管井降水计算潜水非完整井

管井降水计算潜水非完整井
管井降水计算潜水非完整井

-管井降水计算(潜水非完整井)

————————————————————————————————作者:————————————————————————————————日期:

管井降水计算

管井降水计算书 合肥市小仓房污水处理厂一期工程二标工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:180天;施工单位:安徽水安建设发展股份有限公司。 本工程由合肥市重点局投资建设,北京市政设计研究/合肥市政设计有限公司设计,合肥市勘察院地质勘察,浙江江南工程管理股份有限公司监理,安徽水安建设发展股份 有限公司组织施工;由邹总担任项目经理,邹总担任技术负责人。 工程说明:合肥市小仓房污水处理厂拟建于包河区大圩乡境内,繁华大道(规划道路)以北。一期日处理污水规模10万m3/d,总征地面积13、8ha,占地面积9、9ha,附属建筑面积2950m2,生产建筑面积6045、1m2。 本次工程主要包括进水泵房及粗格栅间、出水井、细格栅间、曝气沉沙池、砂水分离车间、污泥泵房、沉淀池、配水井、提升泵房、滤池设备间、紫外消毒渠道以及场内土方挖填、道路、排水管道等全部工作内容。 建筑物结构形式主要以钢筋砼框架为主,个别为砖混结构,部分构筑物主要为现浇钢筋砼整体结构。 拟建场地现主要为水田,地形较平坦,西部局部为藕塘及沟渠。实测地面高程8、60~12、62m,最大高差4、02m。根据现场地址情况,大部分构筑物地下软基采用水泥搅拌桩形成复合地基处理。 场地地下水类型主要有两类:一类分布于①层素填土中的上层滞水及②层淤泥质 粉质粘土、③层粘土中的孔隙水,水量与地势高低及填土厚度有较大关系,场地地下水较丰富,主要由大气降水、地表水渗入为主补给,无统一地下水位,排泄途径主要就是蒸发及渗入低洼处为主。水位标高8、60~10、53m。另一类为分布于⑥层粉土及⑦层粉土夹粉砂中的承压水,主要由地下径流渗透补给,与南淝河河水联系密切,其承压水头一般大于4m。 鉴于以上地质及水文情况,对于大部分深基坑部位均需要进行降、排水施工,以确保基坑边坡及构筑物自身的安全。 一、水文地质资料

管井降水计算方案

一、场地岩土工程情况 第①层杂填土,以粉土为主,混少量建筑垃圾和生活垃圾,呈稍湿、松散状态。该层厚度在~之间,层底标高在~之间。 第②层粉砂,黄褐色,颗粒矿物成分为长石、石英石,均粒结构,天然状态下呈稍湿,稍密状态。该层厚度在~之间,层底标高在~之间。 第③层粗砂,黄褐色,颗粒矿物成分为长石、石英石,颗粒级配较好,混少量砾,局部分布有粉质粘士薄夹层。天然状态下呈稍湿~饱和,中密状态。该层厚度在~之间,渗透系数为K=×10-2cm/s。 层细砂,黄褐色,颗粒矿物成分为长石、石英质,均粒结构,天然状第③ 1 态下呈稍湿~饱和,中密状态。该层以夹层或透镜体形式存在于第3层粗砂层中,该层厚度在~之间,层底标高在~之间,渗透系数为K=×10-3cm/s。 第④层粉砂,黄绿色,颗粒矿物成分为长石、石英质,均粒结构,局部分布有粉土、粉质粘土薄夹层。天然状态下呈饱和,中密状态。该层厚度在~之间,层底标高~之间,渗透系数为K=×10-3cm/s。 第⑤层粉质粘土,灰黑色,含云母,有光泽,略带腥臭味,含有机质,有机质含量为~%,无摇振反应,切口光滑,干强度中等,韧性中等。天然状态下呈可塑~软塑状态。该层中分布有粉砂、细砂及粉土薄夹层,局部含有薄层钙质胶结层。该层厚度在~之间,层底标高在~之间,渗透系数为K=×10-6cm/s。 地下水埋藏于自然地表下~,标高在~之间,属潜水。由于临近场地正在进行降水施工,水位受其影响,现场水位偏低,根据该区域的水文地质资料,该地下水年幅度变化在~米之间。 二、降水方案的选择 本工程地质条件主要为粉土、砂土。现场基坑深度为,根据该场地附近地区的已有降水经验,拟采用管井井点降水方案降低地下水位,即在基坑周围及坑内布设一定数量的管

最新井点降水计算实例

轻型井点降水施工方案 1 2 1、工程简介 3 着中重说明基础工程中的地质概况、地下水概况以及与降水有关的情况,即4 为什么要降水? 5 2、降水方式方法及采取的措施 6 现场井点布置,采用的设备型号,技术参数等。 7 3、降水工作中应注意的事项 8 在降水施工过程中,技术、质量、安全、环保应注意的事项 9 4、计算书(附后) 10 本节主要讨论轻型井点降水有关计算 11 轻型井点降水计算 12 一、总涌水量计算 13 1.基坑总涌水量Q(m3/d),即环形井点系统用水量,常按无压完整井井群,14 用下式计算公式: 15 (2H―s)s 16 Q=1.366K 17 lgR―lgx0 18 2.单井井点涌水量q(m3/d)常按无压完整井,按下计算公式:

19 (2H―s)s 20 q=1.366K 21 lgR―lgr 22 式中:K—土的渗透系数(m/d); 23 H—含水层厚度(m); 24 s—水的降低值(m); 25 R—抽水影响半径(m),由现场抽水试验确定,也可用下式计算:R=1.95 s√H? 26 K 27 r—井点的半径(m); 28 x0—基坑的假想半径(m,当矩形基坑长宽比小于5时,可化成假想半径x0的圆形井,按下式计算:x0=√F/π 29 30 F—基坑井点管所包围的平面面积(m2); 31 π—圆周率,取3.1416; 二、井点管需要根数 32 33 井点管需要根数n可按下式计算: 34 Q 35 n=m 36 q 37 式中 q=65π?d?l 3√K

