光纤传感器的位移测量与及数值误差分析实验

光纤传感器的位移测量与及数值误差分析实验
光纤传感器的位移测量与及数值误差分析实验

实验报告:实验07

(光纤传感器的位移测量与及数值误差分析实验)

实验一:光纤传感器位移特性实验

一、实验目的:了解光纤位移传感器的工作原理和性能,

测量其静态特性实验数据。学会对实验测量数据进行误差分析。

二、基本原理:本实验采用的是传光型光纤,它由两束光

纤混合后,组成Y 型光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。

三、器件与单元:主机箱、光纤传感器、光纤传感器实验

模板、测微头、反射面。

四、实验数据:

实验数据记录如下所示:

表1光纤位移传感器输出电压与位移数据

实验二:随机误差的概率分布与数据处理

1.利用Matlab语句(或C语言),计算算术平均值和标准

差(用贝塞尔公式)

clc; clear;

l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据

v0=l-mean(l)%残差列

M1=mean(l)%算术平均值

M2=std(l)%标准差

计算结果

数据分布

2.利用Matlab语句(或C语言),用残余误差校核法判断

测量列是否存在线性和周期性系统误差

%残余误差校核法校核线性系统误差

N=length(l)%原数组长度

if(mod(N,2))%求数组半长

K=(N+1)/2

else

K=(N)/2

end

A1=0;

delta=0;%delta=A1-A2

for i=1:K;%计算前半部分残差和

A1=A1+v0(i);

end

A2=0;

for j=K+1:N;%计算后半部分残差和

A2=A2+v0(j);

end

A1;

A2;

fprintf('Delta校核结果\n');

delta=A1-A2%校核结果

%阿贝-赫梅特准则校核周期性系统误差

u=0

for i=1:N-1;

u=u+v0(i)*v0(i+1);

end

u=abs(u)

if((u-sqrt(N-1)*M30)>0)

fprintf('存在周期性系统误差\n');

else

fprintf('未发现周期性系统误差\n');

end

运行结果

可见delta近似于0,由马利克夫准则可知,此案例中应

用的残余误差校核法无法确定是否存在系统误差。

3.用不同公式计算标准差后通过比较判断测量数据有无系

统误差

%不同公式计算标准差比较法

sigema1=0;

sigema2=0;

u=0;

for i=1:N %贝塞尔公式

sigema1=sigema1+v0(i)^2;

end

sigema1=sqrt(sigema1/(N-1))

for i=1:N %别捷尔斯公式

sigema2=sigema2+abs(v0(i));

end

sigema2=1.253*sigema2/sqrt(N*(N-1))

u=sigema2/sigema1-1

if(abs(u)>=(2/sqrt(N-1)))

fprintf('怀疑测量列中存在系统误差\n');

else

fprintf('不确定测量列中是否存在系统误差\n');

end

运行结果

4.利用Matlab语句(或C语言),用罗曼诺夫斯基准则和

格罗布斯准则判别有无粗大误差

%罗曼诺夫斯基法则判断是否存在粗大误差

j=1;%以下开始去除粗大误差

for i=1:N

if(i==8)

i=i+1;

continue

else

l1(j)=l(i);

j=j+1;

end

end

N1=length(l1);

v1=l-mean(l1);%去除粗大误差数据后的残差列

Averagae_lmnfsj=mean(l1);%去除粗大误差数据后的算术平均值

Standard_lmnfsj=0;

for i=1:N1

Standard_lmnfsj=Standard_lmnfsj+v1(i)^2;

end

Standard_lmnfsj=sqrt(Standard_lmnfsj/(N1-1));%去除粗大误差数据后的标准差

if((abs(l(8)-Averagae_lmnfsj)-2.24*Standard_lmnfsj)>0) fprintf('测量列中存在粗大误差,第8项数据存在粗大误差\n');

else

fprintf('测量列中不存在粗大误差\n');

end

运行结果

%格布罗斯法则判断是否存在粗大误差

l1=sort(l);

N=length(l);

Average_gbls=mean(l);

Standard_gbls=0;

for i=1:N

Standard_gbls=Standard_gbls+v0(i)^2;

end

Standard_gbls=sqrt(Standard_gbls/(N-1));%未去除粗大误差数据的标准差

%检查g1

g1=(Average_gbls-l1(1))/Standard_gbls;%g(1)

%检查gn

gn=(l1(N)-Average_gbls)/Standard_gbls;%g(n)

if(g1>=2.41)

fprintf('第一项测量值含有粗大误差\n');

fprintf('现在去除该项,重新计算\n');

else

if(gn>=2.41)

fprintf('最后一项测量值含有粗大误差\n');

fprintf('现在去除该项,重新计算\n');

else

fprintf('测量值不含有粗大误差\n');

end

end

%去除含有粗大误差的数据后重新计算

l20=sort(l);

j=1;%以下开始去除粗大误差

for i=2:N

l2(j)=l20(i);

j=j+1;

end

v2=l2-mean(l2);

