高维数据相似性度量方法研究_谢明霞

高维数据相似性度量方法研究_谢明霞
高维数据相似性度量方法研究_谢明霞

基于数据挖掘的符号序列聚类相似度量模型

—178 — 基于数据挖掘的符号序列聚类相似度量模型 郑宏珍,初佃辉,战德臣,徐晓飞 (哈尔滨工业大学智能计算中心,264209) 摘 要:为了从消费者偏好序列中发现市场细分结构,采用数据挖掘领域中的符号序列聚类方法,提出一种符号序列聚类的研究方法和框架,给出RSM 相似性度量模型。调整RSM 模型参数,使得RSM 可以变为与编辑距离、海明距离等价的相似性度量。通过RSM 与其他序列相似性度量的比较,表明RSM 具有更强的表达相似性概念的能力。由于RSM 能够表达不同的相似性概念,从而使之能适用于不同的应用环境,并在其基础上提出自组织特征映射退火符号聚类模型,使得从消费者偏好进行市场细分结构研究的研究途径在实际应用中得以实现。 关键词:符号序列聚类;数据挖掘;相似性模型 Symbolic Sequence Clustering Regular Similarity Model Based on Data Mining ZHENG Hong-zhen, CHU Dian-hui, ZHAN De-chen, XU Xiao-fei (Intelligent Computing Center, Harbin Institute of Technology, Harbin 264209) 【Abstract 】From a consumer point of the sequence of preference, data mining is used in the field of symbolic sequence clustering methods to detect market segmentation structure. This paper proposes a symbolic sequence clustering methodology and framework, gives the similarity metric RSM model. By adjusting RSM model, parameters can be changed into RSM and edit distance, Hamming distance equivalent to the similarity metric. RSM is compared with other sequence similarity metric, and is more similar to the expression of the concept of capacity. As to express different similarity, the concept of RSM can be applied to different applications environment. Based on the SOM annealing symbol clustering model, the consumer preference for market segmentation can be studied in the structure, which means it is realized in practical application. 【Key words 】symbolic sequence clustering; data mining; similarity model 计 算 机 工 程Computer Engineering 第35卷 第1期 V ol.35 No.1 2009年1月 January 2009 ·人工智能及识别技术·文章编号:1000—3428(2009)01—0178—02文献标识码:A 中图分类号:TP391 1 概述 在经济全球化的环境下,面对瞬息万变的市场和技术发展,企业要想在国内外市场竞争中立于不败之地,必须对客户和市场需求做出快速响应。目前,通过市场调研公司或企业自身的信息系统,收集来自市场和消费者的数据相对容易,而如何理解数据反映的市场细分结构和需求规律却是相当困难的。 为解决这一问题,许多研究者选择消费者的职业、收入、年龄、性别等特征数据作为细分变量,利用统计学传统聚类方法得到市场细分结构[1-2]。在实际应用中,不同的细分变量会导致不同的市场细分结果[3]。 为此,本文从用户偏好序列数据对市场进行细分。通过对符号序列数据相似性的研究,给出一个可形式化的RSM 相似性度量模型和算法概要。该度量模型考虑了2对象之间相似与相异2个方面的因素,通过参数的调整,可以根据问题的具体性质表达不同的相似性概念。并在此基础上,将在数值型数据领域表现良好的SOM 神经网络引入到符号序列数据的聚类问题上,给特征符号序列的机器自动识别提供了可能性。 2 符号序列聚类问题 序列聚类问题作为发现知识的一种重要的探索性技术,受到数据挖掘与知识发现研究领域的极大重视。企业决策者在进行市场和产品相关战略时,迫切需要某些技术手段来理解序列数据,这也正是本文研究的序列聚类问题的工程背景。 下面给出符号序列的相关定义。 定义1 设12{,,,}n A a a a ="为有限符号表,A 中的l 个符号12,,,l a a a "构成的有序集称为符号序列,记为s = 12{,,,}l a a a ",并称l 是s 的长度,记为s 。A 上所有有限长 度符号序列集合记为A *。例如:符号表{a , b , c , d , e , f , g },则, 是符号序列。 定义2 设12{,,,,,}t n P S S S S ="",S t 是A *上的某个符号序列。符号序列聚类是指寻找P 上的划分P 1, P 2,…, P k ,使属于同一划分的符号序列间的相似性尽量大,而属于不同划分的符号序列间相似性尽量小。 3 符号序列的正则相似度量模型 相似性度量往往与问题的应用背景具有紧密联系,并影响符号序列聚类结果。为此建立符号序列形式化的相似性度量模型,并在此基础上研究符号序列的聚类问题。 3.1 正则相似度量模型 下面给出形式化的相似度量模型——正则相似度量模型 基金项目:国家“863”计划基金资助项目“CIMS 模型驱动的智能化软构件与软件生成技术”(2006AA01Z167) 作者简介:郑宏珍(1967-),女,副教授,主研方向:数据挖掘,智能计算;初佃辉,副教授、硕士;战德臣、徐晓飞,教授、博士 收稿日期:2008-06-24 E-mail :hithongzhen@https://www.360docs.net/doc/6716753123.html,