式中: 38 39 n—井点管根数; 40 m—考虑堵塞等因素的井点备用系数,一般取m=1.1; q—单根井点管的出水量(m3/d); 41 42 d—滤管直径(m); 43 l—滤管长度(m); 44 三、井点管平均间距 45 井点管平均间距D(m),可按下式计算: 46 2(L+B) 47 D= 48 n-1 49 求出的D应大于15d,并应符合总管接头的间距(一般为80、120、160mm)50 要求。 51 式中:L—矩形井点系统的长度(m); 52 B—矩形井点系统的宽度(m); 53 54 四、例题 55 某工程基坑平面尺寸见图,基坑宽10m,长19m,深4.1m,挖土边坡1:0.5。 56 地下水位-0.6m。根据地质勘察资料,该处地面下0.7m,为杂填土,此层下面57 有6.6m的细砂层,土的渗透系数K=5m/d,再往下为不透水的粘土层。现采用

基坑降水的非完整井流计算

基坑降水的非完整井流计算 【摘要】用三维边界单元法解决基坑施工中非完整井降水的渗流计算问题,为降水方案设计提供依据,并对降水过程作出预测。 【关键词】基坑降水基坑施工非完整井流计算 【Abstract】The seepage calculation for partly penetrated well dewatering is solved in foundation pit construction by the three dimensional boundary elements method.This provides the basis for the scheme design of dewatering,and can make a prediction for dewatering process. 【key words】foundation dewatering foundation pit construction calculation for partially penetrated well flow. 0前言 在建筑工程的深基坑施工过程中,往往要求将地下水位降到一定的深度之下,目的是使基坑的坑底面不积水,便于施工。另一方面,降低水位是为了减小基坑的水压力,防止坑底土层破坏或防止发生流砂、管涌等现象。同时基坑降水还能减小基坑侧壁的渗透压力,有助增加基坑侧壁的稳定性。因此基坑降水在深基坑工程中占有重要位置。在南方软土地区,由于地下水位浅,土质软弱,基坑降水的作用更加突出。 基坑降水的方案设计必须既科学又经济。降水方案首先要确保降水效果能够达到预期的目的,降水过程能够按预定计划有控制地实行;其次,应考虑降水工程的经济性,做到以尽量少的工程费用实现降水的目的。 节约降水费用的关键是设计最经济的井数、井深及降水井的合理布置。降水井的个数主要取决于单井的降水深度和单井的有效降深范围。由于上海地区浅部土层的渗透性较小,因此降水井附近的降落曲线较陡,使得降水影响范围较小。由于渗透缓慢,一味地增加井的深度并不能明显地增大降水影响范围。因此实际工程中的降水井往往是浅井,没有打穿含水层,使得降水井变成了非完整井。非完整井的渗流情况相当复杂,给计算增加了困难。 在经典理论中,对于非完整井的稳定流,通过作出简化假设,得出了些近似解,如半无限承压含水层中非完整井的В.П.Бабушкин巴布什金公式、含水层厚度有限时承压含水层中的非完整井的Muskat马斯克特公式。而对潜水非完整井,则通过将渗流区分为上下两区,将上段看作潜水完整井,将下段看作承压非完整井的方法来解决。经典

管井降水施工方案

拉斐公馆?北区 编制单位:遂宁市科华建筑工程有限公司 编制时间:2017年6月25 日 基坑管井降水工程施工方案

第一章方案编制依据 一、编制依据 1.1核工业西南勘察设计研究院有限公司出具的南滨帝景A区地质勘查报告; 1.2 《基础结构平面布置图》 1.3 规范依据 中华人民共和国、行业和四川省政府颁布的现行有效的建筑结构和建筑施工的各类规范、规程及验评标准、有关法律、法规及规定。ISO9001质量管理标准、ISO14001环境管理标准、OSHMS18001职业安全健康管理标准。 第二章工程概况

一、工程基本概况 工程位于遂宁市船山区银河路西侧、明霞路北侧。场地原分布为种植地、居民宅基地及居民道路,经过拆迁,现用建渣铺垫。 该标段共建3栋高层,局部商业楼,工程设计地下二层,地上1~32层,地下室建筑面积约39533m2,,住宅建筑面积134532m2,商业楼面积23186m2,建筑高度6米~99.45米。基础形式为筏板基础、桩基础。主楼筏板厚1200,地下室筏板厚300,基础梁高1150。 二、地下水文概况 遂宁地处中纬度亚热带的四川盆地中部,光、热资源丰富,雨量充沛,属亚热带温暖湿润气候,主导向为北风,年平均风速约为0.8m/s,年平均气温约17.3℃,年平均日照时约1390小时,年平均相对湿度约82%,平均风荷载为0.3kN/m2。根据本地区水文资料,区域内涪江河年平均水位约为273.00m,枯水位约270.00m,最大流量约273.00m3/s,涪江历史最高洪水约为278.174m,流量为24600m3/s,根据过军渡电站工程相关资料,区域内涪江河常年水位为275.50m。拟建场地在地貌上属涪江Ⅰ级阶地。地下水主要为赋存于卵石层中的孔隙潜水,略具承压性,主要受大气降水、涪江河水补给,向下游及涪江河排泄,场地地下水水量丰富,水位变化主要受季节性降水及涪江水位控制。依据地勘得出水位一般在砂卵石层中,砂及卵石层为场地地下水的主要含水层,其厚度约为7~10m,地下水稳定水位埋深约0.3-2.0m,相应标高为 274.91-275.37m。 第三章施工方案选择 一、基坑降水是工程的先行工作,由于地下水位较浅和地下水的毛细上升作用,地基土中的空隙几乎为水所饱和,地基土的粘度大,使得开挖和倾倒困难。为了确保土方开挖的顺利施工必须在土方开挖前10天进行降水。 二、人工降水的方法有多种:轻型井点、喷射井点、电渗降水、管井井点等。结合本工程的水文地质条件和该地区以往降水经验,对各种降水方法施工可行性和工程造价的综合比较分析后认为:本拟建工程采用管井井点降水是本工程优选的方法。其优点在于:降水效果好、作业条件简单、运行管理方便、操作维修简便、运行成本低、可塑性大。 三、井点设计依据 1、《银河路南滨帝景A区工程勘察报告》