N2=length(l2);

Average_gbls=mean(l2);

Standard_gbls=0;

for i=1:N2

Standard_gbls=Standard_gbls+v0(i)^2;

end

Standard_gbls=sqrt(Standard_gbls/(N2-1));%去除粗大误差数据的标准差

%检查g1

g1=(Average_gbls-l2(1))/Standard_gbls;%g(1)

%检查gn

gn=(l2(N2)-Average_gbls)/Standard_gbls;%g(n)

if(g1>=2.37)

fprintf('第一项测量值含有粗大误差\n');

fprintf('现在去除该项,重新计算\n');

else

if(gn>=2.37)

fprintf('最后一项测量值含有粗大误差\n');

fprintf('现在去除该项,重新计算\n');

else

fprintf('测量值不含有粗大误差\n');

end

end

运行结果:

误差理论与数据处理 实验报告

《误差理论与数据处理》实验指导书 姓名 学号 机械工程学院 2016年05月

实验一误差的基本性质与处理 一、实验内容 1.对某一轴径等精度测量8次,得到下表数据,求测量结果。 Matlab程序: l=[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674];%已知测量值 x1=mean(l);%用mean函数求算数平均值 disp(['1.算术平均值为:',num2str(x1)]); v=l-x1;%求解残余误差 disp(['2.残余误差为:',num2str(v)]); a=sum(v);%求残差和 ah=abs(a);%用abs函数求解残差和绝对值 bh=ah-(8/2)*0.001;%校核算术平均值及其残余误差,残差和绝对值小于n/2*A,bh<0,故以上计算正确 if bh<0 disp('3.经校核算术平均值及计算正确'); else disp('算术平均值及误差计算有误'); end xt=sum(v(1:4))-sum(v(5:8));%判断系统误差(算得差值较小,故不存在系统误差) if xt<0.1 disp(['4.用残余误差法校核,差值为:',num2str(x1),'较小,故不存在系统误差']); else disp('存在系统误差'); end bz=sqrt((sum(v.^2)/7));%单次测量的标准差 disp(['5.单次测量的标准差',num2str(bz)]);

p=sort(l);%用格罗布斯准则判断粗大误差,先将测量值按大小顺序重新排列 g0=2.03;%查表g(8,0.05)的值 g1=(x1-p(1))/bz; g8=(p(8)-x1)/bz;%将g1与g8与g0值比较,g1和g8都小于g0,故判断暂不存在粗大误差if g1

误差理论与大数据处理实验报告材料

标准文档 误差理论与数据处理 实验报告 姓名:黄大洲 学号:3111002350 班级:11级计测1班 指导老师:陈益民

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法 二、实验原理 (1)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。 设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++==∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有:1 n i i v ==∑0 1)残余误差代数和应符合:

当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1 n i i v =∑为零; 当 1 n i i l =∑>nx ,求得的x 为凑整的非准确数时,1 n i i v =∑为正;其大小为求x 时 的余数。 当 1 n i i l =∑

位移实验

综合实验二位移实验 (一)电容式传感器的位移实验 一、实验目的 了解电容式传感器结构及其特点。 二、基本原理 利用电容C=εA/d和其它结构的关系式,通过相应的结构和测量电路可以选择ε、A、d三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测位移(d变)和测量液位(A变)等多种电容式传感器。本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图2-9所示:它是有二个圆筒和一个圆柱组成的。设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2πx/ln(R/r)。图中C1、C2是差动连接,当图中的圆柱产生?X位移时,电容量的变化量为?C=C1-C2=ε2π2?X/ ln(R/r),式中ε2π、ln(R/r)为常数,说明?C与位移?X成正比,配上配套测量电路就能测量位移。 图2-9 圆筒式变面积差动结构电容式位移传感器三、需用器件与单元 主机箱、电容传感器、电容传感器实验模板、测微头。 四、实验步骤 1.测微头的使用和安装参阅实验九。按图2-10将电容传感器装于电容传感 接主机箱电压表的Vi器实验模板上,并按图示意接线(实验模板的输出V O1 n)。 2.将实验模板上的Rw调节到中间位置(方法:逆时针转到底再顺时针转3圈)。 3.将主机箱上的电压表量程(显示选择)开关打到2v挡,合上主机箱电源开关,旋转测微头改变电容传感器的动极板位置使电压表显示0v,再转动测微头(同一个方向)5圈,记录此时的测微头读数和电压表显示值为实验起点值。以后,反方向每转动测微头1圈,即△X=0.5mm位移,读取电压表读数(这样转10圈读取相应的电压表读数),将数据填入表6,出X—V实验曲线(这样单行程位移方向做实验可以消除测微头的回差)。 迟滞误差4.根据表6据计算电容传感器的系统灵敏度S、非线性误差δ L 、

