动态规划算法作业.pdf

动态规划算法作业.pdf
动态规划算法作业.pdf

1 n←length(T)

2 create array x[1:L]

3 for j←1 to L

4 d o x[j]←j/T[1]

5 for i←2 to n

6 do for j←L to 1

7 do for k←1 to j/T[i]

8 do if x[j-k*x]+k

9 then x[j]←x[j-k*x]+k

10 return x

时间复杂度分析:算法1~2行时间复杂度为O(1),3~4行时间复杂度为O(L),5~9行时间复杂度为O(nL2),10行时间复杂度为O(1)。故算法总的时间复杂度为O(nL2)。

(3)设y[1:n]存储当找钱数为j的最优解时T[1:n]硬币分别找的个数。选择面值最大的T[i],1≤i≤n,使C[n,j]=C[n,j-T[i]]+1,则子问题找钱数为j-T[i]的最优解y’[1:n]中,y’[i]+1后即为原问题的最优解y[1:n]。故问题的最优解可以通过子问题的最优解来达到,该问题具有贪心选择性。(假设T[1:n]的面值是递增的,并且C[n,L]是与排序后的T对应的结果)

Input:T[1:n], C[1:L], m

Output:每个硬币对应的数目y[1:n]

GET-CHANGE-NUMBER(T,C,m)

1 n←length(T),w←m

2 create array y[1:n]

3 for i←1 to n

4 do y[i]←0

5 while w>0

6 do for i←n to 1

7 do if C[w]=C[w-T[i]]+1

8 then y[i]←y[i]+1

9 w←w-T[i]

10 break

11 return y

时间复杂性分析:算法1~2行时间复杂度为O(1),2~3行时间复杂度为O(n),5~10行时间复杂度为O(m×n),11行时间复杂度为O(1)。故算法总的时间复杂度为O(m×n)。

2.设计一个动态规划算法从n个数构成的数列中找出最长单调递增子序列。

答:

(1)问题转化:设X[1:n]为n个数构成的序列,Y[1:n]为将X[1:n]中的数进行递增排序的结果。那么,原问题可以转化为求X和Y的最长公共子序列。设X中的最长单调递增子序列为x i, x j, …, x k, x m,那么在排序后的Y中,该子序列仍以这一顺序存在于Y中,显然该序列为X和Y的公共子序列。假设其不是X和Y的最长公共子序列,

设其最长公共子序列为x i, x j, …, x p, …, x k, x m。由于Y为递增序列,因此有x i

(2)优化子结构

X和Y的LCS=(z1,z2,…,z k)的优化解结构为

LCS XY=LCS X

+ if x m=y n

m?1Y n?1

if x m≠y n,z k≠x m

LCS XY=LCS X

m?1Y

if x m≠y n,z k≠y m

LCS XY=LCS XY

n?1

(3)递推方程

C[i,j]=X i和Y j的LCS的长度

C[i,j]=0 if i=0或j=0

C[i,j]=C[i?1,j?1]+1 if i,j>0且x i=y j

C[i,j]=max (C[i,j?1],C[i?1,j]) if i,j>0且x i=y j (4)算法伪代码

Input:数列X[1:n]

Output:X的最长单调递增子序列

LIS(X)

1 n←length(X)

2 create array Y[1:n] ,C[n,n] and B[n,n]

3 Y←sort(X)

4 for i←1 to n

5 do C[i,0]←0,C[0,j]←0

6 for i←1 to n

7 do for j←1 to n

8 if X[i]=Y[j]

9 then C[i,j]←C[i-1,j-1]+1;B[i,j]←“↖”

10 else if C[i-1,j]≥C[i,j-1]

11 then C[i,j]←C[i-1,j]; B[i,j]←“↑”

12 else C[i,j]←C[i,j-1]; B[i,j]←“←”

13 return B and C

PRINT-LIS(B,X,i,j)

1 if i←0 or j←0

2 then return

3 if B[i,j]= “↖”

4 then PRINT-LIS(B,X,i-1,j-1);print X[i]

5 else if B[i,j]= “↑”

6 then PRINT-LIS(B,X,i-1,j);

7 else PRINT-LIS(B,X,i,j-1);

时间复杂度分析:

计算代价算法LIS(X)中,1~2行时间复杂度为O(1),3行为排序算法,时间复杂度最低为O(nlogn),4~5行时间复杂度为O(n),6~12行时间复杂度为O(n2),13行时间复杂度为O(1);

构造算法PRINT-LIS(B,X,i,j)中,时间复杂度为O(2n)。

故算法总的时间复杂度为O(n 2)。

3.给定一个n×n 的矩阵A ,矩阵中的元素只取0或者1。设计一个动态规划算法,求解得到A 中元素全是1的子方阵使其阶数达到最大值。

答:

(1)优化子结构:设n 阶矩阵表示为A[1:n,1:n],B[i,j]为A 中前i 行,前j 列中1的个数。则

???==++=1

A[i][j] if 10A[i][j] if 0B -B B B 1-j 1,-i 1-j i,j 1,-i j i, 如果B i,j -B i-k,j - B i,j-k +B i-k,j-k =k 2,那么在该位置存在一个k 阶矩阵。