承压-潜水非完整井计算公式

基坑降水、土方、支护工程 降水设计计算书 一、设计计算依据 1、岩土工程勘察报告; 2、《建筑基坑支护技术规程》JGJ120-99; 3、其它相关资料。 二、计算过程 本次计算采取如下程序: 本工程采用承压-潜水非完整井计算基坑涌水量。

公式一: )R (1lg h -M)M -2H 366.10 2r k Q +=( 式中:Q ——基坑涌水量(m 3/d) k ——渗透系数(m/d),10 S ——水位降深(m),7.0m R ——引用影响半径(m),R=kH s 2=230m r 0——基坑半径(m),F F r 564.0/0==π=104.5m F ——基坑面积(m 2),本工程暂取34358m 2 l ——过滤器有效工作部分长度 H ——初始静止水位至井底的距离 h ——基坑底至井底的距离 M ——承压含水层厚度(m),27.0 计算得:Q=2969.9m 3/d 根据我公司多年施工经验,根据规范所计算涌水量往往比实际小很多,本工程根据经验,按两倍理论量计算涌水量,即涌水量为:2969.9×2=5940 m 3/d

公式二: 3 120q k l r s π= 式中:q ——管井的出水量(m 3/d) s r ——过滤器半径(m ) l ——过滤器浸部分段长度(m),2.0 k ——含水层渗透系数(m/d),380 计算得:q =182.40m 3/d 公式三: q Q n 1.1= 计算得井数为:n ≈36 公式四: T y Z ir c h L +++++=0 式中:L ——井深(m) h ——基坑深度(m),5.5 c ——降水水面距基坑底的深度(m),1.0 i ——水力坡度,取0.03 Z ——降水期间地下水位变幅(m),0.5 y ——过滤器工作部分长度(m),2.0

管井降水计算书

管井降水计算书 一、水文地质资料 该计算书计算主要依据为国家行业标准《建筑基坑支护技术规范》(JGJ 120-99),同时参阅了《建筑施工手册》(第四版)和姚天强等编写的《基坑降水手册》。 三、计算过程 1、基坑底板承压水头计算: h k =(H s r s )/(F s r w ) H S 为基坑最终开挖面到下部承压含水层顶面间的距离(m); γ s 为承压含水层顶板以上土层的重度(kN/m3); F s 为安全系数,取1.1~1.3; r w 为水的重度(kN/m3); h为承压含水层从顶板算起的承压水头高度(m)。 h s 为实际承压水头高度(m); h s >h k 时:需要进行降压降水,降压水头高度为h s -h k = 6-0.56 = 5.44 m。 2、基坑总涌水量计算:

基坑降水示意图 Q=2.73kMS/log(1+R/r ) Q为基坑涌水量; k为渗透系数(m/d); S为基坑水位降深(m); S=(D-d w )+S w D为基坑开挖深度(m); d w 为地下静水位埋深(m); sw为基坑中心处水位与基坑设计开挖面的距离(m); R为降水井影响半径(m); r 为基坑等效半径(m); M为由含水层底板到过滤器有效工作部分中点的长度(m); 通过以上计算可得基坑总涌水量为349.22m3。 3、降水井数量确定: 单井出水量计算: Q=120πr s l3k1/2 降水井数量计算: n=1.1Q/q q为单井允许最大进水量(m3/d); r s 为过滤器半径(m);

l为过滤器进水部分长度(m); k为含水层渗透系数(m/d)。 通过计算得井点管数量为6个。 4、过滤器长度计算 群井抽水时,各井点单井过滤器进水长度按下式验算: y >l y 0=[H2-0.732Q/k×(logR -log(nr n-1r w )/n]1/2 l为过滤器进水长度; r 为基坑等效半径; r w 为管井半径; H为潜水含水层厚度; R 为基坑等效半径与降水井影响半径之和; R 0=R+r R为降水井影响半径; 通过以上计算,取过滤器长度为5.85m。

轻型井点降水设计

轻型井点降水设计例题
某厂房设备基础施工,基坑底宽 8m,长 12m,基坑深 4.5m,挖土边坡 1:0.5,基坑平、 剖面如下图所示。经地质勘探,天然地面以下 1m 为亚粘土,其下有 8m 厚细砂层,渗透系 数 K=8m/d, 细砂层以下为不透水的粘土层。地下水位标高为-1.5m。采用轻型井点法降低 地下水位,试进行轻型井点系统设计。
解:
1)井点系统的布置 根据本工程地质情况和平面形状,本基坑面积较大,轻型井点选用环形布置。为使总 管接近地下水位,表层土挖去 0.5m,则基坑上口平面尺寸为 12m×16m,布置环形井点。 总管距基坑边缘 1m,总管长度 L=[(12+2)+(16+2)]×2=64(m) 水位降低值 S=4.5-1.5+0.5=3.5(m) 采用一级轻型井点,井点管的埋设深度(总管平台面至井点管下口,不包括滤管) HA?H1 +h+IL=4.0+0.5+ ×( )=5.2(m)(环状井点 I=1/10,L 取