误差测量实验报告

误差测量与处理课程实验 报告 学生姓名:学号: 学院: 专业年级: 指导教师: 年月

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法。 二、实验原理 (1)正态分布 设被测量的真值为0L ,一系列测量值为i L ,则测量列中的随机误差i δ为 i δ=i L -0L (2-1) 式中i=1,2,…..n. 正态分布的分布密度 ()() 2 2 21 f e δ σδσπ -= (2-2) 正态分布的分布函数 ()()2 2 21 F e d δ δ σδδσπ --∞ =? (2-3) 式中σ-标准差(或均方根误差); 它的数学期望为 ()0 E f d δδδ+∞ -∞ ==? (2-4) 它的方差为 ()22f d σδδδ +∞ -∞ =? (2-5) (2)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义 在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。

设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++= =∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有 1 n i i v ==∑0 1)残余误差代数和应符合: 当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1n i i v =∑为零; 当 1n i i l =∑>nx ,求得的x 为凑整的非准确数时,1n i i v =∑为正;其大小为求x 时的余数。 当 1n i i l =∑

水准测量误差分析(精)

水准测量误差分析 3.5.1水准测量的误差分析 水准测量误差包括仪器误差,观测误差和外界条件的影响三个方面。 (一) 仪器误差 ① 仪器校正后的残余误差 例如水准管轴与视准轴不平行,虽经校正仍然残存少量误差等。这种误差的影响与距离成正比,只要观测时注意使前、后视距离相等,便可消除或减弱此项误差的影响。 ② 水准尺误差 由于水准尺刻划不正确,尺长变化、弯曲等影响,会影响水准测量的精度,因此,水准尺须经过检验才能使用。至于尺的零点差,可在一水准测段中使测站为偶数的方法予以消除。 (二) 观测误差 ①水准管气泡居中误差 设水准管分划道为τ″,居中误差一般为±0.15τ″,采用符合式水准器时,气泡居中精度可提高一倍,故居中误差为 m =ρτ' '?'''±215.0·D 3-35 式中 D —水准仪到水准尺的距离。 ② 读数误差 在水准尺上估读数毫米数的误差,与人眼的分辨力、望远镜的放大倍率以及视线长度有关,通常按下式计算 m v =ρ' '?''D V 06 3-36 式中 V —望远镜的放大倍率; 60″—人眼的极限分辨能力。 ③ 视差影响 当存在视差时,十字丝平面与水准尺影像不重合,若眼睛观察的位置不同,便读出不同的读数,因而也会产生读数误差。 ④ 水准尺倾斜影响 水准尺倾斜将尺上读数增大,如水准尺倾斜033'?,在水准尺上1m 处读数时,将会产生2mm 的误差;若读数大于1m ,误差将超过2mm 。 (三)外界条件的影响 ① 仪器下沉 由于仪器下沉,使视线降低,从而引起高差误差。若采用“后、前、前、后”观测程序,可减弱其影响。 ② 尺垫下沉 如果在转点发生尺垫下沉,使下一站后视读数增大,这将引起高差误差。采用往返观测的方法,取成果的中数,可以减弱其影响。 ③ 地球曲率及大气折光影响 如式3-25所示 地球曲率与大气折光影响之和为 R D f 2 43.0?= 3-37

水准测量实验报告

水准测量实验报告 一、绪言 水准测量是用水准仪和水准尺测定地面上两点间高差的方法。在地面两点间安置水准仪,观测竖立在两点上的水准标尺,按尺上读数推算两点间的高差。通常由水准原点或任一已知高程点出发,沿选定的水准路线逐站测定各点的高程。由于不同高程的水准面不平行,沿不同路线测得的两点间高差将有差异,所以在整理国家水准测量成果时,须按所采用的正常高系统加以必要的改正,以求得正确的高程,如图1,图2所示。 图1 水准测量原理示意图 我国国家水准测量依精度不同分为一、二、三、四等。一、二等水准测量称为“精密水准测量”,是国家高程控制的全面基础,可为研究地壳形变等提供数据。三、四等水准测量直接为地形测图和各种工程建设提供所必需的高程控制。

图2 水准测量转点示意图 二、实习目的 1、通过对同济大学四平路校区高程的施测,掌握二等精密水准测量的观测和记录,熟悉使用电子水准仪进行二等水准的测量,并将所学知识得到一次实际应用。 2、熟悉精密水准测量的作业组织和一般作业规程。 三、水准测量实习过程 3.1 小组成员及作业步骤 小组成员: 作业步骤:精密水准观测组由5人组成,具体分工是:观测一人,记录一人,扶持两人,量距一人。 3.2水准仪的使用 水准仪的使用包括仪器的安置、粗略整平、瞄准水准尺、精平和读数等操作步骤。我们实验所用的仪器主要就是电子水准仪SDL30,其他操作同普通的水准仪。 SDL30 的等级水准测量功能用于国家一、二、三、四等水准测量。测量作业中的测站观测程序及其限差检核符合国家一、二水准测量规范(GB/T