(2)递推方程:

设C[i,j]表示A 中前i 行前j 列中元素全为1的子方阵的最大阶数。则递推方程为:

C [i,j ]=max {C [i ?1,j ],C [i,j ?1],

max k

{k ≥max (C [i ?1,j ],C [i,j ?1])| B [i,j ]?B [i ?k,j ]?B [i,j ?k ]+B [i ?k ][j ?k ]=k ×k}}

(3)算法伪代码

只要知道了C n,n 的值,就知道了最优解的阶数,为了知道这个最优解的具体信息,我们还需一个结构S ,S i,j 是C i,j 对应的方阵的右下角元素在A 中对应的位置。因此,S n,n 就是最优解方阵右下角元素的位置,C n,n 是最优解的阶数。

GET-MAX-MATRIX(A,n)

1 create arrays B[0:n][0:n],C[0:n][0:n],S[1:n][1:n]

2 for i←0 to n

3 do B[i][0]←0; B[0][i]←0;C[i][0]← 0; C[0][i]←0;

4 for i←0 to n

5 do for j←0 to n

6 do if A[i][j]=1

7 then B[i][j]←1

8 else B[i][j]←0

9 B[i][j]←B[i][j]+B[i-1][j]+B[i][j-1]+B[i-1][j-1]

10if C[i-1][j]>C[i][j-1]

11 then C[i][j]←C[i-1][j]

12 S[i][j]←C[i-1][j]

13 else C[i][j]←C[i][j-1]

14 S[i][j]←C[i][j-1]

15 for k←C[i][j]+1 to i

16 do if i-k+1<1 or j-k+1<0

17 then break

18 if B[i][j]-B[i-k+1][j]-B[i][j-k]+B[i-k][j-k]=k×k

19 then C[i][j]←k

20 S[i][j] (i,j)

21 else break

22 return S and C

算法结束后,S[n][n]中有序实数对(i,j)为A 中最大全1矩阵右下角元素的坐标。该矩阵为A[i-C[n][n]:i][j-C[n][n]:j]。

时间复杂度分析:算法第1行时间复杂度为O(1),2~3行时间复杂度为O(n),4~22行时间复杂度为O(n 3),23行时间复杂度为O(1)。故算法总的时间复杂度为O(n 3)。

4.集合划分问题描述如下:

输入:正整数集合 S={a 1,a 2,a 3,…, a n };

输出:是否存在A ? S 使得∑a i =∑a i a i ∈S?A a i ∈A 。 试设计一个动态规划算法,求解集合划分问题。

答:

(1)问题转化:若集合划分A 使得∑a i =∑a i a i ∈S?A a i ∈A ,则有∑a i =∑a i =12∑a i a i ∈S a i ∈S?A a i ∈A 。那么,该问题可转化为一个0-1背包问题。对于输入的正整数集合S={a 1,a 2,a 3,…, a n }。设X=(x 1, x 2, …, x n ),

x i ∈{0, 1}, 满足∑x i a i n i=1≤12∑a i a i ∈S ,且∑x i a i n i=1最大。若此时∑x i a i n i=1=12∑a i a i ∈S , 则存在这样的集合划分A ,输出划分结果;否则不存在这样的集合A 。

(2)优化子结构:如果(y 1, y 2,…, y n )是0-1背包问题的有化解,则(y 2, y 3,…, y n )是如下子问题的优化解:∑x i a i n i=2≤12∑a i a i ∈S ?a 1y 1;x i ∈{0, 1},2≤i ≤n 。

(3)递推方程:设背包容量为j ,m(i,j)表示背包容量为j ,可选物品为a i ,a i+1,…, a n 时,问题的最优解的代价。因此递归方程为:

m(i,j)=m(i+1,j) 0≤j

m(i,j)=max(m(i+1,j),m(i+1,j?a i)+a i) j≥a i

m(n,j)=0 0≤j

m(n,j)=a n j≥a n

(4)算法伪代码:

Input:正整数集合S={a1,a2,a3,…, a n}

Output:若存在A ?S使得∑a i=∑a i

a i∈A, 则输出X; 否则输

a i∈S?A

出不存在。

SET-PARTITION(S)

1 n←length(S),sum←0

2 for i←1 to n

3 do sum←sum+S[i]

4 half-sum←sum/2

5 create array m[1:n,0: half-sum] and X[1:n]

6 for j←0 to min(S[n]-1, half-sum)

7 do m[n,j]←0

8 for j←S[n] to half-sum

9 do m[n,j]←S[n]

10 for i←n-1 to 2

11 do for j←0 to min(S[i]-1, half-sum)

12 do m[i,j]←m[i+1,j]

13 for j←S[i] to half-sum

14 do m[i,j]←max{m[i+1,j],m[i+1,j-S[i]]+S[i]}

15 if half-sum

16 then m[1, half-sum]=m[2, half-sum]

17 else m[1, half-sum]=

max{m[2, half-sum],m[2, half-sum -S[1]]+S[1]}

18 if m[1, sum/2] < sum/2

19 then return “不存在”

20 w←half-sum

21for i←1 to n-1

22 do if m[i,w]=m[i+1, w]

23 then X[1]=0

24 else X[1]=1

25 w←w-S[i]