智慧树知到大数据工具应用章节测试答案

第一章 1、2011年麦肯锡研究院提出的大数据定义是:大数据是指其大小超出了常规数据库工具获取、储存、管理和()能力的数据集。 A:计算 B:访问 C:应用 D:分析 答案: 分析 2、用4V来概括大数据的特点的话,一般是指:Value、Velocity、Volume和()。 A:Variety B:Vainly C:Vagary D:Valley 答案: Variety 3、大数据分析四个方面的工作主要是:数据分类、()、关联规则挖掘和时间序列预测。 A:数据统计 B:数据计算 C:数据聚类 D:数据清洗 答案: 数据聚类 4、新浪和京东联合推出的大数据商品推荐,是由京东盲目推送到当前浏览新浪网站的用户的页面上的。 A:对

B:错 答案: 错 5、目前的大数据处理技术只能处理结构化数据。 A:对 B:错 答案: 错 第二章 1、我们常用的微软Office套件中的Access数据库软件的数据库文件格式后缀名是()。A:mdf B:mdb C:dbf D:xls : mdb 答案 、大多数日志文件的后缀名是(。)2 A:txt B:csv C:xml D:log : log 答案 。 weka3、本课程重点介绍的软件的专有文件格式是() A:MongoDB B:ARFF C:value D:key map

4、数据清洗工作的目的主要是要解决数据的完整性、唯一性、合法性和()。 A:专业性 B:排他性 C:一致性 D:共享性 答案: 一致性 5、八爪鱼软件的“自定义采集”工作方式下,需要在软件里输入一个()来作为采集的目标。A:电话号码 B:关键词 C:网页地址 D:用户名 答案: 网页地址 6、八爪鱼软件的采集规则可以通过文件的形式来导入或者导出,这种文件的后缀名是()。A:otd B:jpg C:png D:gif 答案: otd 可以通过“数据有效性”按钮操作来规范数据输入的范围。Excel、7. A:对 B:错

数据挖掘试卷一

数据挖掘整理(熊熊整理-----献给梦中的天涯) 单选题 1.下面哪种分类方法是属于神经网络学习算法?() A. 判定树归纳 B. 贝叶斯分类 C. 后向传播分类 D. 基于案例的推理 2.置信度(confidence)是衡量兴趣度度量( A )的指标。 A、简洁性 B、确定性 C.、实用性 D、新颖性 3.用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 4.数据归约的目的是() A、填补数据种的空缺值 B、集成多个数据源的数据 C、得到数据集的压缩表示 D、规范化数据 5.下面哪种数据预处理技术可以用来平滑数据,消除数据噪声? A.数据清理 B.数据集成 C.数据变换 D.数据归约 6.假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内?(B) A 第一个 B 第二个 C 第三个 D 第四个 7.下面的数据操作中,()操作不是多维数据模型上的OLAP操作。 A、上卷(roll-up) B、选择(select) C、切片(slice) D、转轴(pivot) 8.关于OLAP和OLTP的区别描述,不正确的是: (C) A. OLAP主要是关于如何理解聚集的大量不同的数据.它与OTAP应用程序不同. B. 与OLAP应用程序不同,OLTP应用程序包含大量相对简单的事务. C. OLAP的特点在于事务量大,但事务内容比较简单且重复率高. D. OLAP是以数据仓库为基础的,但其最终数据来源与OLTP一样均来自底层的数据库系统,两者面对的用户是相同的 9.下列哪个描述是正确的?() A、分类和聚类都是有指导的学习 B、分类和聚类都是无指导的学习