3.3 水准测量的实施 在我们的测量中,首先每个组建立一个包含有四个已知控制点的控制网,每组选定网的一条边与周边的一组的水准网确保有两个已知控制点重合,分别测出公共边两点间高差,最后统一进行高差计算和误差分配,以作为检验与统一到一个公共的水准网中。我们选择211控制点作为自己的符合起止点,从该点出发,沿着教学南楼,途径图书馆正门,到图书馆后的控制点103,再转到瑞安楼前面的317点,最后符合至211控制点。 3.3.1 已知点数据及测区平面图 (1) 其中,211 208和211号点为与南边测区的公共点。 (2)、测区平面图,如下图1黑色线条所包含的区域即为本组测区。

实验07(光纤传感器的位移测量及数值误差分析实验)实验报告

实验报告:实验07 (光纤传感器的位移测量及数值误差分析实验) 实验一:光纤传感器位移特性实验 一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。学会 对实验测量数据进行误差分析。 二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园 分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。 三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。 四、实验数据: 实验数据记录如下所示: 表1光纤位移传感器输出电压与位移数据 实验二:随机误差的概率分布与数据处理 1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式) clc; clear; l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据 v0=l-mean(l)%残差列 M1=mean(l)%算术平均值 M2=std(l)%标准差 计算结果

数据分布 2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性 系统误差 %残余误差校核法校核线性系统误差 N=length(l)%原数组长度 if(mod(N,2))%求数组半长 K=(N+1)/2 else K=(N)/2 end A1=0; delta=0;%delta=A1-A2 for i=1:K;%计算前半部分残差和 A1=A1+v0(i); end A2=0; for j=K+1:N;%计算后半部分残差和 A2=A2+v0(j); end A1; A2; fprintf('Delta校核结果\n'); delta=A1-A2%校核结果 %阿贝-赫梅特准则校核周期性系统误差 u=0 for i=1:N-1; u=u+v0(i)*v0(i+1); end u=abs(u) if((u-sqrt(N-1)*M30)>0)

2平面度误差测量的实验报告

平面度误差测量的实验报告 一实验内容及目的: 1.学会用千分表测量一个平面的平 面度 2..学会千分表的使用 二实验仪器: 千分表:测量范围0—1mm. 最小 分度值0.001mm 0级大平板 三实验原理: 千分表是利用齿条齿轮传动,将 测杆的直线位移变为指针的角位移的计量器具。主要用于工件尺寸和形位误差的测量,或用作某些测量装置的测量元件。 一.使用前检查 1.检查相互作用:轻轻移动测杆,测 杆移动要灵活,指针与表盘应无摩 擦,表盘无晃动,测杆、指针无卡阻 或跳动。 2.检查测头:测头应为光洁圆弧面。 3.检查稳定性:轻轻拨动几次测头, 松开后指针均应回到原位。 二. 读数方法 读数时眼睛要垂直于表针,防止偏视造成读数误差。 小指针指示整数部分,大指针指示小数部分,将其相加即得测量数据。 三. 正确使用 1.将表固定在表座或表架上,稳定可靠。装夹指示表时,夹紧力不能过大, 以免套筒变形卡住测杆。 2.调整表的测杆轴线垂直于被测平面,对圆柱形工件,测杆的轴线要垂直于 工件的轴线,否则会产生很大的误差并损坏指示表。 3.测量前调零位。绝对测量用平板做零位基准,比较测量用对比物(量块)

做零位基准。 调零位时,先使测头与基准面接触,压测头使大指针旋转大于一圈,转动刻度盘使0线与大指针对齐,然后把测杆上端提起1-2mm再放手使其落下,反复2-3次后检查指针是否仍与0线对齐,如不齐则重调。 4.测量时,用手轻轻抬起测杆,将工件放入测头下测量,不可把工件强行推 入测头下。显著凹凸的工件不用指示表测量。 5.不要使测量杆突然撞落到工件上,也不可强烈震动、敲打指示表。 6.测量时注意表的测量范围,不要使测头位移超出量程,以免过度伸长弹簧, 损坏指示表。 7.不使测头测杆做过多无效的运动,否则会加快零件磨损,使表失去应有精 度。 8.当测杆移动发生阻滞时,不可强力推压测头,须送计量室处理。 四实验数据记录及处理