26 if w≥S[n]

27 then X[n]=0

28 else X[n]=1

29 return X

时间复杂度分析:第1行时间复杂度为O(1),2~3行时间复杂度为O(n),4~5行时间复杂度为O(1),6~9行时间复杂度为O(n),10~14行时间复杂度为O(n×half-sum),15~20行时间复杂度为O(1),21~26行时间复杂度为O(n),27~29行时间复杂度为O(1)。综上所述,该算法的时间复杂度为O(n×half-sum)。

5.设平面上有一个m×n的网格,将左下角的网格点标记为(0,0)而右上角的网格点标记为(m,n)。某人想从(0,0)出发沿网格线行进

到达(m, n),但是在网格点(i , j)处他只能向上行进或者向右行进,向上行进的代价为a ij(a mj=+∞),向右行进的代价是b ij(b in= +∞)。试设计一个动态规划算法,在这个网格中为该旅行者寻找一条代价最小的旅行路线。你的答案应包括:

(1)用简明的语言表述这个问题的优化子结构;

(2)根据优化子结构写出代价方程;

(3)根据代价方程写出动态规划算法(伪代码)并分析算法的时间复杂性;

答:定义记号如下,c[i,j]表示从(0,0)点到(i,j)点路径的最小代价。(1)优化子结构:从(0,0)点走到(i,j)点共有两种方案,一种是经过(m-1,n)点再向右走一步,另一种是经过(m,n-1)点向左走一步。若最优路径属于第一种情况,即从点(i-1,j)向右走一步, 那么对于其子问题点(0,0)到点(i-1,j)必须取代价最小的旅行路线, 否则有一个代价更小的路线代替点(0,0)到点(i,j)的路线中去就会产生更优的旅行路径, 产生矛盾。对于最优路径从点(i,j-1)向上走一步时也相同。即其对应子问题也必须取最优解。这个问题具有优化子结构。

(2)代价方程:

c[i,j]=

{0 i=0且j=0∑a0j i=0

j

且j≠0∑b i0 j=0

i

0且i≠0

min{c[i,j?1]+a i(j?1),c[i?1,j]+b(i?1)j} i,j>0 (3)算法伪代码

Input:网格长m和宽n,代价矩阵a m×n和b m×n

Output:从(0,0)点到(m,n)点代价最小的路径L[0:m+n-1]

MIN-COST-ITINERARY(m,n,a,b)

1 create arrays L[0:m+n][2] and cost[m][n]

2 cost[0,0]←0

3 for i←1 to m

4 do cost[i][0]←cost[i-1][0]+b[i-1][0]

5 for j←1 to n

6 do cost[0][j] ←cost[0][j-1]+a[0][j-1]

7 for j←1 to m

8 do for i←1 to n

9 do if cost[i][j-1]+a[i][j-1]

10 then cost[i][j]←cost[i][j-1]+a[i][j-1]

11 else cost[i][j]←cost[i-1][j]+b[i-1][j]

12 s←m+n , x←m and y←n

13 while s>0

14 do L[k][0]←x, L[k][1]←y

15 if y=0||(x>0&&cost[x-1][y]+B[x-1][y]

16 then x←x-1

17 else y←y-1

18 s←s-1

19 L[0][0]←0, L[0][1]←0

20 return L

时间复杂度分析:1~2行时间复杂度为O(1),3~4行时间复杂度为O(m),5~6行时间复杂度为O(n),7~11行时间复杂度为O(m×n),12行时间复杂度为O(1),12~18行时间复杂度为O(m+n),19~20行时间复杂度为O(1)。故总的时间复杂度为O(m×n)。

P.S. 题出的是不是有点问题……

6.给定一个整数序列a1,…,a n。相邻两个整数可以合并,合并两个整数的代价是这两个整数之和。通过不断合并最终可以将整个序列合并成一个整数,整个过程的总代价是每次合并操作代价之和。试设计一个动态规划算法给出a1,…,a n的一个合并方案使得该方案的总代价最大。你的答案应包括:

(1)用简明的语言表述这个问题的优化子结构;

(2)根据优化子结构写出代价方程;

(3)根据代价方程写出动态规划算法(伪代码)并分析算法的时间复杂性;

答:定义记号如下,a i~j=a i a i+1…a j。sum[i,j]= a i+a i+1+…+a j

(1)优化子结构:若计算a i~j的优化顺序在k处断开整数数列,即a1~n=a1~k+a k+1~n。则在a1~n的优化顺序中,对应于子问题a1~k的解必须是a1~k的优化解,也对应于子问题a k+1~n的解必须是a k+1~n的优化解。(2)优化结构的代价方程:设m[i,j]为计算整数序列a i~j所需的代价的最小值,对于整个问题,计算a1~n的最小代价就是m[1,n]。

代价方程为

m [i,j ]={0 i =j min i≤k

{m [i,k ]+m [k +1,j ]+sum[i,j]} i

Input:整数序列a

Output :序列a 的一个最优加全部括号形式 INTEGER-SEQUENCE-ORDER(a)

1 n←length[a]-1

2 for i←1 to n

3

do m[i,i]←0 4 sum[i,i]←a[i]

