系可得:sinα=3/5 解得最小速度v2=3m/s 船头指向:与上游河岸成53°。 三、求力的最小值 例3 将质量m=5kg的木板置于水平桌面上,其右端三分之一长度推出桌子边缘,木板与桌面间动摩擦因数为,试求欲将木板推回桌面所施加的最小推力。 解析:木板受力为:重力mg、支持力F N、摩擦力Fμ、和推力F。因Fμ与压力成正比,所以Fμ和F N 也成正比,两者的合力方向F合是确定的,且tanα= Fμ/F N=μ,可得α=30°,如图。 刚好推动木板的条件是合力恰好为零,即重力、推力和F合三个力的合力为零。重力和推力的合力应该与F合共线。做重力、推力、及其合力的矢量三角形如图,可知当推力与合力的方向垂直时,其值最小,如图中的F2。可解得 F min=mgsinα=25N,方向:与水平方向的夹角为30°向上。 此题将支持力和摩擦力合成为一个方向恒定的力F,通过这种巧妙的转化,可做出矢量三角形,有此法求解。 四、求动量的最小值

高中物理的数学基础——矢量篇(其一)

高中物理的数学基础——矢量篇(其一)百度贴吧高中物理吧@浪漫主义学派 2020年2月8日

1绪论 物理学中有各种物理量,像质量、密度、能量、温度、压强等,在选定单位后仅需用一个数字来表示其大小,这类物理量叫做标量;而像位移、速度、加速度、动量、力、力矩等,除数量的大小外还具有一定的方向,这类物理量叫做矢量。人教版高中物理教科书早在必修一便讲述了位移、速度等矢量,但却没有详细论述这个数学概念的始末。高中数学教材虽然比较充分地做了这些工作,但大部分同学直到高中二年级才有机会一览其面目。余是以为此文,以期不使矢量成为众人之拦路虎也。 余在此不打算引入过多的物理背景来介绍这个概念,亦不希望大家被纷繁芜杂的数学公式绕晕。余愿力求每一个高一新生都看得懂此文。所以我在参考其他教材的基础上,将矢量的相关知识点进行降维处理。另一方面,本文也要拓展一些高中数学教材上不曾讲过之物,如矢量的外积等。本人才疏学浅,难免有错漏或不宜之处,还请各路大神斧正。 本文中大量知识点被放在练习题的位置上,读者请务必认真对待练习题,勿浪费练习之神奇效用。 2矢量及其相关定义 数学上,既有大小又有方向的量被称为矢量(或向量)。我们常常用一条有方向的线段,即有向线段来表示矢量。 图1表示的是以A 点为起点,以B 点为终点的有向线段,其可代表一 个矢量,记作?→AB 。有时也可以用一个带箭头的字母来表示一个矢量,例 如 v 。有些打印稿也使用粗体字母来表示矢量,例如v ,其意义与 v 相同。 但需要注意的是,使用描粗英文字母的方法手写向量是不规范的行为,应 改用标于其上的箭头。其中,有向线段的长度表示矢量的大小,箭头的方 向表示矢量的方向。 图1:矢量?→AB 如果两个矢量a 和b 的长度相等且方向相同,我们就说这两个矢量是相等的,记作a =b 。 也就是说,经过平行移动后能完全重合的矢量是相等的。矢量的大小叫做矢量的模,用绝对值符号来表示。如矢量?→AB 的模记作|?→ AB |。模等于单位长度的矢量叫做单位矢量。模等于0的矢量叫做零矢量,也记作0或 0。此时可见矢量符号非常重要,如果省略则意义完全改变。由于零矢量的起点与终点重合,所以它的方向可以看作任意的。 现在我们来考虑两个矢量之间的夹角。对于两个矢量a 和b 而 言,我们总是可以通过平移的操作使它们的起点重合,如图2所示。 此时图示的角φ即为两个矢量之间的夹角,并记为?(a ,b )。我们规 定0?≤φ≤180?。当两个矢量方向完全相同时,它们的夹角为0?。 当两个矢量方向完全相反时,它们的夹角为180?。若两个矢量同向 或者反向,我们称这两个矢量平行。若两个矢量间的夹角等于90?, 我们称这两个矢量垂直。图2:矢量a 和b 之间的夹角零矢量是个特殊的矢量。由于零矢量的方向任意,所以零矢量和任意矢量的夹角大小均可以在0?到180?间任意取值。可以认为,零矢量与任意其他向量平行,也可以认为零矢量与任意