实验报告误差

实验报告误差 篇一:误差分析实验报告 实验一误差的基本性质与处理 (一) 问题与解题思路:假定该测量列不存在固定的系统误差,则可按下列步骤求测量结果 1、算术平均值 2、求残余误差 3、校核算术平均值及其残余误差 4、判断系统误差 5、求测量列单次测量的标准差 6、判别粗大误差 7、求算术平均值的标准差 8、求算术平均值的极限误差 9、写出最后测量结果 (二) 在matlab中求解过程: a = [24.674,24.675,24.673,24.676,24.671,24.678,24.672,2 4.674] ;%试验测得数据 x1 = mean(a) %算术平均值 b = a -x1 %残差 c = sum(b) %残差和 c1 = abs(c) %残差和的绝对值

bd = (8/2) *0.0001 %校核算术平均值及其误差,利用c1(残差和的绝对值)% 3.5527e-015(c1) xt = sum(b(1:4)) - sum(b(5:8)) %判断系统误差,算的xt= 0.0030.由于xt较小,不存在系统误差 dc = sqrt(sum(b.^2)/(8-1)) %求测量列单次的标准差dc = 0.0022 sx = sort(a) %根据格罗布斯判断准则,先将测得数据按大小排序,进而判断粗大误差。 g0 = 2.03 %查表g(8,0.05)的值 g1 = (x1 - sx(1))/dc %解得g1 = 1.4000 g8 = (sx(8) - x1)/dc %解得g8 = 1.7361 由于g1和g8都小于g0,故判断暂不存在粗大误差 sc = dc/sqrt(8) %算术平均值得标准差 sc = 7.8916e-004 t=2.36; %查表t(7,0.05)值 jx = t*sc %算术平均值的极限误差 jx = 0.0019 l1 = x1 - jx %测量的极限误差 l1 = 24.6723 l2 = x1 + jx %测量的极限误差 l2 = 24.6760 (三)在matlab中的运行结果 实验二测量不确定度 一、测量不确定度计算步骤: 1. 分析测量不确定度的来源,列出对测量结果影响显著的不确定度分量;

实验数据误差分析和数据处理

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1.实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量误差。它来源于: (1)标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。又如,标称值为 1kg的砝码的实际质量(真值)并不等于1kg等等。 (2)仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。 (3)附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等。这些误差大部分是由于制造工艺不完善和长期使用磨损引起的。调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等。这些误差是由于仪器仪表在使用时,未调整到理想状态引起的。变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等。这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的。 2.环境误差 环境误差系指测量中由于各种环境因素造成的测量误差。 被测量在不同的环境中测量,其结果是不同的。这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一。环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着。 测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差。 3.方法误差

角度测量的误差分析及注意事项

角度测量的误差分析及注意事项 一、角度测量的误差 角度测量的误差主要来源于仪器误差、人为操作误差以及外界条件的影响等几个方面。认真分析这些误差,找出消除或减小误差的方法,从而提高观测精度。 由于竖直角主要用于三角高程测量和视距测量,在测量竖直角时,只要严格按照操作规程作业,采用测回法消除竖盘指标差对竖角的影响,测得的竖直角值即能满足对高程和水平距离的求算。因此,下面只分析水平角的测量误差。 (一)仪器误差 1.仪器制造加工不完善所引起的误差 如照准部偏心误差、度盘分划误差等。经纬仪照准部旋转中心应与水平度盘中心重合,如果两者不重合,即存在照准部偏心差,在水平角测量中,此项误差影响也可通过盘左、盘右观测取平均值的方法加以消除。水平度盘分划误差的影响一般较小,当测量精度要求较高时,可采用各测回间变换水平度盘位置的方法进行观测,以减弱这一项误差影响。 2.仪器校正不完善所引起的误差 如望远镜视准轴不严格垂直于横轴、横轴不严格垂直于竖轴所引起的误差,可以采用盘左、盘右观测取平均的方法来消除,而竖轴不垂直于水准管轴所引起的误差则不能通过盘左、盘右观测取平均或其他观测方法来消除,因此,必须认真做好仪器此项检验、校正。 (二)观测误差 1.对中误差 仪器对中不准确,使仪器中心偏离测站中心的位移叫偏心距,偏心距将使所观测的水平角值不是大就是小。经研究已经知道,对中引起的水平角观测误差与偏心距成正比,并与测站到观测点的距离成反比。因此,在进行水平角观测时,仪器的对中误差不应超出相应规范规定的范围,特别对于短边的角度进行观测时,更应该精确对中。 2.整平误差 若仪器未能精确整平或在观测过程中气泡不再居中,竖轴就会偏离铅直位置。整平误差不能用观测方法来消除,此项误差的影响与观测目标时视线竖直角的大小有关,当观测目标与仪器视线大致同高时,影响较小;当观测目标时,视线竖直角较大,则整平误差的影响明显增大,此时,应特别注意认真整平仪器。当发现水准管气泡偏离零点超过一格以上时,应重新整平仪器,重新观测。 3.目标偏心误差 由于测点上的标杆倾斜而使照准目标偏离测点中心所产生的偏心差称为目标偏心误差。目标偏心是由于目标点的标志倾斜引起的。观测点上一般都是竖立标杆,当标杆倾斜而又瞄准其顶部时,标杆越长,瞄准点越高,则产生的方向值误差越大;边长短时误差的影响更大。为了减少目标偏心对水平角观测的影响,观测时,标杆要准确而竖直地立在测点上,且尽量瞄准标杆的底部。 4.瞄准误差

