长效生物可降解微球的研究进展

长效生物可降解微球的研究进展
长效生物可降解微球的研究进展

长效生物可降解注射微球的 研究进展
沈阳药科大学
毛世瑞
沈阳药科大学 2008 年1月
研究趋势:缓控释给药系统
? 口服 ? 透皮 ? 非肠释药系统(Parenteral depot system,简称
PDS)
– 植入体 – 微球
沈阳药科大学
微球概述
? 微球:是药物溶解或分散于聚合物基体中形成 的微小球状实体,粒径 1 to 250 μm ( ideally < 125 μm in diameter).
? 微球为内相固化的实体微粒,多数产品为冻干固 体粉末,其稳定性较脂质体、复乳等微粒体系好。
? 微球作为药物载体用于多种给药途径,如注射、 鼻腔、口服给药等。通过混悬后进行皮下或肌 肉注射给药。
沈阳药科大学
长效注射微球的优点
? 可在几周或几个月时间内以一定速率释放 药物以维持有效血药浓度,减少给药次数,并 且能降低血药浓度的波动,达到长效、缓 释目的;
? 减少药物刺激,降低毒副作用提高疗效; ? 提高药物稳定性; ? 给药方便,只需单次注射; ? 避免植入剂的缺陷; ? 对特定器官和组织具有良好的靶向性; ? 在恶性肿瘤的介入化疗中发挥重要作用。
沈阳药科大学
药物选择
? 日剂量小的药物 ? 微球的释药模式与药物的临床需求应基本
吻合 ? 微球中药物的包封率高 ? 释药时突释作用小, 释药模式恒定,释药
时间满足要求
沈阳药科大学
国外注射用微球市场
? 美国食品药品管理局(FDA)已批准了8种微球剂 型药品,除利培酮为小分子化学药物外,其余均为 多肽类药物。
? 在多肽缓释微球中,黄体激素释放激素(LHRH)及 类似物是研究最为成功的品种。
? 曲普瑞林是LHRH激动剂类似物,其PLGA微球由 法国Ipsen公司开发,1986年上市,可缓释1个月, 是第一个多肽微球产品。
? 亮丙瑞林也是LHRH激动剂类似物,生物活性为 LHRH的15倍。其缓释1个月的微球注射剂由日本 武田化学制药公司开发,于1989年进入美国市场。
沈阳药科大学
1

国外开发的LHRH及其类似物缓释注射剂
药物
生物 半衰期
剂型
商品名
骨架
缓释时
开发公司
LHRH
亮丙瑞林 活性
/min
(leuproreli
n)
15
16
微球
Prostap SR,
材料 PLGA
间/月 1
Abott/武田
Enantone,
75∶25
微球
PLA
3
曲普瑞林
100
30
(triptorelin)
微球
Decapeptyl
PLCG
1
50∶50
25 布舍瑞林
(buserelin)
80
注射埋
植剂
PLCG
1
75∶25
武田(1996年 向欧美提出 新药申请)
Ipsen/ Ferring Hoechst
75 高舍瑞林
(goserelin)
注射埋
Zoladex
PLCG
1
ICI
植剂
50∶50
200
144
那法瑞林
(nafarelin)
沈阳药科大学
微球
PLCA 50∶50
Syntex/South Res.Inst.(Ⅱ
期临床)
国外的已上市的微球产品
药物 曲普瑞林PLGA微球
肌肉注射亮丙瑞林微球(Lupron Depot)
生产厂家
法国Ipsen公司,1986年上市, 可缓释1个月,是第一个多 肽微球产品
Takeda-Abott公司,微球注射 剂由日本武田化学制药公司 开发
那法瑞林 戈舍瑞林(Goserelin) 生长激素(somatropin) 奥曲肽微球(Sandostatin Depot)
Syntex/South Res Inst ZENECA 美国ALMES Novartis公司
盐酸多西环素(doxycycline hyclate) 美国ATRIX
沈阳药科大学
研究中的多肽、蛋白质药物微球注射剂
药物 促红细胞生成
素(EPO) γ-干扰素 (rhIFN-γ)
白介素(IL-α)
适应证 肾功能不全
贫血 肉芽瘤
肿瘤免疫 治疗
剂型 微球 微球
微球
骨架材料
PLGA 50∶50
PLGA 50∶50
PLGA 50∶50
75∶25
研究进展 体外缓释
2周
体外缓释 7d
动物体内 缓释7 d
人粒细胞巨噬细 胞集落刺激因子
(GM-CSF)
沈阳药科大学
人生长激素 (rhGH)
生长抑素 (somatostatin)
骨髓移植
生长不良 肾功能不全 生长激素分
泌亢进
微球
微球 注射埋 植剂
PLGA 50∶50
PLGA 50∶50
PLGA 50∶50
动物体内 缓释9 d
动物体内 缓释30 d
动物体内 缓释250d
研究 中的 一次 性注 射疫 苗微

沈阳药科大学
抗原 BSA γ-核糖核 酸酶A BSA
BSA 卵清蛋白
SEB
白喉类毒素 MN-rgp120 HSD白喉
类毒素
MN-rgp120 各种多肽
抗原
微球骨架材料 乙烯醋酸乙 酯(EVAC)
EVAC
EVAC
聚TTH-亚氨 基碳酸盐
PLGA50∶50 34 kDa
PLGA 50∶50
PLA 49kDa PLGA PLGA 65∶35
PLA
PLGA 50∶50 34kDa PLGA 50∶50
粒径/μm 0.3
0.3
0.5克微球(内 含BSA 50mg)
5.34 1~10 20~50 30~100 20~100 5~90
0.37~0.50 0.45~0.60 1.21~3.20 6.24~32.1
体内释药模式 初始突释,以后
连续释药 初始突释,以后
连续释药 初始突释,以后
连续释药 连续释药后期
减慢
初始突释,以 后连续释药 脉冲释药 连续释药
动物及用药途径 小鼠皮下埋植
兔皮下埋植
兔皮下埋植
小鼠皮下埋植
小鼠腹腔注射
小鼠腹腔注射 小鼠气管滴注至 肺、皮下注入 豚鼠皮下注入 大鼠、猴肌注
小鼠皮下、肌注 及鼻腔用药
小鼠腹腔、肌内 注射
疫苗微球注射剂
? 第一个被WHO批准的一次性注射疫苗是破伤风类 毒素(tetannstoxoid,TT)微球注射剂。
? 采用PLGA将TT油溶液包在微球内,注射剂中含 两类微球,
– 一类囊材为50∶50的PLAG,微球直径较小(1~15 μm),含较高量TT(142 ng.mg-1),这种粒径的微球易 为巨噬细胞吞噬;
– 后者采用75∶25的PLGA制成直径10~60 μm的微球, 内含较低量TT(3 ng.mg-1),
? 速释部分发生在微球注射后的突释效应(burst effect)期内,第二释放相发生在注射后3~11周。
沈阳药科大学
国内市场现状
? 我国有关注射用长效缓释微球的研究还限 于实验室研究阶段,只有仿制的亮丙瑞林 微球已上报至国家SFDA,目前还没有自主 开发的微球制剂申请新药注册。
沈阳药科大学
2