力学分析运动趋势常用矢量三角形法

力学分析运动趋势常用矢量三角形法 矢量三角形法同平行四边形法则在处理矢量的合成和分解时是相同的,也是作图法解决问题的方法之一。应用矢量三角形法则主要解决的试题类型:如果只有某一个力的大小和方向发生变化,而另外两个力的方向不变,用矢量三角形来判断力的大小变化趋势比较简单。 1、如图所示,用细绳将均匀球悬挂在光滑的竖直墙上,绳受的拉力为T,墙对球的弹力为N,如果将绳的长度增加,则() A.T、N均不变B.T减小、N增大C.T、N均增大D.T、N均减小 2、如图所示,清洗楼房光滑玻璃的工人常用一根绳索将自己悬在空中,工人及其装备的总重量为G,且视为质点.悬绳与竖直墙壁的夹角为α,悬绳对工人的拉力大小为F1,墙壁对工人的弹力大小为F2,则() A.F1=Gsinα B.F2=Gtanα C.若工人缓慢下移,增加悬绳的长度,则F1与F2的合力变大 D.若工人缓慢下移,增加悬绳的长度,则F1减小,F2增大 3、如图所示,用拉力F将质量为m的滑块沿光滑的半圆柱面极缓慢地拉到顶端,在这个过程中,拉力F的方向始终沿圆柱面的切线方向,则下列说法正确的是() A.拉力F的大小在不断减小B.物块受到的支持力在不断增大 C.拉力和支持力的合力大小和方向均不变

D.拉力和支持力的合力大小不变,方向不断改变 4、某欧式建筑物屋顶为半球形,一警卫人员为执行特殊任务,必须冒险在半球形屋顶上向上缓慢爬行(如图),他在向上爬的过程中() A. 屋顶对他的支持力变大B.屋顶对他的支持力变小 C.屋顶对他的摩擦力变大D.屋顶对他的摩擦力变小 5、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,绳上的拉力将() A.逐渐增大B.逐渐减小 C.先增大后减小D.先减小后增大 另外一问:球对斜面的压力() A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大 6、如图8—1所示,细绳跨过定滑轮,系住一个质量为m的球,球靠在光滑竖直墙上,当拉动细绳使球匀速上升时,球对墙的压力将() 图8—1 A.增大B.先增大后减小C.减小D.先减小后增大 7、用两根绳子系住一重物,如图8—2所示.绳OA与天花板间夹角θ不变,当用手拉住绳子OB,使绳OB由水平方向转向竖直方向的过程中,OB绳所受的拉力将()