位置误差的测量实验报告

位置误差的测量实验报告 一、实验目的 1、培养学生创新精神、创新能力、创造性思维。 2. 熟悉零件有关位置误差的含义和基准的体现方法。 3. 掌握有关通用量仪的使用方法。 二、实验用量具 偏摆检测仪、平板、千分表、百分表、磁性千分表座、万能表座、V型铁、直角尺、钢板尺等。 三、实验内容及说明 1、平行度误差的测。连杆小孔轴线对大孔轴线的平行度 1)连杆孔的平行度要求如图1-15所示 2)测量方法如图1-16所示 平行度误差为f=L1/L2|M1-M2| 将零件转位使之处于图中0°位置,使两心轴中心与平板等高,然后在测出0度位置的平行度误差。根据测量结果判断零件平行度误差是否合格。 2. 垂直度误差的测量 十字头孔轴线对孔轴线以及对侧面B的垂直度要求,如图1-17所示。 1)轴线对轴线的垂直度误差的测量如图1-18所示。将测量表架安装在基准孔心轴上部,在距离为L2两端用千分表测得读数分别为M1,M2,则该零件轴线对轴线的垂直度误差为:f=L1/L2|M1-M2| 2)轴线对侧面B的垂直度误差测量如图1-19所示。被测孔轴线用心轴模拟,先将心轴穿入零件被测孔,以零件顶面为支撑面,放在三个千斤顶上。再用一直角尺,使其一面放在平板上,另一面与基准面B靠拢,同时调节千斤顶使其与基准面贴合为止,这说明基准面B 与平板垂直。然后用千分表分别测出图中L2长度两端读数M1,M2,则垂直度误差为根据以上结果,判断两项垂直度要求是否合格 3. 圆跳动误差的测量 被测零件圆跳动公差要求如图1-23所示,其测量方法如图1-24所示

1)径向圆跳动误差的测量:将工件旋转一周,记下千分表读数的最大差值。共测三个截面,取其中最大跳动量作为该表面的径向圆跳动误差值,并判断该指标是否合格2)端面圆跳动误差的测量:分别在端面靠近最大直径处和较小直径处测量,每测一处,转动工件一转,读取指示表的最大最小读数差,取其较大者作为该端面的圆跳动误差值 图1-15

实验数据误差分析和数据处理

第二章实验数据误差分析和数据处理 第一节实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实

验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=1 21 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑== +???++= 1 2222 21 均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值 2 1212 121ln ln ln x x x x x x x x x -=--=对 (2-4) 应指出,变量的对数平均值总小于算术平均值。当1x /2x ≤2时,可以用算术平均值代替对数平均值。 当1x /2x =2,对x =, =x , (对x -x )/对x =%, 即1x /2x ≤2,引起的误差不超过%。