国内研究现状
? 专利申请:纳美芬或其盐的长效注射用微 球或组合物及其制备方法:本长效注射微 球可以缓慢释放提供长达20~40天的 有效血药浓度,用于治疗和防止吸食海洛 因者戒毒后的复吸药物中的应用。
? 干扰素α-2b长效注射微球 ? 多柔比星长效注射微球 ? 紫杉醇长效注射缓释微球
沈阳药科大学
微球制剂的主要应用领域
? 抗癌药 ? 精神病药 ? 激素类药 ? 蛋白、多肽类药 ? 疫苗类
沈阳药科大学
微球制剂抗癌研究进展迅速
? 微球制剂具有对组织的亲和性和对特殊部位的选 择性,能使药物直接指向该部位(靶区),使靶 区很快达到所需浓度,从而减少药物用量,相对 减少了药物对正常机体组织的副作用,特别是降 低了对肝、肾、脾等造血和排泄系统损害。
? 抗癌药制成微球制剂,可提高药物对肿瘤细胞的 靶向性,使药物主要浓集在癌症部位长时间滞留 缓慢释放,延长药效同时减少全身毒副作用;
? 还可利用现代新技术如介入疗法,将药物微球栓 塞在肿瘤动脉末梢血管处,一方面切断癌细胞的 血液供应,另一方面可使药物缓慢释放,提高局 部浓度,从而杀死癌细胞,以达到治疗目的。
沈阳药科大学
沈阳A药n科g大io学genesis
微球的栓塞治疗
微球的类型
? 非降解
? 生物可降解 (preferred)
– 醋酸聚乙烯
– 天然
(polyethylene co-
?明胶
vinyl acetate)
?白蛋白
–聚甲基丙酸烯/PEG
?淀粉 ?蔗糖
?壳聚糖
?海藻酸钠 – 合成或半合成
?聚乳酸 (PLA) ?聚乳酸-羟基乙酸共聚物
(PLGA)
沈阳药科大学
?聚酸酐类
polyacrylic resin(聚丙烯酸树脂类)
Polyamide(聚酰胺)
polyvinyl alcohol(聚乙烯醇)
生物可降解聚合物的溶蚀
? 本体溶蚀 (poly-lactic acid - PLA, PLGA) ? 表面溶蚀 (Polyanhydrides)
沈阳药科大学
3

PLGA
50:50 75:25 25:75
生物可降解
生物相容性
无毒 已获得美国FDA 批准作为药物载体
沈阳药科大学
非常有前景的药物载体
PLGA的体内降解行为
50:50 降解速度最快
In vivo resorption rates of radiolabelled PLGA microspheres injected intramuscularly in rats. (From Adv Drug Deliv Rev 1997,28,5-24)
聚合物
半衰期 (d)
大概降解时间
Poly(lactide-co-glycolide) 50:50 15 沈阳P药o科l大y(学lactide-co-glycolide) 75:25 70
50-60 d 5 month
影响微球降解的因素
– 在水中的溶解性 – 化学组成 – 水解机理 (无催化, 自催化, 酶解) – 附加剂 (酸, 碱, 单体, 溶剂,药物等) – 形态 (晶形, 无定型) – 装置尺寸 (大小, 形状, 比表面积) – 空隙率 – 玻璃化转变温度 – 分子量和分子量分布 – 物化因素 (离子交换, 离子强度, pH) – 灭菌 – 植入部位 -- 药物和聚合物的相互作用 -- 药物的载药量
沈阳药科大学
(Part From Adv Drug Deliv Rev 1997,28,5-24)
微球的制备方法
?乳化聚合法 ? 乳化-溶剂蒸发法(液中干 燥法)
?单乳法 ?复乳法 ? 相分离凝聚法 ? 喷雾干燥法
沈阳药科大学
乳化聚合法 制备微球
水相 (包括药物,天然材料如明胶,白蛋 白,壳聚糖)
油相加乳化剂
沈阳药科大学
稳定的W/O or O/W 乳剂 交联剂
微球
单乳法制备微球
? 适用于疏水性的小分子药物
聚合物+药物+溶 剂
水+稳定 剂
沈阳药科大学
收集
沉降
Microspheres
乳化或超 声
4

复乳法制备微球
最适合包封蛋白、多肽类药物,疫苗等
亲水性药物在复乳法制备的微球中的分布
沈阳药科大学
喷雾干燥法
? 将药物分散在材料的 溶液中,再用喷雾法 将此混合物喷入热气 流中使液滴干燥固化 得到微球。
? 方法简便快捷,药物 几乎全部包裹于微球 中,是微球制备工业 化最有希望的途径之 一。
沈阳药科大学
药物在微球中的分散状态
? 溶解 ? 以晶体状态分散 ? 吸附在微球表面
分散状态取决于 ? 药物和聚合物的相互作用 ? 载药量 ? 药物在连续相和分散相中的溶解度 ? 溶剂挥发速度
沈阳药科大学
沈阳药科大学
在制备过程中影响微球性质的因素
溶剂类型 干燥方法
连续相/分散相的比例 表面活性剂的性质/种类
MP
载药量
乳化时间/ 速度 溶剂挥发速度
聚合物分子量/浓度 附加剂
pH
沈阳药科大学
药物释放机制
? 通过聚合物的扩散作用 ? 聚合物材料的溶蚀 ? 扩散和溶蚀的综合作用. (PLGA)
沈阳药科大学
取决于微球的形态
5

微球的外观和内部形态
沈阳药科大学
PLGA 微球的释药动力学
Cumulative release (%)
100
Erosion control
80
diffusion
60
40
20
0
0
20
40
60
80
100
Time (days)
三相释放曲线 (phase I: 突释; phase II: 膜扩散; phase III: 聚合物降解
沈阳药科大学
利培酮长效注射制剂
? 启用: 2003年10月,美国食品药品管理局批准了利培酮长 效注射制剂用于精神分裂症,
? 3周后逐渐起效:利培酮包埋在乳酸-羟基乙酸的多聚物微 球中,以粉末形式存在,用水稀释成悬浮状态,给病人肌 内注射,首次注射3周内,仅1%的利培酮从注射部位的微 球中释出, 3周后多聚体破裂,利培酮逐渐释入全身,而 聚合物微球则吸收周围组织的水份,酯键断开,降解成乳 酸和羟基乙酸,或进一步代谢成二氧化碳和水,或直接被 排泄。
? 急性症状病人不宜单用利培酮长效注射制剂,应等急性或 严重症状控制后,才开始用利培酮长效注射制剂治疗。
沈阳药科大学
微球的表征
载药量 突释 (24 h) 体外释药曲线 微球的粒径和粒径分布 微球的形态 收率 有机溶剂残留量
沈阳药科大学
采用溶剂挥发法制备 PLGA 注射用长 效微球的实例
沈阳药科大学
沈阳药科大学
PLGA 微球的制备工艺流程
PLGA + 药物 +CH2Cl2
注入
PVA 溶液 O/W 乳剂
溶剂挥发 过滤
冷冻干燥
6

连续相/分散相比例的影响 (1)
Batch
w/o ratio
Size D[4,3]
Actual Drug loading
EP(%)
Yield (%)
Burst release
Morphology
ABT627-1
20
ABT627-2
50
18.5±1.07
8.54±0.26
21.7±0.99
9.39±0.15
41.9±1.3
74.5
46.6±0.7
75.7
13.7±0.3
Round, smooth surface without pores
5.14±0.22 ibid
ABT627-3
90
17.1±0.08
15.73±0.63
78.3±0.3
85.6
1.68±0.11 ibid
沈阳药科大学
粒径分布 (光散射法)
w/o 20
Volume (%) 20
10
0
0.1
1.0
10.0
Particle Diameter (祄.)
D(4,3): 17.3
Span: 1.519
沈阳药科大学
w/o 50
10020 90 80 70 60 50 10 40 30 20 10 00 100.0 0.1
Volume (%)
1.0
10.0
Particle Diameter (祄.)
D(4,3): 21.3
Span: 1.887
10020
90
80
70
60
50 10
40
30
20
10
00
100.0
0.1
w/o 90
Volume (%)
1.0
10.0
Particle Diameter (祄.)
D(4,3): 17.0
Span: 1.399
100 90 80 70 60 50 40 30 20 10 0 100.0
Cumulative release (%) Size(um)/drug loading(%)/burst release(%)
w/o 20
微 球 的 外 观 形 态 ( SEM )
w/o 50
w/o 90
沈阳药科大学
分散相和连续相的比例 (2)
25 20 15 10
5 0
20
50 w/o ratio
size drug loading burst release
90
沈阳药科大学
微球的体外释放曲线
Mechanism
100
90
C/P 20 C/P 50
80
C/P 90
70
60
50
40 Diffusion
30
20
10
0
0
10
Bulk erosion
20
30
Time (d)
沈阳药科大学
ABT627-1 MP
ABT627-2 MP
ABT627-3 MP
0d 7d
微球的内部形态
w/o 20
a0d
w/o 50
b-0d
w/o 90
c-0d
a-7d
b-7d
c-7d
a-17d
b-17d
c-17d
17 d
沈阳药科大学
7