高中物理 模块要点回眸 第2点 区分矢量与标量,理解位移与路程素材 沪科版必修11

第2点区分矢量与标量,理解位移与路程 高中阶段的物理量分为两类:一类是有大小、有方向的物理量,称为矢量;另一类是有大小、没有方向的物理量,称为标量.两类物理量在表达、运算、比较等方面都是不同的. 1.矢量和标量 (1)矢量:既有大小又有方向的物理量.如:力、速度、位移等. ①矢量可以用带箭头的线段表示,线段的长度表示矢量的大小,箭头的指向表示矢量的方向. ②同一直线上的矢量,可用正、负表示方向.若矢量与规定的正方向相同,则为正;若矢量与规定的正方向相反,则为负. (2)标量:只有大小没有方向的物理量.如:长度、质量、温度等. ①有些标量也带正、负号,但标量的正、负号与矢量的正、负号意义是不同的,它不表示方向.对于不同的标量,正、负号的意义也是不同的,如:温度的正、负表示比零摄氏度高还是低,电荷量的正、负表示是正电荷还是负电荷. ②标量的运算遵从算术法则. (3)大小比较:①比较两个矢量大小时比较其绝对值即可;②比较两个标量大小时,需比较其代数值. 2.位移和路程 (1)位移:表示质点位置变化的物理量,是由初位置指向末位置的有向线段.线段的长度表示位移的大小,有向线段的指向表示位移的方向. (2)路程:物体运动轨迹的长度,它不表示质点位置的变化. 路程和位移的比较: 路程位移 区 别 描述质点实际运动轨迹的长度描述质点位置的变化 有大小,无方向既有大小,又有方向 与质点的运动路径有关与质点的运动路径无关,只由初、末位置决定 联 系 都是描述质点运动的空间特征 都与一段时间相关,是过程量 一般来说,位移的大小不等于路程,只有质点做单向直线运动时,位移的大小 才等于路程.因此,质点运动过程中的位移大小总是小于或等于路程 对点例题某学生参加课外体育活动,他在一个半径为R的圆形跑道上跑步,从O点沿圆形跑道逆时针方向跑了4.75圈到达A点,求它通过的位移和路程. 思路点拨位移是矢量,求某一过程的位移,既要求出大小,还要标明方向.描述物体在平

高中物理:标量和矢量的理解

高中物理:标量和矢量的理解 [探究导入](1)像位移这样的物理量叫作矢量,既有大小又有方向.我们初中物理学习过许多物理量,比如体积、密度、质量、温度、力等,这些物理量中,哪些是矢量?哪些是标量? 提示:体积、密度、质量和温度这几个物理量只有大小,没有方向,所以都是标量;而力有大小也有方向是矢量. (2)矢量和标量的算法有什么不同? 提示:两个标量相加遵从算术加法的法则.两个矢量相加满足平行四边形定则(第三章学习). 1.矢量的表示方法 (1)图示表示:用带箭头的线段表示,线段的长度表示矢量的大小,箭头的方向表示矢量的方向. (2)数字表示:先建立坐标系并规定正方向,然后用正负数来表示矢量,“+”号表示与坐标系规定的正方向一致,“-”号表示与坐标系规定的正方向相反;数字的大小表示矢量的大小. 2.矢量和标量的区别 (1)矢量有方向,标量没有方向. (2)标量的运算法则为算术运算法则,即初中所学的加、减、乘、除等运算方法;矢量的运算法则为以后要学到的平行四边形定则. (3)矢量大小的比较要看其数值的绝对值大小,绝对值大的矢量大,而“-”只代表方向. [典例3](多选)下列关于矢量(位移)和标量(温度)的说法正确的是() A.两个运动的物体位移大小均为20 m,这两个位移一定相同 B.做直线运动的两个物体的位移x甲=1 m,x乙=-3 m, 则x甲<x乙 C.温度计读数有正负,其正号表示温度的方向 D.温度计读数时正的温度一定大于负的温度,正负不能代表方向 [解析]位移是矢量,大小相等,方向不一定相同,所以这两个位移不一定相同,A错;矢量比较大小时,比较绝对值即可,B正确;温度是标量,只有大小,没有方向,正号表示比零摄氏度高,负号表示比零摄氏度低,正的温度一定高于负的温度,C错,D对.[答案]BD