基坑短边) 采用 6m 长的井点管, 直径 50mm, 滤管长 1.0m。 井点管外露地面 0.2m, 埋入土中 5.8m (不包括滤管)大于 5.2m,符合埋深要求。 井点管及滤管长 6+1=7m,滤管底部距不透水层 1.70m(9-7-(0.5-0.2)=1.7) ,基坑 长宽比小于 5,可按无压非完整井环形井点系统计算。 2).基坑涌水量计算 按无压非完整井环形点系统涌水量计算公式(式 1—23)进行计算 Q=
先求出 H0、K、R、x0 值。 H0:有效带深度,按表 1-16 求出。 S——水位降低值(m) ; R——抽水影响半径(m) ; s’——井点管内水位降落值 l——滤管长度(m) ; 表 1-16 S’/(S’+l) H0 有效带的深度 H0 值 0.2 1.3(S’+l) 0.3 1.3(S’+l) 0.5 1.7(S’+l) 0.8 1.85(S’+l)
s’=6-0.2-1.0=4.8m。根据
查 1-16 表 ,求得 H0:
H0 =1.85(s?+1)=1.85(4.8+1.0)=10.73(m) (当查表得到的 H0 值大于实际含水层厚度 H 时,则取 H0=H ) 由于 H0 >H(含水层厚度 H=1+8-1.5=7.5m),取 H0=H=7.5(m) K: 渗透系数,经实测 K=8m/d R: 抽水影响半径, (m) (m)
x0: 基坑假想半径,x0 = F——环形井点所包围的面积(m2) 。 将以上数值代入式 1—28,得基坑涌水量 Q:
Q=
=1.366×8×
(m3/d)

管井降水方案

别士桥泵站工程基坑管井井点降水方案 一、工程概述 本工程为宣城市北门综合改造工程的一部分,工程位于状元北路至宛溪河之间,长约620m,对该段道双河进行裁弯取直,并在末端修重建别士桥排涝泵站。本次降水为两个单体。○1泵站○2排水涵泵站建筑物包括进水闸、前池及进水池、泵房、压力水箱、控制段、排涝穿堤出水涵(兼自排涵)等。泵房为湿室型堤后式、安装6台1200ZLB-100型立式轴流泵,配6台YL4503-12型立式电动机,设计排涝流量24.28m3/s,总装机容量1500Kw。 根据现场实际开挖地下水位埋藏较浅,8.6m米处见地下水,基础埋设较深,基础标高为4.3m,且即将进入雨季,地下水位不断上升,土内含水接近饱和状态,这种施工条件给基础施工带来很大的困难。基础开挖后随时有塌方的危险,其中多处距原有建筑物、管架、污水管线及污水井等特别近,基础开挖后如果塌方,扰动原有基础及管线等,将对原建筑物等构成极大的危害,可能会造成重大安全事故,后果不堪设想,存在极大的安全隐患。 因此根据实际情况采用管井降水。为了满足文明施工的要求,确保安全生产和工程质量,我公司采取管井降水的措施,管井降水所排出的水必须按要求排放到指定的排水井,并做好排水的过滤工作,这些降水、排水工作都要持续到基础工程完毕回填后才能停止,以保证

基础等在干燥条件下施工。 二、编制依据 1、有关文件;宣城市水务局“水堤〔2013〕35号文”。 2、宣城市北门改造地形图及规划图。 3、别士桥泵站工程施工图纸 4、《宣城市道叉河河道整治及别士桥泵站工程初步设计阶段工程地质勘察报告》(安徽省水利水电勘测设计院2012.9); 5、《建筑与市政降水工程技术规范》(JGJ/T111-98); 6、《水利水电工程施工组织设计规范》(SL303-2004); 7、建筑地基基础工程施工质量验收规范GB50202-2002 8、现场实际勘察 三、施工准备 根据工程的结构、特点、进度要求及现场实际情况,投入足够的施工人员,机械设备按种类和数量组织进场。合理规划摆放位置,暂时未用的设备应维修完好待命。 现场测量人员用白灰划出井点降水下管的位置,清理障碍,避免与原有管线等相撞。 四、管井降水方案 4.1降水形式 基坑外侧采用环形管井降水,井点管间距17m,降水深度为 5.3m,基坑挖深8.2 m。将地下水位降至基坑换填底以下1m(绝对标高3.3m)时再进行土方开挖。 管井降水:管井设置于基坑顶外侧,降水井深度(从自然地面算

轻型井点降水施工计算实例

轻型井点降水施工计算实例 井点降水, 实例, 施工 一、总涌水量计算 1. 基坑总涌水量Q(m3/d),即环形井点系统用水量,常按无压完整井井群, 用下式计算公式: (2H―s)s Q=1.366K lgR―lgx0 2. 单井井点涌水量q(m3/d)常按无压完整井,按下计算公式: (2H―s)s q=1.366K lgR―lgr 式中:K—土的渗透系数(m/d); H—含水层厚度(m); s—水的降低值(m); R—抽水影响半径(m),由现场抽水试验确定,也可用下式计算:R=1.95 s √H? K r —井点的半径(m); x0—基坑的假想半径(m,当矩形基坑长宽比小于 5 时,可化成假想半径x0 的圆形井,按 下式计算:x0=√F/ π F—基坑井点管所包围的平面面积(m2); π—圆周率,取 3.1416 ; 二、井点管需要根数 井点管需要根数n 可按下式计算: Q n=m q 式中q =65π?d?l 3 √K 式中: n—井点管根数; m—考虑堵塞等因素的井点备用系数,一般取m=1.1 ; q —单根井点管的出水量(m3/d);