PLGA浓度的影响
S ize (um )/ Drug Loading (% ) B urs t release (% )
Cumulative release(%)
Size
45
5
Drug Loading 40
4.5
Burst release 35
4
30
3.5
25
3
2.5
20
2
15
1.5
10
1
5
0.5
0
0
5
10 15 20 30
PLGA Concentration (%)
微球的性质
沈阳药科大学
体外释放
100
90
PLGA 5%
80
PLGA 10%
PLGA 15%
70
PLGA 20%
60
PLGA 30%
50
40
30
20
10
0
0
10
20
30
Time (d)
Particle Size (um) Drug loading (%)
Cumulative release (%)
体系 pH的影响
微球的性质
26
size
19
24
drug loading
18
22
17
20
16
15
18
14
16
13
14
12
12
11
10
10
4
4.5 5.67 6.5
pH of PVA solution
100
90
pH 4.0
80
pH 4.5
70
pH 5.6
60
pH 6.5
50
40
30
20
10
0
0
10
20
30
T ime (d)
体外释放
沈阳药科大学
PVA 浓度的影响
Size (um)/ D rug Loading (% ) B urst R elease (% )
Cum ulative release (%)
Size
25
Drug Loading
3.5
20
Burst Release
3
2.5
15
2
10
1.5
1 5
0.5
0
0.05
0.1
0 0.5
PVA concentration (%)
微球的性质
沈阳药科大学
体外释放
PVA 0.05%
100
PVA 0.1%
PVA 0.5%
80
60
40
20
0
0
10
20
30
T ime (d)
沈阳药科大学
目前注射微球的研究存在的问题及解决办法
? 药物包封率及载药量低; ? 尚未实现和更有效地使药物释放发生在最
合适的时间内; ? 对缓释系统内药物的不同释放程序和速度
的研究不足以达到对某些疾病的综合预防 和治疗; ? 未实现智能化等; ? 灭菌。
沈阳药科大学
本课题组的研究情况
? 目前从事抗癌药长效注射微球的研究 ? 期望:
– 和企业共同研发抗癌药物、大分子多肽、蛋白 类药物的长效注射用微球制剂。
沈阳药科大学
8

生物降解材料

生物降解材料: 1.天然生物材料如淀粉、纤维素的改性材料制成的塑料; 2.化学合成聚脂:PLA、PCL、PBS、PPC等; 3.微生物发酵合成高分子化合物:PLA、PHA; 4.转基因植物合成高分子化合物:PHA。 生物基含量和价格 材料优缺点

1.可完全生物降解 2.可替代大部分塑料,价格可以和石油塑料 竞争 3.分子结构多样性,综合性能好 4.可单独使用或和淀粉等其他生物质共同 使用 5.可取代PCL、Ecoflex等石油基可降解材 料 6.核心技术门槛高竞争者很难模仿进入材料具体价格

生物降解塑料生产厂家 种类公司型号产能(吨/年)

PLA PLA产业链

→ → → 产业链分析: 1.PLA改性材料生产企业:其生产受到上下游的影响比较严重。 2.PLA生产企业:此类企业上游供给影响不大,来源和供应量很充足,关键在于企业的生产技术和产能。美国的natureworks处于领先地位,每年14万吨的产能,巴斯夫、日本三井和荷兰普拉克都有超万吨的产能。国内海正生物和金发科技分别拥有5000吨左右的产能,在国内PLA生产商中实力较强。 3.PLA原料(中间物)生产商:PLA生产主要有一步法和两步法两种工艺,两步法应用较多,即先由乳酸聚合并解聚得到中间体丙交酯,再由丙交酯开环聚合得到PLA,两步法中,中间体丙交酯的生产成本和纯度直接影响PLA产品的成本和性能。 4.PLA改性材料使用企业:这些企业使用PLA改性材料作为生产进一步产品的原料,成品涵盖范围包括农业、工业、门用等等领域。PLA材料经过改性和复合,其理化性质得到相应改进,可以采用传统吹塑、热塑机械生产成品,传统成品生产企业的转换成本并不高,而此类企业在国内数量巨大,并不构成对于PLA改性材料生产企业的直接瓶颈。 5.消费者终端:消费者的最终需求,决定了PLA改性和复合材料使用企业对PLA改性材料的间接需求,成为真正的、可能的需求瓶颈。因此,分析PLA改性和复合材料行业下游的关键,在于消费者终端的分析。 PLA改性材料企业

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用 摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。关键词:聚乳酸;生物降解;合成;应用 随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。 1 生物降解机理[3,4] 生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。材料的结构是决定其是否可生物降解的根本因素。合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。含有亲水性基团的高分子可保持一定的湿度,宜生物降解,同时含有亲水和憎水基的聚合物生物降解性好。一般分子量大的材料较分子量小的更难生物降解;脂肪族聚合物比相应的芳香族聚合物容易生物降解;支化和交联会降低材料的生物降解性。另外,材料表面的特性对生物降解也有影响,粗糙表面材料比光滑表面材料更易降解。影响可生物降解性的化学因素主要有高分子的亲水性、构型、形态结构、链段的活动性、分子量、高聚物的组成以及上述因素之间的相互关系等。高分子的亲水性越强越易水解,水解酶对酯键、酰胺键和氨基甲酸酯都有较强的作用;无定型态的高聚物比结晶状态容易水解;分子链段越柔顺,玻璃化温度越低,越有利于降解;链段活动性越大,自由体积越大,越容易受到酶的进攻,也就越容易降解;可降解性随着分子量增大而降低;高聚物的组成,如共混、共聚等也影响着高分子的可降解性。一般情况下只有极性高分子才能与酶相吸附并能很好亲和,因此高分子具有极性是生物降解的必要条件。具有生物降解性(包括水解)的分子化学结构有:脂肪族酯键、酞键、脂肪族醚键、亚甲基、氨基、酰氨基、烯氨基、芳香族偶氮基、脲基、氨基甲酸乙酯等。 2 聚乳酸的基本性质