GPS变形监测的位移显著性检验方法研究

第33卷第2期 2008年3月 测绘科学 Science of Surveying and M app ing Vol 133No 12 Mar 1 作者简介:陈刚(19712),男,湖北咸 宁人,副教授,博士生,现从事“3S ”技术在资源与环境监测中的应用研究。E 2mail:whcg@vi p 1sina 1com 收稿日期:2006211216 基金项目:中国地质大学出国留学人员科研基金项目资助(C UG LX0505082) GPS 变形监测的位移显著性检验方法研究 陈 刚① ,胡友健① ,赵 斌① ,Kefei Zhang ② ,梁新美 ① (①中国地质大学测绘工程系,武汉 430074; ②School of Mathe matical and Geos patial Sciences,R M I T University,Melbourne 3001,V ict oria,Australia ) 【摘 要】目前普遍采用的位移显著性检验方法,是人为地将客观上的空间位移问题转化为地方(局部)坐标系中的1维或2维位移问题来进行检验,既使位移检验在理论上的严密性受到损害,又使GPS 能够在协议地球坐标系(I TRF 或W GS 284)中同时精确测定空间3维位移的优越性得不到充分利用。由于在位移转换过程中会引入误差,可能导致位移显著性检验结果不可靠,尤其是当位移量小而坐标转换误差大时可靠性更低。为了避免由于位移转换存在误差而影响位移显著性检验结果的可靠性,本文提出了用GPS 进行变形监测时,直接在I TRF 或W GS 284空间坐标参考框架下进行位移显著性检验的新方法—“变形误差椭球检验法”,严密地推导了有关理论公式,给出了具体的检验方法,并进行了实例计算和分析。【关键词】GPS;变形监测;位移显著性检验;变形误差椭球【中图分类号】P258 【文献标识码】A 【文章编号】100922307(2008)022*******DO I:1013771/j 1issn 1100922307120081021032 1 位移显著性检验方法概述 变形监测点的两期监测数据经过处理后求得的坐标差,究竟是位移量还是观测误差的反映,需要经过严密的检验分析才能判定。目前广泛采用的位移显著性检验方法,可归纳为单点位移显著性检验、整体位移显著性检验和变形误差椭圆检验3种方法[1]。 单点位移显著性检验,目前广泛采用t 检验法。该法是作统计量t =Δx /m ∧Δx (Δx 为两期监测的坐标差;m ∧ Δx 为其中误差),选定显著性水平α,如果|t |>t α/2,认为位移显著,否则,认为点位稳定。用于整体位移显著性检验的平均间隙法,是首先利用两期平差的全部坐标差Δx 及其权 阵P Δx ,计算单位权中误差〗^m Δx 2=Δx T P Δx Δx /f Δx (f Δx 为Δx 中独立量的个数),作统计量F =^m Δx 2/^m 20(m ∧ 0为母体单位权中误差)。然后,选定显著性水平α,通过F 检验作出总体上位移是否显著的判断。如果总体位移显著,然后再逐个找出位移显著的点。变形误差椭圆法,是首先利用变形监测网两期平差后的坐标协因素和单位权中误差,作出每一个监测点的误差椭圆,取k 倍中误差作出极限误差椭圆。然后,根据点的位移向量是否落在极限误差椭圆之内来判断位移是否显著。 上述各种位移显著性检验方法用于GPS 变形监测分析,都存在不足之处:①t 检验法和平均间隙法的检验过程和结果都不直观,且不能用于两期监测精度不同的情况下,而实际上,严格说来,任意两期监测都不可能是完全等精度的;②需要将监测点在I T RF 或W GS 284中的3维坐标转换到地方平面直角坐标系和高程系统中,由于坐标转换过程中会引入 误差,这可能导致位移检验分析结果不可靠,尤其是当位移量小而坐标转换误差大时可靠性更低;③人为地将客观上的空间位移问题转化为1维或2维位移问题来进行检验,这就使位移检验的严密性受到损害,也使GPS 可以在I T RF 或W GS 284坐标框架下同时精确测定3维位移的优越性得不到充分利用。因此,在GPS 变形监测中,采用“变形误差椭球检验法”,直接在I T RF 或W GS 284空间坐标参考框架下进行位移显著性检验,有其合理性和必要性。 2 “变形误差椭球检验法” 211 变形误差椭球 设GPS 变形监测网的两期监测数据处理后,求得某监测点在I TRF 或W GS 284坐标系中的坐标分别为 X 1=X 1Y 1Z 1T X 2=X 2Y 2Z 2 T 坐标协方差阵分别为 D 1= D X 1X 1 D X 1Y 1D X 1Z 1 D X 1Y 1D Y 1Y 1D Y 1Z 1D X 1Z 1D Y 1Z 1 D Z 1Z D 2=D X 2X 2D X 2Y 2D X 2Z 2D X 2Y 2D Y 2Y 2D Y 2Z 2D X 2Z 2D Y 2Z 2 D Z 2Z 两期监测的坐标差及其协方差阵分别为 ΔX = x 2-x 1 y 2-y 1z 2-z 1  D ΔX ΔX =D Δx Δx D Δx Δy D Δx Δz D Δx Δy D Δy Δy D Δy Δz D Δx Δz D Δy Δz D Δz Δz =D 1+D 2 作协方差阵D ΔX ΔX 的特征方程: D ΔX ΔX -λI = D Δx Δx -λD Δx Δy D Δx Δz D Δx Δy D Δy Δy -λD Δy Δz D Δx Δz D Δy Δz D Δz Δz -λ =0(1) 由式(1)得: λ3-I 1λ2+I 2λ-I 3=0 (2) 式中 I 1=D Δx Δx +D Δy Δy +D Δz Δz ; I 2=D Δx Δx D Δx Δy D Δx Δy D Δy Δy +D Δx Δx D Δx Δz D Δx Δz D Δz Δz + D Δy Δy D Δy Δz D Δy Δz D Δz Δz ; I 3= D Δx Δx D Δx Δy D Δx Δz D Δx Δy D Δy Δy D Δy Δz D Δx Δz D Δy Δz D Δz Δz