5 for i ←1 to n-1

6

do for j ←i+1 to n 7 do sum[i, j]←sum[i, j-1]+a[j] 8 for l←2 to n

9

do for i←1 to n-l+1 10

do j←i+l -1 11

m[i,j]←∞ 12

for k←i to j -1 13

do q←m[i,k]+m[k+1,j]+sum[i,j] 14

if q

then m[i,j ]←q 16 s[i,j]←k 17 return m and s

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题 一、问题描述: 有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 二、总体思路: 根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。 原理: 动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。 过程: a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i个物品选或不选),V i表示第i个物品的价值,W i表示第i个物品的体积(重量); b) 建立模型,即求max(V1X1+V2X2+…+VnXn); c) 约束条件,W1X1+W2X2+…+WnXn (V2X2+V3X3+…+VnXn)+V1X1;

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

算法分析作业

算法分析练习题(一) 一、选择题 1、二分搜索算法是利用( A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是( A )。 A、找出最优解的性质 B、构造最优解 C、算出最优解 D、定义最优解 3.下列算法中通常以自底向上的方式求解最优解的是( B )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 4、衡量一个算法好坏的标准是(C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 5、以下不可以使用分治法求解的是(D )。 A 棋盘覆盖问题 B 选择问题 C 归并排序 D 0/1背包问题 6. 实现循环赛日程表利用的算法是( A )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 7.备忘录方法是那种算法的变形。( B ) A、分治法 B、动态规划法 C、贪心法 D、回溯法8.最长公共子序列算法利用的算法是( B )。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法9.实现棋盘覆盖算法利用的算法是( A )。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 10. 矩阵连乘问题的算法可由(B)设计实现。 A、分支界限算法 B、动态规划算法 C、贪心算法 D、回溯算法 11、Strassen矩阵乘法是利用( A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 12、使用分治法求解不需要满足的条件是(A )。 A 子问题必须是一样的 B 子问题不能够重复

C 子问题的解可以合并 D 原问题和子问题使用相同的方法解 13、下列算法中不能解决0/1背包问题的是(A ) A 贪心法 B 动态规划 C 回溯法 D 分支限界法 14.实现合并排序利用的算法是( A )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法15.下列是动态规划算法基本要素的是( D )。 A、定义最优解 B、构造最优解 C、算出最优解 D、子问题重叠性质 16.下列算法中通常以自底向下的方式求解最优解的是( B )。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 17、合并排序算法是利用( A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 18.实现大整数的乘法是利用的算法( C )。 A、贪心法 B、动态规划法 C、分治策略 D、回溯法 19. 实现最大子段和利用的算法是( B )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 20. 一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。 A、重叠子问题 B、最优子结构性质 C、贪心选择性质 D、定义最优解 21. 实现最长公共子序列利用的算法是( B )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 二、填空题 1.算法的复杂性有时间复杂性和空间复杂性之分。 2、程序是算法用某种程序设计语言的具体实现。 3、算法的“确定性”指的是组成算法的每条指令是清晰的,无歧义的。 4.矩阵连乘问题的算法可由动态规划设计实现。 5、算法是指解决问题的一种方法或一个过程。

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

解0-1背包问题的动态规划算法

关于求解0/1背包问题的动态规划算法 摘要:本文通过研究动态规划原理,提出了根据该原理解决0/1背包问题的方法与算法实现, 并对算法的正确性作了验证.观察程序运行结果,发现基于动态规划的算法能够得到正确的决策方案且比穷举法有效. 关键字:动态规划;0/1背包;约束条件;序偶;决策序列;支配规则 1、引 言 科学研究与工程实践中,常常会遇到许多优化问题,而有这么一类问题,它们的活动过程可以分为若干个阶段,但整个过程受到某一条件的限制。这若干个阶段的不同决策的组合就构成一个完整的决策。0/1背包问题就是一个典型的在资源有限的条件下,追求总的收益最大的资源有效分配的优化问题。 对于0/1背包问题,我们可以这样描述:设有一确定容量为C 的包及两个向量C ’=(S 1,S 2,……,S n )和P=(P 1,P 2,……,P N ),再设X 为一整数集合,即X=1,2,3,……,N ,X 为SI 、PI 的下标集,T 为X 的子集,那么问题就是找出满足约束条件∑S i 〈=C ,使∑PI 获得最大的子集T 。在实际运用中,S 的元素可以是N 个经营项目各自所消耗的资源,C 可以是所能提供的资源总量,P 的元素可是人们从各项项目中得到的利润。 0/1背包问题是工程问题的典型概括,怎么样高效求出最优决策,是人们关心的问题。 2、求解问题的动态规划原理与算法 2.1动态规划原理的描述 求解问题的动态规划有向前处理法向后处理法两种,这里使用向前处理法求解0/1背包问题。对于0/1背包问题,可以通过作出变量X 1,X 2,……,X N 的一个决策序列来得到它的解。而对于变量X 的决策就是决定它是取0值还是取1值。假定决策这些X 的次序为X n ,X N-1,……,X 0。在对X 0做出决策之后,问题处于下列两种状态之一:包的剩余容量是M ,没任何效益;剩余容量是M-w ,效益值增长了P 。显然,之后对X n-1,Xn-2,……,X 1的决策相对于决策X 所产生的问题状态应该是最优的,否则X n ,……,X 1就不可能是最优决策序列。如果设F j (X )是KNAP (1,j ,X )最优解的值,那么F n (M )就可表示为 F N (M )=max(f n (M),f n-1(M-w n )+p n )} (1) 对于任意的f i (X),这里i>0,则有 f i (X)=max{f i-1(X),f i-1(X-w i )+p i } (2) 为了能由前向后推而最后求解出F N (M ),需从F 0(X )开始。对于所有的X>=0,有F 0(X )=0,当X<0时,有F 0(X )等于负无穷。根据(2),可求出0〈X 〈W 1和X 〉=W 1情况下F 1(X )的值。接着由(2)不断求出F 2,F 3,……,F N 在X 相应取值范围内的值。 2.2 0/1背包问题算法的抽象描述 (1)初始化各个元素的重量W[i]、效益值P[i]、包的最大容量M ; (2)初始化S0; (3)生成S i ;