生物可降解塑料的应用、研究现状及发展方向汇总

生物可降解塑料的应用、研究现状及发展方向 关键词:可降解塑料,光降解塑料,光和生物降解塑料,水降解塑料, 生物降解塑料 绪论 半个多世纪以来,随着塑料工业技术的迅速发展,当前世界塑料总产量已超过117×108t,其用途已渗透到工业、农业以及人民生活的各个领域并与钢铁、木材、水泥并列成为国民经济的四大支柱材料。但塑料大量使用后随之也带来了大量的固体废弃物,尤其是一次性使用塑料制品如食品包装袋、饮料瓶、农用薄膜等的广泛使用,使大量的固体废弃物留在公共场所和海洋中,或残留在耕地的土层中,严重污染人类的生存环境,成为世界性的公害{1-3}。有资料表明,城市固体废弃物中塑料的质量分数已达10%以上,体积分数则在30%左右,而其中大部分是一次性塑料包装及日用品废弃物,它们对环境的污染、对生态平衡的破坏已引起了社会极大的关注[4]。因此,解决这个问题已成为环境保护方面的当务之急。一般来讲,塑料除了热降解以外,在自然环境中的光降解和生物降解的速度都比较慢,用C14同位素跟踪考察塑料在土壤中的降解,结果表明,塑料的降解速度随着环境条件(降雨量、透气性、温度等)不同而有所差异,但总的而言,降解速度是非常缓慢的,通常认为需要200-400年[5]。为了解决这个问题,工业发达国家采用过掩埋、焚烧和回收利用等方法来处理废弃塑料,但是,这几种方法都存在无法克服的缺陷。进行填埋处理时占地多,且

使填埋地不稳定;又因其发出热量大,当进行焚烧处理时,易损坏焚烧炉,并排出二恶英,有时还可能排放出有害气体,而对于回收利用,往往难以收集或即使强制收集进行回收利用,经济效益甚差甚至无经济效益[6]。 不可降解的大众塑料塑料对地球的危害: (1)两百年才能腐烂。塑料袋埋在地下要经过大约两百年的时间才能腐烂,会严重污染土壤;如果采取焚烧处理方式,则会产生有害烟尘和有毒气体,长期污染环境。 (2)降解塑料难降解。市场上常见的“降解塑料袋”,实际上只是在塑料原料中添加了淀粉,填埋后因为淀粉的发酵、细菌的分解,大块塑料袋会分解成细小甚至肉眼看不见的碎片。这是一种物理降解,并没有从根本上改变塑料产品的化学性质。 (3)影响土壤的正常呼吸。塑料袋本身不是土壤和水体的基本物质之一,强行进入到土壤之后,由于它自身的不透气性,会影响到土壤内部热的传递和微生物的生长,从而改变土壤的特质。这些塑料袋经过长时间的累积,还会影响到农作物吸收养分和水分,导致农作物减产。 (4)易造成动物误食。废弃在地面上和水面上的塑料袋,容易被动物当做食物吞入,塑料袋在动物肠胃里消化不了,易导致动物肌体损伤和死亡因而越来越多的学者提倡开发和应用降解塑料,并将它看作是解决这一世界难题 的理想途径。目前,世界发达国家积极发展降解塑料,美国、日本、德国等发达国家都先后制定了限用或禁用非降解塑料的法规。[7] 可降解塑料的出现,不仅扩大了塑料功能,而且在一定程度上可缓解和抑制环境矛盾,对石油资源是一个补充,而且从合成技术上展示了生物技术和合金化技术在塑料材料领域中的威力和前景,它的发展已经成为世界研究开发的热点。 随着降解技术的完善,降解性能在不断提高而成本在不断降低,可降解

小麦中的淀粉酶及其研究进展

小麦中的淀粉酶及其研究进展 摘要:从各个方面来研究了小麦中淀粉酶的功能作用以及它的作用机理,通过研究可知,小麦中的а-淀粉酶和β-淀粉酶对食品的品质的影响起着重要的作用。并通过国内外的研究进展来进一步说明小麦中淀粉酶的研究是很有必要的。最后提到了淀粉酶的添加来弥补某些淀粉酶不足以满足食品加工的小麦。本文主要从小麦中的淀粉酶研究意义,国内外小麦中的淀粉酶的研究近况以及未来的发展方向进行了较为全面的综述。 关键词:小麦;淀粉酶;研究进展 在活细胞中进行着大量的化学反应的特点是速度很快,且能有秩序的进行,从而使得细胞同时能进行各种降解代谢及合成代谢,以满足生命活动的需要。生物细胞之所以能够在常温常压下以极高的速度和很大的专一性进行化学反应是由于其中存在一种称为“酶”的生物催化剂。而在小麦的生长,储存,加工等环节中,其中存在的酶就具有非常重要的作用,小麦中的酶会影响着小麦的储存,加工等品质。小麦粉中的淀粉酶主要有3类,即а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶。其中与面包烘焙有关的主要是а-淀粉酶和β-淀粉酶,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以对小麦中的淀粉酶进行研究是十分有必要的。 1.研究小麦中的淀粉酶的意义 小麦中的淀粉酶主要有а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶这三类。面粉有很多用途,可以制成各种不同的成品食品。而面粉大多数都是小麦面粉,可见要研究面粉就的研究小麦,并且小麦中的а-淀粉酶,β-淀粉酶与面包烘焙有关,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以研究小麦中的淀粉酶是非常有意义的。通过研究可以更好地把握不同小麦品种的淀粉酶的性质,来改善淀粉酶,从而来改进食品品质。 1.1小麦中的а-淀粉酶对面包品质的影响 大量的研究已证实,由于淀粉酶在发酵过程中对淀粉分子进行了有益的修饰,进而改善了面包的质地、体积、颜色、货架寿命等方面的性质,具体影响如下[1,2]: 1.1.1 а-淀粉酶对面包品质的影响 ○1а-淀粉酶能增大面包体积。а-淀粉酶是通过适当阻止面筋的形成来使面包体积增加的,

生物可降解材料的研究现状

生物降解材料的研究现状 摘要:介绍了生物降解材料和光降解材料的研究背景、研究内容、研究成果和应用现状。分析了其产品对环境的改善和不足,提出了对其降低成本、提高性能和扩大应用范围的建议。关键词:生物降解材料;光降解材料;塑料;成本;环境 近年来,塑料生产技术有了很大的发展,塑料已经渗透到人们生产和生活的各个领域,与水泥、钢铁和木材并称四大工业材料。由于塑料本身具有质量轻,耐腐蚀和易于成型加工等优点,使其成为人们不可或缺的材料。然而现在塑料的使用却面临巨大的挑战。在自然界中塑料很难降解,使用后产生大量固体废弃物。目前在处理这些塑料垃圾时大部分采用焚烧和掩埋的方法,但都未能解决污染问题,例如焚烧后产生的一些有毒气体反而进一步导致了污染的扩散;塑料掩埋地下需要近300 年才能够完全降解。另外石油,天然气等能源都已经面临枯竭的危机,全世界的石油储量大约只能再用40 多年,以石油为原料的塑料生产受到很大的阻力。为了减轻废旧塑料对环境的污染和缓解能源危机,多年来人们尝试开发可降解塑料,用以代替普通塑料制品。 随着可生物降解塑料技术的发展,聚乳酸(PLA) 、生物聚酯等生物降解材料的逐渐成熟,将推进塑料制品可生物降解化,为减少废旧塑料制品带来的污染,并为最终实现资源和环境的可持续性发展找到出路。目前可降解塑料的研制开发十分活跃,并部分进入工业化生产,但从总体上看,当前降解仍处于有待于对技术进行更深入研究、提高性能、降低成本、拓宽用途并逐渐推向市场的阶段。本文对生物可降解材料的发展和应用现状进行了简介,并指出其不足。 1 目前各国生物课可降解塑料的应用现状 生物降解塑料[1]不仅在生产过程中有节能减排效果,而且在使用过程也具有环境友好的特征。普通聚烯烃塑料的合成会排放大量CO2 等尾气及污染物,而塑料制品大量使用,尤其是农用薄膜和包装材料又造成了日益严重的白色污染。但生物降解塑料则不然,其原料来源是可以再生的农作物,农作物在生长过程中通过光合作用可以吸收CO2 放出氧气,其制品废弃物可以在掩埋堆肥条件下完全降解成水和CO2 ,无污染物产生。我国已成功开发的新型降解塑料------二氧化