矢量三角形法--专题

矢量三角形法在三力平衡问题中的应用 在静力学中,经常遇到在力系作用下处于平衡的物体其所受诸力变化趋势判断问题.这 种判断如果用平衡方程作定量分析往往很繁琐,而采用力三角形图解讨论则清晰、直观、全 面.我们知道,当物体受三力作用而处于平衡时,必有∑F=O ,表示三力关系的矢量图呈闭 合三角形,即三个力矢量(有向线段)依次恰好能首尾相接.当物体所受三力有所变化而又维 系着平衡关系时,这闭合三角形总是存在而仅仅是形状发生改变.比较不同形状的力三角形各几何边、角情况,我们对相应的 每个力大小、方向的变化及其相互间的制约关系将一目了然.所 以,作出物体平衡时所受三力矢量可能构成的一簇闭合三角形, 是力三角形法的关键操作。 三力平衡的力三角形判断通常有三类情况. 一、三力中有一个力确定,即大小、方向不变,一个力方向 确定。这个力的大小及第三个力的大小、方向变化情况待定 例1 如图1所示,用细绳通过定滑轮沿竖直光滑的墙壁匀速向上拉动, 例2 则拉力F和墙壁对球的支持力N的变化情况如何? 分析与解 以球为研究对象,在平衡时受重力,绳上的拉力及墙壁 对球的支持力,三力关系可由一系列闭合的矢量三角形来描述。其中重 力为确定力,墙壁对球的支持力为方向确定力, 如图2,取点O作表示 重力的有向线段①,从该箭头的端点作支持力N的作用线所 在射线②,作从射线②任意点指向O点且将图形封闭成三角形的一系列有向线段③它们就是绳子拉力矢量。用曲线箭头 表示变化趋势,从图中容易分析绳子拉力不断增大,墙壁对 球的支持力也不断增大,因上升的过程中图中角度θ在不断 增大 例2 如图3装置,AB 为一轻杆在B 处用铰链固定于 竖墙壁上,AC 为不可伸长的轻质拉索,重物W可在AB 杆上滑行。试分析当重物W 从A 端向 B 端滑行的过程中,绳索中拉力的变化情况以及墙对AB 杆作用力的变化情况。 分析与解 以AB 杆为研究对象,用力矩平 衡的知识可较为方便明确AC 拉索中的拉力变化情 况,但不易确定墙对AB 杆作用力的情况。我们考虑 到AB 杆受三个力作用且处于平衡状态,则它们的作 用线必相交于一点,这样三力关系可由闭合的矢量 三角形来描述。其中重物对杆的拉力为确定力,拉索对杆的拉力为方向确定力,与上题类似。 如图4,取O 点作表示重物对AB 杆拉力的有向线 段①,过O 点作绳索拉力的作用线所在射线②,从①箭头 端点作指向射线②上任意 点的有向线段③,则③就是墙对AB 杆的作用力. 用曲箭头表明变化趋势。从图中可以看出:随着重物从A 端向B 端移动的过程中,①、③的夹角θ逐渐减小,所以 绳索的拉力不断减小,墙对AB 杆的作用力先减小后增大。 综上所述,类型一问题的作图方法是:以确定力矢量 为力三角形系的基准边,在它的箭头端沿已知方向力的方 向作射线,从射线上的点作指向确定力矢量箭尾的有向线 图4 图 1 图2 图3