16种常用的大数据分析报告方法汇总情况

一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;

C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、在信度;每个量表是否测量到单一的概念,同时组成两表的在体项一致性如何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。

相似性和相异性的度量

相似性和相异性的度量 相似性和相异性是重要的概念,因为它们被许多数据挖掘技术所使用,如聚类、最近邻分类和异常检测等。在许多情况下,一旦计算出相似性或相异性,就不再需要原始数据了。这种方法可以看作将数据变换到相似性(相异性)空间,然后进行分析。 首先,我们讨论基本要素--相似性和相异性的高层定义,并讨论它们之间的联系。为方便起见,我们使用术语邻近度(proximity)表示相似性或相异性。由于两个对象之间的邻近度是两个对象对应属性之间的邻近度的函数,因此我们首先介绍如何度量仅包含一个简单属性的对象之间的邻近度,然后考虑具有多个属性的对象的邻近度度量。这包括相关和欧几里得距离度量,以及Jaccard和余弦相似性度量。前二者适用于时间序列这样的稠密数据或二维点,后二者适用于像文档这样的稀疏数据。接下来,我们考虑与邻近度度量相关的若干重要问题。本节最后简略讨论如何选择正确的邻近度度量。 1)基础 1. 定义 两个对象之间的相似度(similarity)的非正式定义是这两个对象相似程度的数值度量。因而,两个对象越相似,它们的相似度就越高。通常,相似度是非负的,并常常在0(不相似)和1(完全相似)之间取值。 两个对象之间的相异度(dissimilarity)是这两个对象差异程度的数值度量。对象越类似,它们的相异度就越低。通常,术语距离(distance)用作相异度的同义词,正如我们将介绍的,距离常常用来表示特定类型的相异度。有时,相异度在区间[0, 1]中取值,但是相异度在0和之间取值也很常见。 2. 变换 通常使用变换把相似度转换成相异度或相反,或者把邻近度变换到一个特定区间,如[0, 1]。例如,我们可能有相似度,其值域从1到10,但是我们打算使用的特定算法或软件包只能处理相异度,或只能处理[0, 1]区间的相似度。之所以在这里讨论这些问题,是因为在稍后讨论邻近度时,我们将使用这种变换。此外,这些问题相对独立于特定的邻近度度量。 通常,邻近度度量(特别是相似度)被定义为或变换到区间[0, 1]中的值。这样做的动机是使用一种适当的尺度,由邻近度的值表明两个对象之间的相似(或相异)程度。这种变换通常是比较直截了当的。例如,如果对象之间的相似度在1(一点也不相似)和10(完全相似)之间变化,则我们可以使用如下变换将它变换到[0, 1]区间:s' = (s-1)/9,其中s和s'分别是相似度的原值和新值。一般来说,相似度到[0, 1]区间的变换由如下表达式给出:s'=(s-min_s) / (max_s - min_s),其中max_s和min_s分别是相似度的最大

大数据时代定量与定性研究方法的对立与统合

大数据时代定量与定性研究方法的对立与统合 【摘要】:中国社会科学研究历来注重定性分析而忽视定量分析,大数据时代的到来将从根本上改变这一传统。然而,学术界目前在定量与定性分析孰轻孰重问题上仍然莫衷一是。面对信息量的快速增长和数据结构的差异化,社会科学研究方法也必须在对立与统合中实现新的平衡。无论定量与定性方法以何种形式展现,它们始终都属于工具主义范畴。从工具主义走向建构主义和实证主义是学术研究者们在大数据时代的首要任务。研究方法是开启新的思想认知的钥匙。 【关键词】大数据定量定性 科学是人类社会发展的动力之源。无论是自然科学还是社会科学,它们共同构成了群体认知的智慧。纵观东西方自然科学和社会科学发展史,我们会发现它们的发展并不均衡。文艺复兴和思想启蒙一直被看做是西方世界文明崛起的标志,从哥白尼与伽利略时代的日心说到牛顿三定律,再到三次工业革命,自然科学技术的发展速度总体上要领先于社会科学,但两者间的差距并不明显。相比之下,东方世界的科学发展脉络则更有趣。很多人认为在1860 年洋务运动兴起之前,中国不存在真正意义上的自然科学,或者说尚未形成系统化、理论化的科学体系。换言之,社会科学的繁荣遮住了自然科学的光芒。《论语》《大学》和《中庸》等似乎更多体现了古代哲学、文学和史学等领域的兴盛。有西方学者认为,中国人更擅长于形象思维,即善于运用具体的场景或情节思考问题,其流传已久的四大名著无不是以具体