生物医用材料未来发展趋势

生物医用材料未来发展趋势 作者:亦云来源:上海情报服务平台发布者:日期:2006-09-07 今日/总浏览:7/6023 组织工程材料面临重大突破 组织工程是指应用生命科学与工程的原理和方法,构建一个生物装置,来维护、增进人体细胞和组织的生长,以恢复受损组织或器官的功能。它的主要任务是实现受损组织或器官的修复和再建,延长寿命和提高健康水乎。其方法是,将特定组织细胞"种植"于一种生物相容性良好、可被人体逐步降解吸收的生物材料(组织工程材料)上,形成细胞――生物材料复合物;生物材料为细胞的增长繁殖提供三维空间和营养代谢环境;随着材料的降解和细胞的繁殖,形成新的具有与自身功能和形态相应的组织或器官;这种具有生命力的活体组织或器官能对病损组织或器宫进行结构、形态和功能的重建,并达到永久替代。近10年来,组织工程学发展成为集生物工程、细胞生物学、分子生物学、生物材料、生物技术、生物化学、生物力学以及临床医学于一体的一门交叉学科。 生物材料在组织工程中占据非常重要的地位,同时组织工程也为生物材料提出问题和指明发展方向。由于传统的人工器官(如人工肾、肝)不具备生物功能(代谢、合成),只能作为辅助治疗装置使用,研究具有生物功能的组织工程人工器官已在全世界引起广泛重视。构建组织工程人工器官需要三个要素,即"种子"细胞、支架材料、细胞生长因子。最近,由于干细胞具有分化能力强的特点,将其用作"种子"细胞进行构建人工器官成为热点。组织工程学已经在人工皮肤、人工软骨、人工神经、人工肝等方面取得了一些突破性成果,展现出美好的应用前景。 例如,存在于脂肪组织基质中的脂肪干细胞(ADSCs)是一类增殖能力强、具有多向分化潜能的成体干细胞,被发现不但具有与骨髓基质干细胞(BMSc)相似的向成骨、软骨、脂肪、肌肉和神经等细胞多分化的能力,而且表达与BMSc相同的表面标志如CD29、CD105、

生物可降解材料项目可行性研究报告

生物可降解材料项目可行性研究报告 泓域咨询丨规划设计·投资分析

第一章项目绪论 一、项目名称及建设单位 (一)项目名称 生物可降解材料项目 (二)项目建设单位 某某有限公司 二、项目拟建地址及用地指标 (一)项目拟建地址 该项目选址在某某工业园区。 (二)项目用地性质及用地规模 1、该项目计划在某某工业园区建设,用地性质为工业用地。 2、项目拟定建设区域属于工业项目建设占地规划区,建设区总用地面积56667.0 平方米(折合约85.0 亩),代征地面积510.0 平方米,净用地面积56157.0 平方米(折合约84.2 亩),土地综合利用率100.0%;项目建设遵循“合理和集约用地”的原则,按照生物可降解材料行业生产规范和要求进行科学设计、合理布局,

符合生物可降解材料制造和经营的规划建设需要。 (三)项目用地控制指标 1、该项目实际用地面积56157.0 平方米,建筑物基底占地面积38523.8 平方米,计容建筑面积63401.4 平方米,其中:规划建设生产车间51552.1 平方米,仓储设施面积7075.8 平方米(其中:原辅材料库房4267.9 平方米,成品仓库2807.9 平方米),办公用房2471.0 平方米,职工宿舍1403.9 平方米,其他建筑面积(含部分公用工程和辅助工程)898.6 平方米;绿化面积3706.4 平方米,场区道路及场地占地面积13926.9 平方米,土地综合利用面积56157.1 平方米;土地综合利用率100.0%。 2、该工程规划建筑系数68.6%,建筑容积率1.1 ,绿化覆盖率6.6%,办公及生活用地所占比重5.2%,固定资产投资强度3532.5 万元/公顷,场区土地综合利用率100.0%;根据测算,该项目建设完全符合《工业项目建设用地控制指标》(国土资发【2008】24号)文件规定的具体要求。 三、项目建设的理由 表征制造强国的一些指标,如单位制造业增加值的全球发明

小麦抗性淀粉的研究进展

小麦抗性淀粉的研究进展 摘要:该文主要阐述了抗性淀粉的理化性质、制备工艺和遗传特性的研究现状,最后简介其其在食品工业中应用前景。 关键词:小麦、抗性淀粉、RS3 1983 年,英国生理学家 Hans Englyst 首先将一部分在人体肠胃中不被淀粉酶消化的淀粉定义为抗性淀粉(Resistant Starch,简称 RS)[1]。近年来碳水化合物与健康关系的研究发现,抗性淀粉具有提供能量,降低食物热效应[2],调节、保护小肠, 防止糖尿病和脂肪堆积以及促进锌、钙、镁离子的吸收[3]等功能, 因此 RS 已成为近年来碳水化合物研究的热点之一。 抗性淀粉是一种无异味、持水性低、多孔性白色粉末,抗性淀粉至今尚无化学上精确分类,目前大多根据淀粉来源和人体试验结果,将抗性淀粉分为4种类型:RS1(物理包埋淀粉)、RS2(抗性淀粉颗粒)、RS3(回生淀粉)、(化学改性淀粉),其中 RS3是研究和应用最广泛一种。RS3是指糊化后的淀粉在冷却或储存过程中部分重结晶,由于结晶区的出现,阻止淀粉酶靠近结晶区域的葡萄糖苷键,并阻止淀粉酶活性基团中的结合部位与淀粉分子结合,造成不能完全被淀粉酶作用而产生抗酶解性。 小麦是当今产量最大的粮食作物之一。随着小麦深加工的发展,小麦淀粉工业在我国发展迅速,但由于小麦淀粉加工适应性差,其在实际领域中并未得到很好的应用。因此选择以小麦淀粉为原料开发抗性淀粉产品,具有理论和实际上的重大意义。 一、小麦抗性淀粉的理化性质研究 小麦抗性淀粉的数均分子量为3198,重均分子量为7291,抗性淀粉形成过程中,其分子结构特征没有变化[4]。 Behall 等[5]对 RS 的理化特性进行了分析,表明 RS 为白色无异味的多孔性粉末,平均聚合度在 30-200 之间,在 100-165℃之间直链淀粉晶体熔融,产生吸热反应;耐热性高,持水性低,含热量低。X-衍射表明, RS 在空间上形成双螺旋结构,分离的 RS 的衍射图谱显示其为 B 型晶体结构[6]。 邵秀芝等[7]采用微波—酶法制备小麦抗性淀粉,并对其物理性质惊醒了研究。发现其与原小麦淀粉相比,小麦抗性淀粉表面粗糙,形状变得不规则,结晶结构为B 型和 V 型结合体,持水性大于原淀粉,而乳化能力和乳化稳定性均低于原淀粉;在相同溶液浓度条件下,抗性淀粉粘度比原淀粉低得多。 王娟等等[8]利用压热法制备小麦抗性淀粉 RS3,并考察其部分理化性质及结构性质。结果表明,该产品含抗性淀粉 13.89%,透光率较好,持水力、溶解度和膨胀度都随水浴加热温度的升高而上升。其淀粉-碘复合物最大吸收波长为 594 nm,碘吸收曲线在 580~610 nm之间呈较宽的吸收峰。该产品颗粒形状大部分为圆形,偏光十字明显,多呈十字型,且交叉点均位于颗粒中心;起糊温度为68.7 ℃,糊化不易发生,但较易老化。淀粉颗粒结晶结构为 C 型,仍保留了小麦淀粉红外光谱的特征吸收峰。