高中物理矢量三角形法应用

高中物理矢量三角形法应用 河北 石晓兵 物体在三个非平行力的作用下平衡时,这三个力必在同一平面内共点。根据共点力的平衡条件可知,其合力为零,三个力组成一个封闭三角形。解答此类题目时,用矢量三角形分析一些动态变化,使得定性分析的解答过程简捷、直观、明了,使得定量计算的解答过程远比解析法简便得多。尤其是遇到物体在共点力的作用下平衡时求极值的题目,用矢量三角形可以大大简化解题过程,避免用解析法通过三角函数求极值的繁琐过程,能收到事半功倍的效果。 1. 共点力平衡时力变化的定性讨论 例1 用一根细绳把重为G 的小球挂在竖直光滑的墙壁上,如图1所示,若改用较长的细绳,使α角变小时,细绳对小球的拉力及墙壁对小球的弹力如何变化? 图1 解析 选小球为研究对象,小球在重力G 、细绳拉力T F 、墙壁弹力F N 三个力作用下始终处于共点力的平衡状态,G 的大小和方向都确定。F N 的方向确定,但大小不定,T F 的大小和方向都不定。根据图中力的封闭矢量三角形可以看出,α角较小时,细绳对小球的拉力和墙壁对小球的弹力均减小。 例2 如图2所示,一轻杆O 端用铰链固定于墙壁上,A 端用轻绳拉紧使OA 杆保持水平,若在A 端挂重物G ,当把重物的悬点A 点向O 点逐渐缓慢移动时,绳对A 点的拉力和铰链对杆的作用如何变化? 图2 解析 选杆为研究对象,杆在拉力)G F (F 1T 1T 、拉力2T F 和铰链作用力N F 三个力作用下始终处于平衡状态。1T F 的大小和方向都确定,2T F 的方向确定,但大小不定,N F 的大小和方向都不定。根据图3中力的封闭矢量三角形可以看出,当把重物的悬点从A 点向O 点逐渐缓慢移动时,2T F 一直减小,N F 先减小后增大。 图3

如何进行矢量的教学

如何进行矢量的教学 ——读新课程标准后的体会 矢量在高中物理的学习中贯穿始终:运动学中有位移、速度、加速度;力学中有力、冲量、动量;电磁学中有电场、磁场等等。故关于矢量的概念、矢量的运算法则、矢量方程的应用,在高中物理中的每一章都有,不仅要知道,而且还要会熟练的应用。用矢量的规律分析解决问题的能力要求是学生从初中物理向高中物理要跨越的一大“障碍”,但也是学生学习物理学所必须具备的基础知识.因此,关于矢量的教学是高中物理的重点和难点之一。 原来的老教材从力学入手,先学习力,再讲到力的矢量性——既有大小又有方向,然后通过两个演示实验用力的图示来描述如何进行力的叠加——力的合成与分解遵循平行四边形法则,最后用学生实验——验证力的平行四边形法则来说明用平行四边形法则来进行矢量的叠加的正确性。然而学生从教材中只能得到矢量是既有大小又有方向的物理量,但是实际上矢量的定义确实叠加时遵循平行四边形法则的物理量,这里需要老师补充并且反复强调。并且从力学入手让学生接触到了一个看不见摸不着,只能靠感觉得到的物理量——力,还要学习它的矢量性——遵循平行四边形法则,让学生无法一下子跨越从初中物理学到高中物理学的这道

坎。 新教材中却改变了原来的顺序:从运动学开始。在运动学中,首先要接触到的就是位移。位移相对于力而言,学生虽然是刚接触,但是要容易理解的多。首先位移是可以看得见的——无论是大小还是方向,也能举出实际的例子,让学生有比较直观的感受,进而转化为理性思维。其次位移的矢量性质和实际生活中的一些情况紧密相连,学生比较熟悉。比如在标准跑道上的100m赛跑与400m赛跑运动员位移的区别,路程的区别等等。再就是矢量的叠加遵循平行四边形法则不需要直接评讲,而是让学生通过位移的学习先知道位移的叠加不是直接相加减,学生就会下去探究,分析,讨论。为以后学习矢量的叠加打下基础。然后通过力学的学习,让学生明白什么是矢量,如何对矢量进行运算。 在新教材中就体现了这一点:在教材13页就指出矢量的特点:既有大小又有方向,但是没有给出定义。进而给出了思考与讨论: 一位同学从操场中心A点出发,向北走了40m,到达C 点,然后又向东走了30m,到达B点。在纸上用有向线段表明他第一次、第二次的位移和两次行走的合位移(即代表他的位置变化的最后结果的位移)。 三个位移的大小各式多少?你能通过这个实例总结出矢量相加的法则吗?

相关文档
最新文档