第四章误差与实验数据的处理-答案

第四章误差与实验数据的处理练习题参考答案 1. 下列各项定义中不正确的是( D) (A)绝对误差是测定值和真值之差 (B)相对误差是绝对误差在真值中所占的百分率 (C)偏差是指测定值与平均值之差 (D)总体平均值就是真值 2. 准确度是(分析结果)与(真值)的相符程度。准确度通常用(误差)来表示,(误差)越小,表明分析结果的准确度越高。精密度表示数次测定值(相互接近)的程度。精密度常用(偏差)来表示。(偏差)越小,说明分析结果的精密度越高。 3. 误差根据其产生的原因及其性质分为系统误差和(随机误差)两类。系统误差具有(重复性)、(单向性)和(可测性)等特点。 4. 对照试验用于检验和消除(方法)误差。如果经对照试验表明有系统误差存在,则应设法找出其产生的原因并加以消除,通常采用以下方法:(空白试验),(校准仪器和量器),( 校正方法)。 5. 对一个w(Cr)=%的标样,测定结果为%,%,%。则测定结果的绝对误差为(-%),相对 误差为(-%)。 6. 标准偏差可以使大偏差能更显著地反映出来。(√) 7. 比较两组测定结果的精密度(B) 甲组:%,%,%,%,% 乙组:%,%,%,%,% (A)甲、乙两组相同(B)甲组比乙组高(C)乙组比甲组高(D)无法判别 8. 对于高含量组分(>10%)的测定结果应保留(四)位有效数字;对于中含量组分(1%~10%) 的测定结果应保留(三)位有效数字;对于微量组分(<1%)的测定结果应保留(两)位有效数字。 9. 测定的精密度好,但准确度不一定好,消除了系统误差后,精密度好的,结果准确度就好。(√) 10. 定量分析中,精密度与准确度之间的关系是( C) (A)精密度高,准确度必然高(B)准确度高,精密度也就高 (C)精密度是保证准确度的前提(D)准确度是保证精密度的前提 11. 误差按性质可分为(系统)误差和(随机)误差。 12. 下列叙述中错误的是( C)

实验测量误差与不确定度修订

预习操作记录实验报告总评成绩 《大学物理实验(I)》课程实验报告 学院: 专业: 年级: 实验人姓名(学号): 参加人姓名(学号): 日期: 年 月 日 星期 上午[ ] 下午[ ] 晚上[ ] 室温: 相对湿度: 实验1.1 测量误差与不确定度 [实验前思考题] 1.列举测量的几种类型? 2.误差的分类方法有几种? 3.简述直接测量量和间接测量量的平均值及其实验标准差的计算方法,以本实验中实验桌面积的测量为例加以说明。

4.测量仪器导致的不确定度如何确定?在假设自由度为无穷大的情况下,直接测量量的扩展不确定度如何计算?请写出计算步骤。 (若不够写,请自行加页)

[ 实验目的 ] 1.学习游标卡尺、螺旋测微计、读数显微镜、电子天平的使用方法。 2.学习长度、重量、密度等基本物理量的测量方法。 3.学习测量误差和不确定度的概念和计算方法。 [ 仪器用具 ] 编号 仪器名称 数量 主要参数(型号,测量范围,测量精度) 1 游标卡尺 1 2 螺旋测微计 1 3 读数显微镜 1 4 钢尺 1 5 钢卷尺 1 6 电子密度天平 1 7 量杯 1 8 待测薄板 1 9 待测金属丝 1 10 待测金属杯 1 [ 原理概述 ] 1.机械式游标卡尺 图1.1. 1 游标卡尺结构 查阅教材和说明书,写出游标卡尺各部分的名称: A. C . E . G . B. D . F . H .

图1.1. 2 游标卡尺读数 假设游标卡尺的单位为cm ,箭头所指的刻线对齐,则读数为: cm . 2. 机械式螺旋测微计 图1.1. 3 螺旋测微计结构 查阅教材和说明书,写出螺旋测微计各部分的名称: A. C . E . G . I . B. D . F . H . 图1.1. 4 螺旋测微计读数 假设螺旋测微计的单位为mm ,按左图,读数为: mm . 注意:(1)转动微分筒之前需逆时针扳动锁把,使微分筒可自由转动。(2)为保证测量时测杆与被测物表面的接触力恒定,测杆上安装有棘轮装置,使用时应通过旋转棘轮使测杆与工件接触,直至棘轮发出“咔咔”的声音。这点对测量橡胶等较软的物体特别重要,同时还可起到保护螺纹的作用。(3)使用螺旋测微计之前需校准零刻度。(4)使用完毕,需使对杆和测杆离开一段距离,避免存放过程中因热胀冷缩损坏螺纹。 3.读数显微镜测量原理

误差理论与数据处理实验报告

误差理论与数据处理 实验报告 姓名:黄大洲 学号:3111002350 班级:11级计测1班 指导老师:陈益民

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法 二、实验原理 (1)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。 设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++==∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有:1 n i i v ==∑0 1)残余误差代数和应符合:

当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1 n i i v =∑为零; 当 1 n i i l =∑>nx ,求得的x 为凑整的非准确数时,1 n i i v =∑为正;其大小为求x 时 的余数。 当 1 n i i l =∑

相关文档
最新文档