浅析可降解生物医用高分子材料

生物制药与研究 2018·11 177 Chenmical Intermediate 当代化工研究 浅析可降解生物医用高分子材料 *赵芯路 (太原市第二外国语学校 山西 030001) 摘要:医疗废弃物的处理问题,一直困扰着医护人员,虽然国务院于2003年6月发布了《医疗废物管理条例》,但仅限于单纯的处理医 疗废弃物的问题。高分子材料科技的发展,已经将其应用到生活的方方面面,随着医疗废弃物处理的各种问题凸现,势必会形成可降解生物医用高分子材料并大面积应用在医用材料包装、医疗用品废弃物、一次性医疗用品上。本文从作者的角度出发,结合已有的知识结构,大胆探索可降解生物高分子材料在医疗行业的应用及其前景。关键词:可降解;生物材料;高分子材料;医用材料;医疗废物 中图分类号:T 文献标识码:A Brief Analysis of Biodegradable Biomedical Polymer Materials Zhao Xinlu (Taiyuan No.2 Foreign Language School, Shanxi, 030001) Abstract :Medical waste disposal has been bothering medical staff. Although the State Council issued the "Regulations on Medical Waste Management" in June 2003, it is limited to the simple disposal of medical waste. With the development of polymer materials technology, it has been applied to all aspects of life. With various problems in medical waste disposal, degradable biomedical polymer materials will be inevitably and widely used in medical material packaging, medical waste and disposable medical supplies. From the author's point of view, combined with the existing knowledge structure, this paper boldly explores the application and prospect of biodegradable biopolymer materials in the medical industry. Key words :degradable ;biological materials ;polymer materials ;medical materials ;medical waste 医疗废弃物的处理问题,一直困扰着医学界。这些废弃物不同于普通的生产或生活垃圾,也不同于一般的医疗产品,处理起来非常麻烦。随着科学技术的发展,各种高科技产品逐步引入医疗行业,缓解医疗行业中的各种难题——可降解高分 苯甲酸和苯甲酸钠的过敏反应和风疹样反应,羟苯甲酯、羟苯丙酯的刺激性和过敏反应,通过对辅料的用量的控制,将由辅料引入的毒性或者刺激性控制在可以接受的范围内。其次,处方中所使用的辅料均具有各自的作用,如防腐作用、抗氧作用、助溶作用等,有些辅料会因为发挥作用而使得含量发生变化,如抗氧剂就是通过与制剂中存在的氧化性物质发生氧化还原反应而起到抗氧剂的作用,其含量会随着反应的发生不断降低,药品研究者需要对抗氧剂的含量进行研究和控制,以保证在整个有效期内其含量始终保持在可以正常发挥作用的范围内。第三,辅料本身在制剂制备或者贮藏过程中由于稳定性等原因含量也会发生变化,比如苯甲醇在贮藏过程中会降解产生苯甲醛,也提示需要对这些辅料的含量进行控制。 成分名称变更前处方变更后处方变化量磷酸吡哆醛丁咯地尔 200g 200g -微晶纤维素100g 86g -4.2%交联酸甲基纤维素钠30g 0-9.0%单硬脂酸甘油酯15g 0-4.5%交联聚维酮015g +4.5%二氧化硅018g +5.4%滑石粉018g +5.4%硬脂酸镁08g +2.4%总和 345g 345g - 表1 制剂处方变更结果 3.案例分析 安乃近注射液的研究结论分析,由于在市面上引起多种类型的不良反应,在国内外都引起了重大关注,瑞典,美国等相继将其撤离市场,大量文献显示,安乃近会引发多种不良反应,卫生部将其中的复方安乃近片淘汰出药品市场,但留下了安乃近片剂以及滴剂及注射剂还在使用,因为其符合药品变更的安全性与稳定性。药品变更要权衡风险与收益成正比,解决临床安全性问题。安乃近注射液中因为存在亚硫酸氢钠含量及苯甲醛,缺乏安全性与稳定性的考察效果,所以,在安乃近注射液的变更研究中不符合药品工艺变更的质量与稳定性的要求。 4.结论 在化学药品注册工作中,申报量在不断增加,其中制剂处方变更以及制剂生产工艺变更的申报量是较多的,所占比例较重,涉及提高药品质量,必须要达到药品安全性、有效性、药剂型的合理性以及规格合理性的技术要求,才能将其批准上市,完成药品的申请注册。 ?【参考文献】 [1]简晓娜,胡明,蒋学华.已上市化学药口服固体制剂处方工艺变更管理探讨[C].中国药学会,2009:765-769. [2]羡冀,罗显锋.盐酸左氧氟沙星注射剂制剂处方工艺及质量评价[C].中华中医药学会,2009:74-78. [3]马逊娜,陈榕,陈美清.贝诺酯片的处方工艺研究[C].中国药学会,2000:270-271. ?【作者简介】 黄波(1983-),男,南京天朗制药有限公司研发部;研究方向:药物制剂相关科研。 上接第176页 下转第178页

淀粉泡沫材料研究研究进展

淀粉泡沫材料研究研究进展 作者:周江,佟金来源:吉林大学 [摘要]:在概述淀粉材料发泡原理的基础上,综述了淀粉泡沫材料研究与开发的最新进展。阐述了材料组成和发泡工艺参数等因素对淀粉泡沫材料的发泡行为和性能的影响,介绍了淀粉泡沫材料在包装领域的应用,并对未来的研发方向做了展望。 泡沫塑料(如聚苯乙烯泡沫)作为缓;中包装材料被大量使用。由于回收利用的可操作性差以及价格等方面的原因,绝大部分使用过的泡沫包装材料被作为废弃物处理掉的。这些泡沫材料质量轻、体积大而且难于腐烂降解,给环境带来了严重的冲击。采用生物降解材料是解决这一问题的有效途径之一。淀粉作为一种天然高分子,既可再生,又能完全降解。其低廉的价格和广泛的来源,使得淀粉成为制备生物降解塑料的主要原料之一[1-2]。以淀粉为原料研制开发的生物降解泡沫材料,在某些领域已经开始取代聚苯乙烯泡沫材料,它既可以抑制废弃的塑料泡沫包装材料造成的环境污染,又能节约有限的石油资源,对于解决目前全球面临的环境危机和资源危机无疑具有重要的意义。本文综述了这方面研究工作的最新进展并对淀粉泡沫材料在包装领域的应用前景进行了介绍。 1 淀粉材料的发泡 淀粉材料的发泡方法可分为2类:1)升温发泡,即在常压下迅速加热材料使得其中的水分汽化蒸发,从而在淀粉材料中形成多孔结构;2)降压发泡,即在一定的压力下加热材料,使得材料中的水成为过热液体,然后快速释放外部压力造成其中过热的水汽化蒸发,从而使淀粉材料发泡。在淀粉材料的发泡过程中,水的作用是非常特殊和重要的。在发泡前,水是淀粉材料的增塑剂,起着促进淀粉塑化的作用;在发泡过程中它又变成发泡剂,是泡体长大的动力。 淀粉材料的粘弹性是影响泡体长大的主要因素。而淀粉材料的粘弹性不但与温度有关,而且与淀粉的塑化程度及其水含量(或其它增塑剂)有关。为了使淀粉材料发泡,首先必须提供足够的热量,使淀粉材料的温度高于其玻璃化转变温度而处在橡胶态。水的存在将有效地降低淀粉材料的玻璃化转变温度。在发泡过程中,随着水的蒸发消失,材料的玻璃化转变温度不断升高,最终从橡胶态回到玻璃态,从而将体内的孔洞结构保持下来。如果材料的最终状态仍然是橡胶态,则体内的孔洞结构将逐渐塌陷萎缩。 2 淀粉材料发泡工艺 2.1 挤出发泡 挤出发泡技术是利用降压发泡的原理,通过挤出机实现的。淀粉和水以及其它添加剂进入挤出机后,在热和剪切的共同作用下,颗粒淀粉的结晶结构被破坏,并形成淀粉高分子的无序化熔体,即所谓的热塑性淀粉。由于螺杆的挤压和挤出机腔体的限制,加热的淀粉熔体中将建立起很高的压力,使得其中的水成为过热的液体(温度可高达220℃)而不汽化蒸发。当淀粉熔体从挤出机机头挤出后,物料中的压力被释放,过热的水瞬间汽化蒸发,在淀粉熔体中形成多孔结构。同时,物料温度的下降和由于水蒸发造成的材料玻璃化温度的上升,使得热塑性淀粉从高弹态回到玻璃态,从而将其中的多孔结构冻结而形成泡沫材料。用挤出发泡技术制备淀粉泡沫包装材料始于20世纪80年代末期,随后又有多项用挤出发泡技术制备淀粉泡沫材料的专利问世。该方法是目前生产缓冲包装使用的淀粉泡沫松散填充材料(loose fill)的主要方法。 2.2 烘焙发泡 Shogren等人利用食品工业中的烘焙技术,在封闭的模具中加热淀粉糊(温度范围175~235℃)制备出淀粉泡沫材料。与挤出发泡技术相比,用烘焙技术得到的淀粉泡沫材料一般在表明层有较