2设计动态规划算法的主要步骤为

2设计动态规划算法的主要步骤为: (1)找出最优解的性质,并刻划其结构特征。(2)递归地定义最优值。(3)以自底向上的方式计算出最优值。(4)根据计算最优值时得到的信息,构造最优解。 3. 分治法与动态规划法的相同点是:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。而用分治法求解的问题,经分解得到的子问题往往是互相独立的。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。 6. 分治法所能解决的问题一般具有的几个特征是:(1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。 P:也即是多项式复杂程度的问题。 NP就是多项式复杂程度的非确定性问题。 NPC(NP Complete)问题 ADT 抽象数据类型 分析问题→设计算法→编写程序→上机运行和测试 算法特性1. 确定性、可实现性、输入、输出、有穷性 算法分析目的2. 分析算法占用计算机资源的 情况,对算法做出比较和评价,设计出额更好 的算法。 3. 算法的时间复杂性与问题的规模相关,是 问题大小n的函数。 算法的渐进时间复杂性的含义:当问题的规模 n趋向无穷大时,影响算法效率的重要因素是 T(n)的数量级,而其他因素仅是使时间复杂度 相差常数倍,因此可以用T(n)的数量级(阶) 评价算法。时间复杂度T(n)的数量级(阶)称为 渐进时间复杂性。 最坏情况下的时间复杂性和平均时间复杂性有什么不同? 最坏情况下的时间复杂性和平均时间复杂性 考察的是n固定时,不同输入实例下的算法所 耗时间。最坏情况下的时间复杂性取的输入实 例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间 与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn 为什么要分析最坏情况下的算法时间复杂 性?最坏情况下的时间复杂性决定算法的优 劣,并且最坏情况下的时间复杂性较平均时间 复杂性游可操作性。 1.贪心算法的基本思想? 是一种依据最优化量度依次选择输入的分级处理方法。基本思路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n个输入排序,依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。

算法分析复习题目及答案

一、选择题 1、二分搜索算法是利用 (A)实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是(A)。 A、找出最优解的性 质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是 ( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4、在下列算法中有时找不到问题解的是(B)。 A、蒙特卡罗算 法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5.回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 6.下列算法中通常以自底向上的方式求解最优解的 是(B)。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 7、衡量一个算法好坏的标准是(C)。 A运行速度快B 占用空间少C时间复杂度低D代码短 8、以下不可以使用分治法求解的是 ( D )。 A棋盘覆盖问题 B 选择问题C归并排序D0/1背包问题 9.实现循环赛日程表利用的算法是(A)。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 10、下列随机算法中运行时有时候成功有时候失败的是(C) A数值概率算法B舍伍德算法C拉斯维加斯算法D蒙特卡罗算法 11.下面不是分支界限法搜索方式的是(D)。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先 12.下列算法中通常以深度优先方式系统搜索问题解的是(D)。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 13.备忘录方法是那种算法的变形。(B) A、分治法 B、动态规划法 C、贪心法 D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为 (B)。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是(B)。 A、最小堆 B、最大堆 C、栈 D、数组16.最长公共子序列算法利用的算法是 (B)。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法17.实现棋盘覆盖算法利用的算法是(A)。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 18.下面是贪心算法的基本要素的是(C)。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 19.回溯法的效率不依赖于下列哪些因素 (D) A.满足显约束的值的个 数 B. 计算约束函数的时间C.计算限界函数的时间 D. 确定解空间的时间

启发式优化算法综述

启发式优化算法综述 一、启发式算法简介 1、定义 由于传统的优化算法如最速下降法,线性规划,动态规划,分支定界法,单纯形法,共轭梯度法,拟牛顿法等在求解复杂的大规模优化问题中无法快速有效地寻找到一个合理可靠的解,使得学者们期望探索一种算法:它不依赖问题的数学性能,如连续可微,非凸等特性; 对初始值要求不严格、不敏感,并能够高效处理髙维数多模态的复杂优化问题,在合理时间内寻找到全局最优值或靠近全局最优的值。于是基于实际应用的需求,智能优化算法应运而生。智能优化算法借助自然现象的一些特点,抽象出数学规则来求解优化问题,受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。 为什么要引出启发式算法,因为NP问题,一般的经典算法是无法求解,或求解时间过长,我们无法接受。因此,采用一种相对好的求解算法,去尽可能逼近最优解,得到一个相对优解,在很多实际情况中也是可以接受的。启发式算法是一种技术,这种技术使得在可接受的计算成本内去搜寻最好的解,但不一定能保证所得的可行解和最优解,甚至在多数情况下,无法阐述所得解同最优解的近似程度。 启发式算法是和问题求解及搜索相关的,也就是说,启发式算法是为了提高搜索效率才提出的。人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题