d—滤管直径(m); l —滤管长度(m); 三、井点管平均间距 井点管平均间距D(m),可按下式计算: 2 (L+B) D= n - 1 求出的D应大于15d,并应符合总管接头的间距(一般为80、120、160mm)要求。 式中:L—矩形井点系统的长度(m); B —矩形井点系统的宽度(m); 四、例题 某工程基坑平面尺寸见图,基坑宽10m,长19m,深 4.1m,挖土边坡1:0.5 。地下水位-3.m。根据地质勘察资料,该处地面下0.7m,为杂填土,此层下面有 6.6m 的细砂层,土的 渗透系数K=5m/d,再往下为不透水的粘土层。现采用轻型井点设备进行人工降低地下水位, 机械开挖土方,试对该轻型井点系统进行计算。 解:(1)井点系统布置 该基坑顶部平面尺寸为14m×23m,布置环状井点,井点管离边坡为0.8m。要求降水深度s =4.10 -0.6 +0.5 =4.0m,因此,用一级轻型井点系统即可满足要求,总管和井点布置在 同一水平面上。由井点系统布置处至下面一层不透水粘土层的深度为0.7 +6.6 =7.3m,设井点管长度为7.2m(井管长6m,滤管 1.2m,直径0.05m),因此,滤管底距离不透水粘土 层只差0.1m,可按无压完整井进行设计和计算。 (2)基坑总涌水量计算 含水层厚度:H=7.3 -0.6 =6.7 m 降水深度:s=4.1 -0.6 +0.5 =4.0m 基坑假想半径:由于该基坑长宽比不大于5,所以可化简为一个假想半径为x0 的圆井进行 计算: x0=√F/ π=√(14+0.8 ×2)(23+0.8 ×2)/ 3.14 =11m 抽水影响半径:R=1.95 s √H? K =1.95 ×4√6.7 × 5 =45.1m 基坑总涌水量: (2H―s)s Q=1.366K lgR―lgx0

建筑工程量计算例题(详细)

【例】某工程采用预拌混凝土,已知C20混凝土独立基础85米3,独立基础模板接触面积179.1米2,用工料单价法计算工程造价(按三类工程取费,市区计取税金,预拌混凝土市场价330元/米3),其他可竞争措施项目仅计取“生产工具用具使用费”、“检验试验配合费”. 工程预算表 取费程序表 例题解析:1.其他可竞争措施项目中的其他11项费用按建设工程项目的实体项目和可竞争措施项目(11项费用除外)中人工费与机械费之和乘以相应系数计算. 2.企业管理费、规费、利润的计费基数是相同的 ,即按直接费中的人工费与机械费之和乘以相应费率,其中直接费包括直接工程费和措施费.

4.注意2012年新定额安全生产、文明施工费计算的变化. 【例】如图,计算人工挖土方、钎探、回填土、余土外运、砖基础工程量. (土质类别为二类,垫层C15砼,室外地坪-0.300) 【例】如下图所示尺寸,求混凝土带型基础模板和混凝土的工程造价. 备注:按三类工程取费,企业管理费费率为17%,利润费率为10%,规费费率为25%,税金税率为 3.48%,安全生产、文明施工 费为4.25%. 解:(1)带型基础外侧模板 S 1 =[(4.5×2+0.5×2)×2+(4.8+0.5×2)×2]×0.3=9.48 米2 (2) 带型基础内侧模板 S 2 =[(4.5-0.5×2)×2+(4.8-0.5×2)×2]×0.3×2=8.76 米2 带型基础模板工程量 S= S 1+ S 2 =18.24 米2(模板工程量3分) (3)带形基础混凝土 外墙 V=1×0.3×(4.5+4.5+4.8)×2=8.28 米 3 (混凝土工程量2分) 内墙 V=1×0.3×(4.8-1)=1.14 米3 (混凝土工程量2分) 合计:9.42 米3

管井降水主要施工方法及技术要求

管井降水主要施工方法 及技术要求 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

基坑降水施工方案 4.1 施工组织 按项目管理要求组织施工,实行项目经理负责制,配备有经验的施工技术管理人员组成项目管理班子,指挥协调工程施工,并按基坑降水质量达标要求,由主任工程师或专业工程师进行技术监督与管理把关,管理班子下设技术组、钻井组、洗井安泵组、抽降水值班组、电工组、安全保卫行政管理组等组成基坑降水疏干组织。 4.2施工准备阶段 ⑴资料:仔细研究分析同设计有关的图件及文字说明,编制基坑降水施工方案,准备有关记录表格、工具等,参加技术交底。 ⑵场地:组织现场踏勘,做好场区内“三通一平”工作,要求甲方提供地下障碍及管线的准确位置,以防意外事故发生,进行场区施工规划,布置施工井孔泥浆配置要求及循环途径。 ⑶设备:检查设备配套情况,对设备进场后开工前应进行试运转。 ⑷人员::开工前进行分岗、分班、进行施工工艺交底答疑;明确工作要求及标准,说明施工重点、难点及应急措施,并应对参与施工的管理人员进行安全及文明生产教育。⑸材料:订购材料,进场检查验收,不合格产品不许购用。 4.3施工工艺流程

4.4 管井降水主要施工方法及技术要求 4.4.1 钻进成井 ⑴ 放线定点:根据甲方给定的基坑开挖边线,用仪器及钢尺进行放线定井点位置,定完后应会同甲方或监理代表签字认可后,方可进行施工,井孔中心定位误差不得大于5cm。 ⑵ 钻机就位:钻机安装要求平稳牢固,钻机就位,偏差不许大于 5cm。 ⑶ 泥浆护壁:开钻前应准备一定量的红粘土,配制泥浆指标应控制其比重为0.8~1.0,粘度为19~21S,含砂量不大于4%,胶体率应达90~95%。 ⑷ 钻井:经专业工程师与甲方或监理代表现场检查合格后,方可开钻,施工中应保持井内应有水头压浆高度,防止井壁坍塌。 ⑸ 管井钻进达到设计深度以后,需报请专业工程师进行检查,验井深度抵达成井要求深度后冲捞沉渣,复验井深及钻头直径,合格签字后,方可进行清井下井管及滤管。 ⑹ 下井管及带孔眼或缝状包网水泥滤管时应检查接井管部位有无缺损裂纹,严禁“带伤”井管下入井内,下管时必须每隔5m下入导正扶中器,确保井管居中不歪斜,接管部位应包扎纱网或尼龙布,防止泥砂等进入井内,下管后应立即进行填砾,以防由于拖延填砾产生井内缩径,填不进砾料,造成引渗效果差的废井。 ⑺ 砾料应保证规格质量,含泥粉的砾料必须过筛后再用,填砾时应沿井壁与井管间缓慢投入,严禁车装冲填,以免冲撞井管产生歪斜及中间堵