生物可降解材料及其在生物医学上的应用

伴随着医疗技术的不断发展和人们生活水平的日益提高,多种类型的医用材料开始在人体组 织中得到广泛应用,医用材料与人体组织之间的相容性、血液相容性和可降解性等问题越来 越受到人们的重视。以下围绕生物可降解材料在生物医学领域中的应用问题进行系统分析与 探讨,首先就生物可降解材料的降解原理进行初步分析,然后根据工艺以及来源标准对生物 医学领域中常见的生物可降解材料进行分类,并介绍部分典型材料在生物医学上应用情况。一、生物可降解材料降解原理 生物可降解材料通过与其接触的体液、有机大分子、酶、自由基、细胞等多种因素的生物学 环境相互作用,经水解、酶解、氧化等一系列反应,逐渐降解成低分子量化合物或单体。再 经过吸收、消化以及代谢反应后,降解产物被排出体外或参加体内正常新陈代谢被人体吸收 的方式完成降解过程。如体液从组织进入生物材料内部或生物材料的某种组分溶解于体液中,材料就会因体积增加而发生膨胀,同时渗出自身物质,这一过程破坏了材料本身的氢键和范 德华力均会使材料产生裂缝或空隙,最终材料在生物学环境下逐步发生化学降解。在临床中,人们希望植入的生物可降解材料同样按照该流程,在生物组织治疗期内全部完成分化降解反应,以免因植入材料而导致机体产生炎症或应激性反应。我们知道,皮肤组织治疗时间通常 在3~10d内,内脏组织治疗时间通常在1~2个月之间,而大器官组织治疗时间则往往需要6 个月甚至更长。可降解生物材料植入人体内后,其降解性能及降解产物对生物学环境、材料 反应及人体反应都造成了非常大的影响,降解速率慢或降解产物滞留时间长,易使人体组织 产生炎症、血栓等不良反应。有研究[6]显示:多数生物可降解材料的降解过程和进度与最佳 预期效果是不相符合的。因此,在生物可降解材料的研究和临床应用中,必须谨慎对待生物 可降解材料的降解相关问题,尤其是降解速率和降解产物。 二、生物可降解材料基本分类与应用 生物可降解材料用于人体,从材料本身和对人体效应2方面需满足严格条件: 易于加工,价格低廉,便于消毒灭菌,确定的降解时间,生物稳定性和力学性能满足植入部位的需要,良好 的组织相容性、血液相容性和力学相容性,无热源反应、遗传毒性、致畸性和致癌性,无刺 激性和致敏性。 目前生物可降解材料可以根据工艺以及来源的不同进行分类,包括天然高分子可降解材料、 微生物合成可降解高分子材料、以及化学合成可降解高分子材料这几种类型[39]。具体分类 和应用概述如下: 1. 天然高分子可降解材料 目前,在生物医学领域中应用较多的天然高分子可降解材料主要包括明胶、胶原、多糖、丝 素蛋白几种类型。

生物降解高分子材料研究

生物降解高分子材料研究 [摘要] 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 [关键词] 生物降解;高分子材料;应用 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳的高分子材料。根据降解机理的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光一生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestructible materials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合

最新完全生物降解材料

完全生物降解材料 摘要:可完全生物降解材料是指在适当和可表明期限的自然环境条件 下,能够被微生物(如细菌、真菌和藻类等)完全分解变成低分子化合物的材料,对环境有积极的作用。本文介绍了完全生物降解材料的定义、分类、降解性能的评价及其发展趋势。 关键词:生物降解,测试,应用 前言:人类在创造现代文明的同时,也带来负面影响----白色污染。 一次性餐具、一次性塑料制品以及农用地膜等均难以再回收利用,其处理方法以焚烧和掩埋为主。焚烧会产生大量的有害气体,污染环境;掩埋则其中的聚合物短时间内不能被微生物分解,也污染环境。残弃的塑料膜存在于土壤中,阻碍农作物根系的发育和对水分、养分的吸收,使土壤透气性降低,导致农作物减产;动作食用残弃的塑料膜后,会造成肠梗阻而死亡;流失到海洋中或废弃在海洋中的合成纤维渔网和钓线已对海洋生物造成了相当的危害,因此提倡绿色消费与加强环境保护势在必行。面对日益枯竭的石油资源,符合潮流的生物降解材料作为高科技产品和环保产品正成为一个研发热点。 1、生物降解材料 理想的生物降解塑料是一种具有优良的使用性能、废气后可被环境微生物完全分解、最终被无机化合成为自然界中碳素循环的一个组成部分的高分子材料。 1.1、生物降解材料的分类 生物降解材料按其生物降解过程大致可分为两类。 一类为完全生物降解材料,如天然高分子纤维素、人工合成的聚己内酯等,其分解作用主要来自:①由于微生物的迅速增长导致塑料结构的物理性崩溃;②由于微生物的生化作用、酶催化或酸碱催化下的各种水解; ③其他各种因素造成的自由基连锁式降解。 另一类为生物崩解性材料,如淀粉和聚乙烯的掺混物,其分解作用主要由于添加剂被破坏并削弱了聚合物链,使聚合物分子量降解到微生物能够消化的程度,最后分解为二氧化碳(CO2)和水。 生物崩解性材料大多采用添加淀粉和光敏剂的方法,与聚乙烯和聚苯乙烯共混生产。研究表明,淀粉基生物降解塑料袋最终将进入垃圾场,不接触阳光,即使其中有发生物双降解作用,所发生的降解作用也主要以生物降解为主。一定时间的试验表明:垃圾袋无明显的降解现象,垃圾袋没有自然破损,甚至对袋里的垃圾起到一定的“保鲜”作用。