时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案,以随机或近似随机方法搜索非线性复杂空间中全局最优解的寻取。启发式解决问题的方法是与算法相对立的。算法是把各种可能性都一一进行尝试,最终能找到问题的答案,但它是在很大的问题空间内,花费大量的时间和精力才能求得答案。启发式方法则是在有限的搜索空间内,大大减少尝试的数量,能迅速地达到问题的解决。 2、发展历史 启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,才能取得了巨大的成就。纵观启发式算法的历史发展史: 40年代:由于实际需要,提出了启发式算法(快速有效)。 50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。 60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规模的问题仍然无能为力(收敛速度慢)。 70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。由此必须引入新的搜索机制和策略。 Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的兴趣。 80年代以后:模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。 最近比较火热的:演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms),拟人拟物算法,量子算法等。

算法设计动态规划(编辑距离)

《算法设计与分析》课程报告 课题名称:动态规划——编辑距离问题 课题负责人名(学号): 同组成员名单(角色):无 指导教师:左劼 评阅成绩: 评阅意见: 提交报告时间:2010年 6 月 23 日

动态规划——编辑距离问题 计算机科学与技术专业 学生指导老师左劼 [摘要]动态规划的基本思想与分治法类似,也是将待求解的问题分解成若干份的子问题,先分别解决好子问题,然后从子问题中得到最终解。但动态规划中的子问题往往不是相互独立的,而是彼此之间有影响,因为有些子问题可能要重复计算多次,所以利用动态规划使这些子问题只计算一次。将字符串A变换为字符串所用的最少字符操作数称为字符串A到B的编辑距离。 关键词:动态规划矩阵字符串操作数编辑距离

一、问题描述 1、基本概念:设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。字符串操作包括: (1) 删除一个字符; (2) 插入一个字符; (3) 将一个字符改为另一个字符。 将字符串A变换为字符串B所用的最少字符操作数称为字符串A 到B的编辑距离,记为d(A,B)。 2、算法设计:设计一个有效算法,对于给定的任意两个字符串A 和B,计算其编辑距离d(A,B)。 3、数据输入:输入数据由文件名为input.txt的文本文件提供。文件的第1行为字符串A,第二行为字符串B。 4、结果输出:将编辑距离d(A,B)输出到文件ouput.txt的第一行。 输入文件示例输出文件示例 input.txt output.txt fxpimu 5 xwrs 二、分析 对于本问题,大体思路为:把求解编辑距离分为字符串A从0个字符逐渐增加到全部字符分别想要变为字符串B该如何变化以及变化的最短距离。 具体来说,首先选用数组a1存储字符串A(设长度为n),a2存储字符串B(设长度为m),d矩阵来进行具体的运算;这里有两个特殊情况比较简单可以单独考虑,即A的长度为0而B不为0还有A不为0B为0,这两种情况最后的编辑距离分别为m和n;讨论一般情况,d矩阵为d[n][m],假定我们从d[0][0]开始一直进行以下操作到了d[i][j]的位置,其中删除操作肯定是A比B长,同理,插入字符操作一定是A比B短,更改字符操作说明一样长,我们所要做的是对d[i][j-1]

浅谈我国动态规划算法研究与应用

动态规划算法研究与应用 1.引言 动态规划被认为是组成运筹学其中的一部分,也被当成为进行运算决定时最好的一种数学方式。在1950年左右,美国相关方面的几位数学家,对阶段决策期间关于优化的问题做了大量的研究,并发布著名的最优化理论,将众多的阶段变成了一个一个单一的问题,并分别进行解答,最后,发明了能够处理这种相关优化方面事情新的解决措施——动态规划。到了1957年,创造出了Dynamic Programming这一名著,被称为该领域创作第一人[1]。 在数学和计算机科学领域,动态规划算法对于求解最优解的问题方便快捷。动态规划方法经常用来解决生活中的实际问题,这些问题往往可以分解为很多个子问题,每个子问题都有一个对应解,其中的临界值就是我们所要求得的最优解。动态规划并非一种数学算法,而是用于最优化解题的一种技巧和方法。它非但不具有一个标准的数学方程式,不能够推导出清晰明确的解题步骤,更不具备万能性。对于要解决的若干问题,一定要建立在正确理解的基础上具体问题具体分析,用我们现有的数学知识和丰富的想象力创建模型,结合日常的技巧分析求解。客观人为的介入时间和空间因素,只要可以分为若干子问题的多状态过程,就可以用此方法快速求解。 2.动态规划算法简介 动态规划诞生之后,很快就在在工业生产、金融管理、工程技术、和资源最大化利用等领域得到了好评。在处理路线规划、物品进出库管理、资源最优化利用、更换设备、顺序、装载等问题,动态规划算法相比于其他算法更有优势而且更加便捷。 2.1基本原理 其主要的理论可以被理解成是将求解的划分成若干个子问题,并将其称作为N,然后这些子问题又有N个解的情况,其中这些可行解之中一定会有一个最优解,研究动态规划也就是希望能够找到最优解[2]。 如何能够合理的推导出基本的最优化方程式和找出唯一的临界值是研究动