工程量计算例题(DOC)

【例】某工程采用预拌混凝土,已知C20混凝土独立基础85m3,独立基础模板接触面积179.1m2,用工料单价法计算工程造价(按三类工程取费,市区计取税金,预拌混凝土市场价330元3),其他可竞争措施项目仅计取“生产工具用具使用费”、“检验试验配合费”。 工程预算表 取费程序表 例题解析:1.其他可竞争措施项目中的其他11项费用按建设工程项目的实体项目和可竞争措施项目(11项费用除外)中人工费与机械费之和乘以相应系数计算。 2.企业管理费、规费、利润的计费基数是相同的,即按直接费中的人工费与机械费之和乘以相应费率,其中直接费包括直接工程费和措施费。 3.价款调整包括人、材、机的价差调整,价款调整不参与取企业管理费、规费和利润。 4.注意2012年新定额安全生产、文明施工费计算的变化。 【例】如图,计算人工挖土方、钎探、回填土、余土外运、砖基础工程量。 (土质类别为二类,垫层C15砼,室外地坪-0.300)

【例】如下图所示尺寸,求混凝土带型基础模板和混凝土的工程造价。 备注:按三类工程取费,企业管理费费率为17%,利润费率为10%,规费费率为25%,税金税率为3.48%,安全生产、文明施工费为4.25%。 解:(1)带型基础外侧模板 S 1 =[(4.5×2+0.5×2)×2+(4.8+0.5×2)×2]×0.3=9.48 m2 (2) 带型基础内侧模板 S 2 =[(4.5-0.5×2)×2+(4.8-0.5×2)×2]×0.3×2=8.76 m2 带型基础模板工程量 S 1+ S 2 =18.24 m2(模板工程量3分) (3)带形基础混凝土 外墙 1×0.3×(4.5+4.5+4.8)×2=8.28 m3 (混凝土工程量2分)内墙 1×0.3×(4.8-1)=1.14 m3 (混凝土工程量2分) 合计:9.42 m3

管井降水计算书

1、基坑总涌水量计算: 基坑降水示意图 根据基坑边界条件选用以下公式计算: Q=πk(2H-S d )S d /ln(1+R/r o )=π5(2×ln(1+= Q为基坑涌水量; k为渗透系数(m/d); H为含水层厚度(m); R为降水井影响半径(m); r 为基坑等效半径(m); S d 为基坑水位降深(m); S d =(D-d w )+S D为基坑开挖深度(m); d w 为地下静水位埋深(m); S为基坑中心处水位与基坑设计开挖面的距离(m); 通过以上计算可得基坑总涌水量为。 2、降水井数量确定: 单井出水量计算: q 0=120πr s lk1/3 降水井数量计算: n=q q 为单井出水能力(m3/d); r s 为过滤器半径(m); l为过滤器进水部分长度(m); k为含水层渗透系数(m/d)。 通过计算得井点管数量为4个。 3、过滤器长度计算 群井抽水时,各井点单井过滤器进水长度按下式验算: y >l y 0=[k×(lgR -lg(nr n-1r w )/n]1/2

l为过滤器进水长度; r 为基坑等效半径; r w 为管井半径; H为潜水含水层厚度; R 为基坑等效半径与降水井影响半径之和; R 0=R+r R为降水井影响半径; 通过以上计算,取过滤器长度为。 4、基坑中心水位降深计算: S 1=H-(H2-q/(πk)×Σln(R/(2r sin((2j-1)π/2n)))) S 1 为基坑中心处地下水位降深; q=πk(2H-S w ) S w /(ln(R/r w )+Σ(ln(R/(2r sin(jπ/n))))) q为按干扰井群计算的降水井单井流量(m3/d),按下式计算: S w = H 1 +s-d w +r o ×i =+根据计算得S 1 = >= S d =,故该井点布置方案满足施工降水 要求!

轻型井点降水设计计算例题

轻型井点系统设计计算示例 某多层厂房地下室呈凹字形,其平面尺寸如图1-76所示,基础底面标高为-4.5m,电梯井部分深达-5.30m,天然地面标高为-0.40m。根据地质勘测资料:标高在-1.40m 以上为亚粘土,再往下为粉砂土,地下水静水位在-1.80m处,土的渗透系数为5m/d。基坑边坡采用1∶0.5,为施工方便,坑底开挖平面尺寸比设计平面尺寸每边放出0.5m。 图1—76 某地下室现场 根据本工程基坑的平面形状和深度,轻型井点选用环形布置并在凹字形中间插入一排井点,如图1-77所示。 井点管的直径选用50mm,布置时距坑壁取1.0m,其所需的埋置深度(从地面算至滤管顶部)用(公式1-54)计算,则至少为: (4.5-0.4)+0.5+17.5×0.1=6.34m 由于考虑轻型井点降水深度一般以6m为宜及现有井点管标准长度为6m,因此将总管 埋设在地面下0.6m处即先挖0.6m深的沟槽,然后在槽底铺设总管。此时井点管所需的长度: 6.34-0.6+0.20(露出槽底高度)=5.91(m),(小于6.0,可满足要求)。 电梯井处的基坑深度比其他部分要深0.8m ,所以该处井点管长度改用7m。 井点管的间距,考虑粉砂土的渗透系数不大,初步选用1.6m。