生物可降解塑料塑料的最新研究现状

生物可降解塑料的研究现状 摘要:生物可降解材料因其具有可降解的特性越来越受到人们的关注。本文主要介绍生物可降解塑料的应用背景,塑料的最新研究及其成果。其中可降解塑料包括淀粉基高分子材料、聚乳酸和PHB。 关键词:生物可降解塑料白色污染淀粉基材料聚乳酸PHB 现代材料包括金属材料、无机非金属材料和高分子材料作为现代文明三大支柱(能然、材料、信息)之一在人类的生产活动中起着越来越重要的作用。[1]传统的高分子塑料在给国民经济带来快速发展,人民生活带来巨大改变的同时也给人类的生存环境带来了巨大的破坏。当今社会“白色污染”的问题变得越来越受关注。这类塑料由于在自然环境下难以降解处理,以致造成了城市环境的视觉污染,同时由于它们不能像草木一样被生物降解,还常常引起动物误食,并造成土壤环境恶化。塑料制品在食品行业中广泛使用,高温下塑料中的增塑剂、稳定剂、抗氧化剂等助剂将渗入到食物中,会对人的肝脏、肾脏及中枢神经系统造成损害。塑料的大量使用必然会带来如何处理废弃塑料的难题。传统的塑料处理方法主要包括直接填埋、焚烧、高温炼油等方法。这些处理方法不仅对环境造成破坏,同时也对人类健康构成巨大威胁。石油、天然气等能然已面临危机,以石油为原料的塑料生产将受到很大的阻力。为了减少废弃塑料对环境的污染和缓解能然危机,多年来人们努力开发生物可降解材料,用以替代普通塑料。生物可降解塑料是指一类由自然界存在的微生物如细菌、霉菌(真菌)和藻类的作用而引起降解的塑料。理想的生物降解塑料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终被无机化而成为自然界中碳素循环的一个组成部分的高分子材料。生物降解过程主要分为三个阶段:(1)高分子材料表面被微生物粘附;(2)微生物在高分子表面分泌的酶作用下,通过水解和氧化等反应将高分子断裂成相对分子量较低的小分子化合物;(3)微生物吸收或消化小分子化合物,经过代谢最终形成二氧化碳和水。 一、生物可降解材料的种类 按照原料组成和制造工艺不同可分为以下三种:天然高分子及其改性材料、微生物合成高分子材料和化学合成高分子材料。天然高分子中含量最丰富的资源包括纤维素、甲壳素、木质素、淀粉、各种动植物蛋白质以及多糖类等,他们具有多种官能团,可通过物理或化学的方法改性成为新材料,也可通过物理、化学及生物技术降解成单体或低聚物用作能源及化工原料。微生物合成高分子降解塑料是由生物发酵方法制的一类材料。 二、最新研究成果及其应用 2.1天然高分子及其改性材料 天然合成高分子降解塑料天然高分子大多数可以生物降解,但热学、力学性能差,不能满足工程材料的性能要求。通过对天然高分子改性可以得到能有实用价值的天然高分子降解塑料。其中天然高分子聚合物降解塑料包括淀粉、纤维素、木质素、多糖以及蛋白质等为基材的复合材料。淀粉是植物经光合作用而形成的碳水化合物,由于其来源广泛、价格低廉、降解后仍以二氧化碳和水的形式回归到自然,被认为是完全没有污染的可再生能源,以淀粉基高分子材料的塑料制品已在非食用领域得到了广泛的开发和研究。 淀粉基高分子材料包括淀粉填充塑料和完全淀粉基塑料。其中,淀粉基填充塑料主要是指以淀粉作为填充剂,与PE、PP等通用塑料共混。[2]传统的淀粉填

淀粉塑料研究进展

得分:_______ 南京林业大学 研究生课程论文2013 ~2014 学年第二学期 课程号:73414 课程名称:生态环境科学 论文题目:热塑性淀粉材料的研究进展与应用 学科专业:材料学 学号:3130161 姓名:王礼建 任课教师:雷文 二○一四年五月

热塑性淀粉材料的研究进展与应用 王礼建 (南京林业大学理学院,江苏南京210037) 摘要:淀粉与其他生物降解聚合物相比,具有来源广泛,价格低廉,易生物降解的优点因而在生物降解塑料领域中具有重要的地位。本文介绍了淀粉的基本性质、塑化和塑化机理,以及增强体在热塑性淀粉中的应用现状和进展,并对市场应用现状和目前淀粉塑料存在的不足等方面进行了相关的分析。 关键字:淀粉塑料;塑化;增强;市场应用 Research progress and application of thermoplastic starch materials WANG Li-jian (College of Science, Nanjing Forestry University, Nanjing 210037, China) Abstract: Starch has an important status in the biodegradable plastics’ area compared with other biodegradable polymer, because it has a lot of advantages such as a wide range of sources, low cost and easy to be broken down. In this thesis, introduces the basic properties of starch, plastic and plasticizing mechanism, as well as reinforcement application status and progress of the thermoplastic starch, and reinforcement application status and progress of the thermoplastic starch. Aspects of the application and the current status of the market and the presence of starch plastics were insufficient correlation analysis. Key words: Starch plastics; plasticizers; enhanced; market applications 1 淀粉的基本性质 淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。直链淀粉是以α-1,4-糖苷键连接D-吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以α-1,6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3~3×106),占72%的支链淀粉分子量则可以达到数亿[1-2]。 淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。分子链通过羟基相互作用形成分子间和分子内氢键,因此淀粉具有很强的吸水性。淀粉与水

大米淀粉的研究进展与应用现状

大米淀粉的研究进展与应用现状 摘要:大米淀粉是一种重要的谷物淀粉,它是大米中最主要的成分,含量高达80%左右,并且大米淀粉以其独特的物理化学性质广泛应用于食品、纺织等行业。本文概述了大米淀粉的颗粒结构、分子结构特点和大米淀粉中的非淀粉组分(蛋白质和脂质)的性质及其对淀粉性能的影响;分析了大米淀粉的特性及其提取方法;最后介绍了大米淀粉和大米变性淀粉的性质及其开发应用情况。 关键词:大米淀粉;研究进展;应用现状 The Research Progress and Application Status of Rice Starch Abstract: Rice starch is a major economic sector of rice. It is widely used in recent years. This paper reviewed the rice starch morphological structure, composition, specific characteristic and extraction process, and the application status of rice starch in various fields. At the end of the article, the application prospect of rice starch is also presented. Key Words: rice starch; research progress; application status 大米是我国及东南亚国家的主要粮食,主要成分是淀粉,含量高达80%左右。大米产量很大,仅我国就年产约1.8亿吨,不过由于其价格较高又是人们的主要口粮,所以一般只在产量集中的部分地区才用于加工淀粉及其深加工产品。因此,和玉米淀粉、薯类淀粉相比,大米淀粉的生产及其深加工相对比较落后。目前,淀粉工业的三大主要原料是玉米、小麦和马铃薯,而大米淀粉只占13%,不到玉米的一半,列第4位,并且,相较玉米、小麦和马铃薯淀粉,大米淀粉的价格一直较高,因而使大米淀粉的广泛应用受到了很大的限制。但是,随着淀粉应用领域的不断拓展、淀粉研究的进一步深入,研究者发现大米淀粉具有一些特殊的结构和性质,决定了它能更好地满足一些特殊应用行业的要求,因此,开发一些附加值较高的大米淀粉及其深加工产品具有深远的意义【1,2】。 1大米淀粉的研究进展 1.1大米淀粉的形态和结构 1.1.1大米淀粉颗粒形态 大米中的淀粉分子是以淀粉颗粒的形式存在,并且淀粉颗粒是透明的。大米淀粉是已知谷物淀粉颗粒中最小的一种,单粒淀粉颗粒大小约为3um~8um,其形状多数呈不规则的多角形,且棱角显著。大米品种不同,其淀粉颗粒大小也有明显的差异,一般糯米的淀粉颗粒比粳米和籼米的大。许多植物淀粉颗粒在细胞的淀粉质体或叶绿体中是以单粒形式存在的,然而,大米淀粉仅以复合淀粉粒形式存在于单个淀粉质体中,呈球形或椭圆形,其内包含约20~60个小淀粉颗粒,并且复合淀粉粒表面有许多孔洞【1,3】。

相关文档
最新文档