的故事情节和思想内涵见长,而在抽象思维方面则劣势明显。事实也的确如此,我们在自然科学的理性探索方面确实建树不多,而在社会科学方面也普遍缺少深层次的思辩精神。对此,笔者认为上述观点表面上是在阐述东西方科学发展失衡的原因,但却没有抓住问题的本质——社会科学研究方法的滞后,尤其是在定量方法和定性方法的运用方面。这也是困扰中国当代社会科学发展的现实问题。大数据时代下,中国社会科学将面临前所未有的信息超载挑战,如何能够在大量的抽象数据中发现基本规律和进行规范与实证分析是学术界必须正视的问题。鉴于此,笔者对大数据时代下社会科学方法的对立与统合进行了深入的思考,其研究视角是基于定量方法和定性方法的差异性而展开。 一、相关概念梳理 “大数据”的英文表述是“big data”,中国电子科学研究院 学报对它的描述是4V+1C,即多样化(Variety)、海量(Volume)、快速(Velocity)、灵活(Vitality)和复杂(Complexity)的非结构化和半结构化数据。“大数据”一词首次进入公众视野是在2011 年5月,EMC 在美国拉斯维加斯第11 届EMC World大会以“云计算相遇大数据”为主题着重展现当今世界两个最重要的技术趋势。此后,大数据概念陆续进入了麦肯锡全球研究院报告《大数据:创新、竞争和生产力的下一个新领域》、2012 年达沃斯世界经济论坛报告《大数据,大影响》和2012 年3 月奥巴马政府提出的《大数据研究和发 展倡议》等文件中。目前,我国尚未正式提出这一概念,但在许多领

数据挖掘常用的方法

数据挖掘常用的方法 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪 声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知 识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统 计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正 确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可 以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖 掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。 可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情 况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的 研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的 回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。 (3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的 相似性很小,跨类的数据关联性很低。 (4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶 段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各 银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信息来改善自身的营销。 (5)神经网络方法。神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的以及那些以模糊、不完整、不严密的知 识或数据为特征的处理问题,它的这一特点十分适合解决数据挖掘的问题。典型的神 经网络模型主要分为三大类:第一类是以用于分类预测和模式识别的前馈式神经网络 模型,其主要代表为函数型网络、感知机;第二类是用于联想记忆和优化算法的反馈式神经网络模型,以Hopfield 的离散模型和连续模型为代表。第三类是用于聚类的自组

全面解析数据挖掘的分类及各种分析方法

全面解析数据挖掘的分类及各种分析方法 1.数据挖掘能做以下六种不同事情(分析方法): ?分类(Classification) ?估值(Estimation) ?预言(Prediction) ?相关性分组或关联规则(Affinitygroupingorassociationrules) ?聚集(Clustering) ?描述和可视化(DescriptionandVisualization) ?复杂数据类型挖掘(Text,Web,图形图像,视频,音频等) 2.数据挖掘分类 以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘?直接数据挖掘 目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。 ?间接数据挖掘 目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。 ?分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘 3.各种分析方法的简介 ?分类(Classification) 首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。 例子: a.信用卡申请者,分类为低、中、高风险 b.分配客户到预先定义的客户分片 注意:类的个数是确定的,预先定义好的 ?估值(Estimation) 估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类的类别是确定数目的,估值的量是不确定的。 例子: a.根据购买模式,估计一个家庭的孩子个数 b.根据购买模式,估计一个家庭的收入 c.估计realestate的价值