常见动态规划算法问题策略分析

常见动态规划算法问题 策略分析

目录 一、动态规划策略 (1) 1.动态规划介绍 (1) 2.求解动态规划问题步骤 (1) 二、几种动态规划算法的策略分析 (1) 1.装配线调度问题 (1) 2.矩阵链乘问题 (2) 3.最长公共子序列(LCS) (3) 4.最大字段和 (4) 5.0-1背包问题 (4) 三、两种解决策略 (5) 1.自底向上策略 (5) 2.自顶向上(备忘录)策略 (5) 3.优缺点分析 (5) 四、总结 (6)

一、动态规划策略 1.动态规划介绍 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多 阶段最优化决策解决问题的过程就称为动态规划。 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的 求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部 解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。 依次解决各子问题,最后一个子问题就是初始问题的解。 由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在 一个二维数组中。 与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建 立在上一个子阶段的解的基础上,进行进一步的求解)。 2.求解动态规划问题步骤 (1)确定最优解结构 (2)递归定义最优解的值 (3)自底向上计算最优解的值 (4)重构最优解 二、几种动态规划算法的策略分析 1.装配线调度问题 分析:首先确定最优解结构,分析问题可知大致分为两种情况:

贪心算法与动态规划的比较

贪心算法与动态规划的比较 【摘要】介绍了计算机算法设计的两种常用算法思想:贪心算法与动态规划算法。通过介绍两种算法思想的基本原理,比较两种算法的联系和区别。通过背包问题对比了两种算法的使用特点和使用范围。 【关键字】动态规划;贪心算法;背包问题 1、引言 为了满足人们对大数据量信息处理的渴望,为解决各种实际问题,计算机算法学得到了飞速的发展,线性规划、动态规划、贪心策略等一系列运筹学模型纷纷运用到计算机算法学中,产生了解决各种现实问题的有效算法。虽然设计一个好的求解算法更像是一门艺术而不像是技术,但仍然存在一些行之有效的、能够用于解决许多问题的算法设计方法,你可以使用这些方法来设计算法,并观察这些算法是如何工作的。一般情况下,为了获得较好的性能,必须对算法进行细致的调整。但是在某些情况下,算法经过调整之后性能仍无法达到要求,这时就必须寻求另外的方法来求解该问题。本文针对部分背包问题和0/ 1 背包问题进行分析,介绍贪心算法和动态规划算法的区别。 2、背包问题的提出 给定n种物品( 每种物品仅有一件) 和一个背包。物品i的重量是w i,其价值为p i,背包的容量为M。问应如何选择物品装入背包,使得装入背包中的物品的总价值最大,每件物品i的装入情况为x i,得到的效益是p i*x i。 ⑴部分背包问题。在选择物品时,可以将物品分割为部分装入背包,即0≤x i≤1 ( 贪心算法)。 ⑵0/ 1背包问题。和部分背包问题相似,但是在选择物品装入时要么不装,要么全装入,即x i = 1或0。( 动态规划算法) 。 3、贪心算法 3.1 贪心算法的基本要素 能够使用贪心算法的许多例子都是最优化问题,每个最优化问题都包含一组限制条件和一个优化函数,符合限制条件的问题求解方案称为可行解;使优化函数取得最佳值的可行解称为最优解。此类所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到(这是贪心算法与动态规划的主要区别) 。 3.2贪心策略的定义 贪心策略是指从问题的初始状态出发,通过若干次的贪心选择而得出最优值( 或较优解) 的一种解题方法。贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该问题运用贪心策略可以得到最优解或较优解。(注:贪心算法不是对所有问题都能

动态规划算法的应用

动态规划算法的应用 一、实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 二、实验内容 题目一:数塔问题 给定一个数塔,其存储形式为如下所示的下三角矩阵。在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。请找出一条路径,使路径上的数值和最大。 输入样例(数塔): 9 15 10 6 8 2 18 9 5 19 7 10 4 16 输出样例(最大路径和): 59 三、实验步骤 (1)需求分析 通过动态规划法解决数塔问题。从顶部出发,在每一节点可以选择向下或者向右走,一直走到底层,以找出一条数值最大的路径。 (2)概要设计 本次实验程序主要用到二维数组,以及通过动态规划法进行比较每个数的大小。主要运用两个for循环语句实现动态规划。

(3)详细设计 第一步,输入给定的二维数组并打印出相应的数组: int array[5][5]={{9}, /* */{12,15}, /* */{10,6,8}, /* */{2,18,9,5}, /* */{19,7,10,4,6}}; int i,j; for(i=0;i<5;i++) { for(j=0;j<5;j++) cout<0;j--) { for(i=0;i<=4;i++) { if(array[j][i]>array[j][i+1]) array[j-1][i]=array[j][i]+array[j-1][i]; else array[j-1][i]=array[j][i+1]+array[j-1][i]; } } 第三步,输出最大路径的值。 cout<