总管的直径选用127mm ,长度根据图布置方式算得: 2(67.6+2×1.0)+(46.4+2×1.0)+(46.4-2×1.8-2×1.0) = 276.2 (m) 抽水设备根据总管长度选用三套,其布置位置与总管的划分范围如图所示。 图1—36 某工程基坑轻型井点系统布置 a )平面布置图(1、2、3—三套抽水设备编号、同时表示挖土时情况); b )高程布置图 现将以上初步布置核算如下。 1)涌水量计算 按无压不完整井考虑,由于凹字形中间插有一排井点,分为两半计算:含水层的有效深度H0按表1-9求出: ,所以m H (99.10)00.194.4(85.10=+=) 基坑中心的降水深度)(2.35.08.15.4m s =+-= 抽水影响半径R 按公式(1-58)求出: )(25.46599.102.395.1m R =??= 83.00 .194.494.41'/=+=+s s

管井降水计算(潜水非完整井)

一、场地岩土工程情况 本工程位于包头市友谊大街以南,劳动路以东,万青路以西,在地貌上属于大青山山前冲洪积地貌。本场地地层结构和岩性如下: 第①层杂填土,以粉土为主,混少量建筑垃圾和生活垃圾,呈稍湿、松散状态。该层厚度在0.3~3.2m之间,层底标高在1052.62~1057.02m之间。 第②层粉砂,黄褐色,颗粒矿物成分为长石、石英石,均粒结构,天然状态下呈稍湿,稍密状态。该层厚度在0.3~4.2m之间,层底标高在1052.02~1054.06m之间。 第③层粗砂,黄褐色,颗粒矿物成分为长石、石英石,颗粒级配较好,混少量砾,局部分布有粉质粘士薄夹层。天然状态下呈稍湿~饱和,中密状态。该层厚度在3.4~6.6m之间,渗透系数为K=1.66×10-2cm/s。 第③1层细砂,黄褐色,颗粒矿物成分为长石、石英质,均粒结构,天然状态下呈稍湿~饱和,中密状态。该层以夹层或透镜体形式存在于第3层粗砂层中,该层厚度在0.4~2.2m之间,层底标高在1047.91~1050.61m之间,渗透系数为K=5.64×10-3cm/s。 第④层粉砂,黄绿色,颗粒矿物成分为长石、石英质,均粒结构,局部分布有粉土、粉质粘土薄夹层。天然状态下呈饱和,中密状态。该层厚度在4.3~9.4m之间,层底标高1039.21~1041.58m之间,渗透系数为K=2.24×10-3cm/s。 第⑤层粉质粘土,灰黑色,含云母,有光泽,略带腥臭味,含有机质,有机质含量为1.3~6.1%,无摇振反应,切口光滑,干强度中等,韧性中等。天然状态下呈可塑~软塑状态。该层中分布有粉砂、细砂及粉土薄夹层,局部含有薄层钙质胶结层。该层厚度在31.2~33.4m之间,层底标高在1006.57~1009.65m 之间,渗透系数为K=3.89×10-6cm/s。 地下水埋藏于自然地表下5.2~6.5m,标高在1049.64~1050.73m之间,属潜水。由于临近场地正在进行降水施工,水位受其影响,现场水位偏低,根据该区域的水文地质资料,该地下水年幅度变化在1.0~1.5M之间。

管井降水计算书

1、基坑总涌水量计算: 根据基坑边界条件选用以下公式计算: Q=πk(2H-S d)S d/ln(1+R/r o)=π5(2×ln(1+= Q为基坑涌水量; k为渗透系数(m/d); H为含水层厚度(m); R为降水井影响半径(m); r0为基坑等效半径(m); S d为基坑水位降深(m); S d=(D-d w)+S D为基坑开挖深度(m); d w为地下静水位埋深(m); S为基坑中心处水位与基坑设计开挖面的距离(m); 通过以上计算可得基坑总涌水量为。 2、降水井数量确定: 单井出水量计算: q0=120πr s lk1/3 降水井数量计算: n=q0 q0为单井出水能力(m3/d); r s为过滤器半径(m); l为过滤器进水部分长度(m); k为含水层渗透系数(m/d)。 通过计算得井点管数量为4个。 3、过滤器长度计算 群井抽水时,各井点单井过滤器进水长度按下式验算: y0>l y0=[k×(lgR0-lg(nr0n-1r w)/n]1/2

l为过滤器进水长度; r0为基坑等效半径; r w为管井半径; H为潜水含水层厚度; R0为基坑等效半径与降水井影响半径之和; R0=R+r0 R为降水井影响半径; 通过以上计算,取过滤器长度为。 4、基坑中心水位降深计算: S1=H-(H2-q/(πk)×Σln(R/(2r0sin((2j-1)π/2n)))) S1为基坑中心处地下水位降深; q=πk(2H-S w) S w /(ln(R/r w)+Σ(ln(R/(2r0 sin(jπ/n))))) q为按干扰井群计算的降水井单井流量(m3/d),按下式计算: S w= H1+s-d w +r o×i =+根据计算得S1= >= S d=,故该井点布置方案满足施工降水要求!