动态规划算法举例分析

动态规划算法 1. 动态规划算法介绍 基本思想是将待求解问题分解成若干子问题,先求解子问题,最后用这些子问题带到原问题,与分治算法的不同是,经分解得到的子问题往往是不是相互独立,若用分治则子问题太多。 2. 适用动态规划算法问题的特征 (1)最优子结构 设计动态规划算法的第一步骤通常是要刻画最优解的结构。当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。 在动态规划算法中,问题的最优子结构性质使我们能够以自底向下的方式递归地从子问题的最优解逐步构造出整个问题的最优解。同时,它也使我们能在相对小的子问题空间中考虑问题。 (2)重叠子问题 可用动态规划算法求解的问题应具备的另一基本要素是子问题的重叠性质。在用递归算法自顶向下解此问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只有简单地用常数时间查看一下结果。通常,不同的子问题个数随输入问题的大小呈多项式增长。因此,用动态规划算法通常只需要多项式时间,从而获得较高的解题效率。 (3)备忘录方法

动态规划算法的一个变形是备忘录方法。备忘录方法也是一个表格来保存已解决的子问题的答案,在下次需要解此子问题时,只要简单地查看该子问题的解答,而不必重新计算。与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。 备忘录方法为每个子问题建立一个记录项,初始化时,该记录项存入一个特殊的值,表示该子问题尚未求解。在求解过程中,对每个待求的子问题,首先查看其相应的记录项。若记录项中存储的是初始化时存入的特殊值,则表示该子问题是第一次遇到,则此时计算出该子问题的解,并保存在其相应的记录项中。若记录项中存储的已不是初始化时存入的特殊值,则表示该子问题已被计算过,其相应的记录项中存储的是该子问题的解答。此时,只要从记录项中取出该子问题的解答即可。 3. 基本步骤 a 、找出最优解的性质,并刻画其结构特征。 b 、递归地定义最优值。 c 、以自底向上的方式计算出最优值。 d 、根据计算最优值时得到的信息构造一个最优解。(可省) 例1-1 [0/1背包问题] [问题描述] 用贪心算法不能保证求出最优解。在0/1背包问题中,需要对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为i w ,价 值为 i v 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳 装载是指所装入的物品价值最高,即∑=n i i i x v 1 取得最大值。约束条件为 c x w n i i i ≤∑=1 , {}() n i x i ≤≤∈11,0。

算法合集之《动态规划算法的优化技巧》

动态规划算法的优化技巧 福州第三中学毛子青 [关键词] 动态规划、时间复杂度、优化、状态 [摘要] 动态规划是信息学竞赛中一种常用的程序设计方法,本文着重讨论了运用动态规划思想解题时时间效率的优化。全文分为四个部分,首先讨论了动态规划时间效率优化的可行性和必要性,接着给出了动态规划时间复杂度的决定因素,然后分别阐述了对各个决定因素的优化方法,最后总结全文 [正文] 一、引言 动态规划是一种重要的程序设计方法,在信息学竞赛中具有广泛的应用。 使用动态规划方法解题,对于不少问题具有空间耗费大、时间效率高的特点,因此人们在研究动态规划解题时更多的注意空间复杂度的优化,运用各种技巧将空间需求控制在软硬件可以承受的范围之内。但是,也有一部分问题在使用动态规划思想解题时,时间效率并不能满足要求,而且算法仍然存在优化的余地,这时,就需要考虑时间效率的优化。 本文讨论的是在确定使用动态规划思想解题的情况下,对原有的动态规划解法的优化,以求降低算法的时间复杂度,使其能够适用于更大的规模。 二、动态规划时间复杂度的分析 使用动态规划方法解题,对于不少问题之所以具有较高的时间效率,关键在于它减少了“冗余”。所谓“冗余”,就是指不必要的计算或重复计算部分,算法的冗余程度是决定算法效率的关键。动态规划在将问题规模不断缩小的同时,记录已经求解过的子问题的解,充分利用求解结果,避免了反复求解同一子问题的现象,从而减少了冗余。 但是,动态规划求解问题时,仍然存在冗余。它主要包括:求解无用的子问题,对结果无意义的引用等等。 下面给出动态规划时间复杂度的决定因素: 时间复杂度=状态总数*每个状态转移的状态数*每次状态转移的时间[1] 下文就将分别讨论对这三个因素的优化。这里需要指出的是:这三者之间不是相互独立的,而是相互联系,矛盾而统一的。有时,实现了某个因素的优化,另外两个因素也随之得到了优化;有时,实现某个因素的优化却要以增大另一因素为代价。因此,这就要求我们在优化时,坚持“全局观”,实现三者的平衡。 三、动态规划时间效率的优化 3.1 减少状态总数 我们知道,动态规划的求解过程实际上就是计算所有状态值的过程,因此状态的规模直接影响到算法的时间效率。所以,减少状态总数是动态规划优化的重要部分,本节将讨论减少状态总数的一些方法。

相关文档
最新文档