承压-潜水非完整井计算公式

承压-潜水非完整井计 算公式 -CAL-FENGHAI.-(YICAI)-Company One1

基坑降水、土方、支护工程 降水设计计算书 一、设计计算依据 1、岩土工程勘察报告; 2、《建筑基坑支护技术规程》JGJ120-99; 3、其它相关资料。 二、计算过程 本次计算采取如下程序: 本工程采用承压-潜水非完整井计算基坑涌水量。

公式一: ) R (1lg h -M)M -2H 366.10 2 r k Q +=( 式中:Q ——基坑涌水量(m 3/d) k ——渗透系数(m/d),10 S ——水位降深(m), R ——引用影响半径(m),R=kH s 2=230m r 0——基坑半径(m),F F r 564.0/0==π= F ——基坑面积(m 2),本工程暂取34358m 2 l ——过滤器有效工作部分长度 H ——初始静止水位至井底的距离 h ——基坑底至井底的距离 M ——承压含水层厚度(m), 计算得:Q=d 根据我公司多年施工经验,根据规范所计算涌水量往往比实际小很多,本工程根据经验,按两倍理论量计算涌水量,即涌水量为:×2=5940 m 3/d

公式二: 3 120q k l r s π= 式中:q ——管井的出水量(m 3/d) s r ——过滤器半径(m ) l ——过滤器浸部分段长度(m), k ——含水层渗透系数(m/d),380 计算得:q =182.40m 3/d 公式三: q Q n 1.1= 计算得井数为:n ≈36 公式四: T y Z ir c h L +++++=0 式中:L ——井深(m) h ——基坑深度(m), c ——降水水面距基坑底的深度(m), i ——水力坡度,取 Z ——降水期间地下水位变幅(m),

管井降水计算方案说明

环湖北路建设工程施工二标段 基坑降水

一、场地岩土工程情况 第①层杂填土,含有粉土、砖块、炉渣,碎石、植物根等。结构松散,成 分杂乱、不均匀。K2+480-K2+840段位于鱼塘与菜地之间。层底标高介于776.76 —777.74m。 第②层粉土,褐灰色。含云母、煤屑、氧化铁铝、混有砂粒等。湿,中密。无光泽反应。具有中等压缩性。该层含水量平均值为24.7%,该层天然孔隙比平均值为0.739.层底标高介于769.36 —774.44m之间。 第③层中砂,褐灰色,饱和,松散,含石英、长石、云母等。含土量较小。颗粒级配较差,磨圆度较差。揭露层厚 1.5 —8.4m。 第④层粉质粘土,褐灰色。含云母、煤屑、氧化铁铝等。软塑~可塑。该层揭露层厚介于2.7~9m之间。 K2+850-K3+550.794地下水埋藏于自然地表下2.4?4.0m,标高在774.24 —774.86之间,属孔隙潜水。主要接受大气降水、沿线池塘、水渠浅层补给及晋阳湖深层补给。

本工程地质条件主要为粉土、砂土。现场基坑深度为8.5m,根据该场地附近地区的已有降水经验,拟采用管井井点降水方案降低地下水位,即在沿基坑纵向两侧布设一定数量的管井,由管井统一将地下水抽出,从而满足基础施工对降水的要求。 三、降水模型选择及设计计算 1、降水模型的选择 假定:由于第④层粉质粘土的渗透系数远小于其它土层的渗透系数,近似将第④层视为不透水层。 (1)含水层厚度:日=第2层土层厚度+第3层土层厚度=11.5m, (2)管井深度:依据JGJ/T111-98《建筑与市政降水工程技术规范》,井点

管深度为:H W=H W+H W+H W+H W+H W+H W6 式中:H—降水井深度 H W—基坑深度,取8.5m H W—降水水位距离基坑底要求的深度,取0.5m H W—水力坡度作用基坑中心所需增加的深度。由于基坑等效半径r=4m,按照降水井分布周围的水力坡度i为1/10?1/15 ,如降水井需影响到基坑中心, H W—降水期间地下水位幅度变化。H W4取0m H W—降水井过滤器的工作长度,取2m H W—沉砂管长度,取1.5m 代入上式:H W=13m< H+地下水位埋深=11.4+3.6=15m 降水模型按照条形基坑潜水非完整井进行设计计算 2、降水设计计算 降水管井采用直径400mm勺无砂混凝土管,布置在基坑上口 1.0m处。

井点降水工程量怎么计算

井点降水工程量怎么计算? 井点降水工程量的计算依据是你的降水施工组织设计。在施工组织设计中,应明确井点降水的方式、井点管的布置位置及数量、井点管深度、使用天数等。若井管间距施工组织设计没有规定时,可按轻型井点管距,喷射井点管距2-3m确定。 1、制作工程量。 电渗井点阳极制作工程量以“根”计算。 其他井点管,已在安装和使用综合基价中以摊销量或一次使用量计入,不另计算制作费用。 2、安装工程量。 安装工程量,除水泥管井井点按井深以“延长米”计算外,其余均按“根”计算工程量。 3、拆除工程量。 轻型井点、喷射井点、大口径井、电渗井点阳极、水平井点等的拆除工程量,均以“根”计算。 水泥管井井点管费用已在安装综合基价中计入,不考虑拆除。 4、使用工程量。 使用工程量,按套数乘以使用天数,以“套×天”计算。 (1)井点套的确定:轻型井点,以50根为一套;喷射井点及电渗井点阳

极,以30根为一套;大口径井点,以45根为一套;水平井点,以10根为一套;水泥管井井点,以每一管井(即一个“井点”)为一套。总根数不足一套时,可按一套计算。 (2)井点管使用天数的确定:使用天以每24h为一天。使用天数应按施工组织设计规定的使用天数计算。 依据施工组织设计、办理好经济签证、按计算规则计算工程量。 如何区别轻型井点与深井井点首先判断是否采用轻型井点依据两个参数,一是土的渗透系数是否在d,二是降低水位深度是否在3-6米之间或根据井点级数确定;一般采用离心泵与潜水泵。 深井井点具有排水量大,降水深(15~50m)、不受土质限制等特点,适用于地下水丰富,基坑深(>10m),基坑占地面积大的工程地下降水;流砂地区和重复挖方地区使用这种方法,效果更佳。一般采用电动机在上面的深井泵及深井潜水泵。

相关文档
最新文档