大数据考试题含答案

1多选传统大数据质量清洗的特点有: A. 确定性 B. 强类型性 C. 协调式的 D. 非确定性 2 多选以下选项中属于数据的作用的是()。 A. 沟通 B. 验证假设 C. 建立信心 D. 欣赏 3 多选数据建立信心的作用需具备的条件包括()。 A. 可靠数据源 B. 多方的数据源 C. 合适的数据分析 D. 信得过的第三方单位 4 多选数据只有在与()的交互中才能发挥作用。 A. 人 B. 物 C. 消费者 D. 企业 5 单选大数据可能带来(),但未必能够带来()。 A. 精确度;准确度 B. 准确度;精确度 C. 精确度;多样性 D. 多样性;准确度

6 多选大数据的定义是: A. 指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合 B. 任何超过了一台计算机处理能力的数据量 C. 技术 D. 商业 7 多选大数据五大类应用方向是: A. 查询 B. 触达 C. 统计 D. 预警 E. 预测 8 多选以下哪些指标是衡量大数据应用成功的标准? A. 成本更低 B. 质量更高 C. 速度更快 D. 风险更低 9 多选大数据有哪些价值? A. 用户身份识别 B. 描述价值 C. 实时价值 D. 预测价值 E. 生产数据的价值 10 多选大数据的预测价值体现在: A. 预测用户的偏好、流失

B. 预测热卖品及交易额 C. 预测经营趋势 D. 评价 11 单选什么是大数据使用的最可靠方法? A. 大数据源 B. 样本数据源 C. 规模大 D. 大数据与样本数据结合 12 多选大数据是描述()所发生的行为。 A. 未来 B. 现在 C. 过去 D. 实时 13 多选传统研究中数据采集的方法包括: A. 网络监测 B. 电话访谈 C. 对面访谈 D. 线上互动 14 单选大数据整合要保证各个数据源之间的()。 A. 一致性、协调性 B. 差异性、协调性 C. 一致性、差异性 D. 一致性、相容性 15 单选分类变量使用()建立预测模型。 A. 决策树

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

距离和相似度度量

在数据分析和数据挖掘的过程中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如K最近邻(KNN)和K均值(K-Means)。当然衡量个体差异的方法有很多,最近查阅了相关的资料,这里整理罗列下。 为了方便下面的解释和举例,先设定我们要比较X个体和Y个体间的差异,它们都包含了N个维的特征,即X=(x1, x2, x3, … x n),Y=(y1, y2, y3, … y n)。下面来看看主要可以用哪些方法来衡量两者的差异,主要分为距离度量和相似度度量。 距离度量 距离度量(Distance)用于衡量个体在空间上存在的距离,距离越远说明个体间的差异越大。 欧几里得距离(Euclidean Distance) 欧氏距离是最常见的距离度量,衡量的是多维空间中各个点之间的绝对距离。公式如下: 因为计算是基于各维度特征的绝对数值,所以欧氏度量需要保证各维度指标在相同的刻度级别,比如对身高(cm)和体重(kg)两个单位不同的指标使用欧式距离可能使结果失效。 明可夫斯基距离(Minkowski Distance) 明氏距离是欧氏距离的推广,是对多个距离度量公式的概括性的表述。公式如下: 这里的p值是一个变量,当p=2的时候就得到了上面的欧氏距离。 曼哈顿距离(Manhattan Distance) 曼哈顿距离来源于城市区块距离,是将多个维度上的距离进行求和后的结果,即当上面的明氏距离中p=1时得到的距离度量公式,如下:

切比雪夫距离(Chebyshev Distance) 切比雪夫距离起源于国际象棋中国王的走法,我们知道国际象棋国王每次只能往周围的8格中走一步,那么如果要从棋盘中A格(x1, y1)走到B格(x2, y2)最少需要走几步?扩展到多维空间,其实切比雪夫距离就是当p趋向于无穷大时的明氏距离: 其实上面的曼哈顿距离、欧氏距离和切比雪夫距离都是明可夫斯基距离在特殊条件下的应用。 马哈拉诺比斯距离(Mahalanobis Distance) 既然欧几里得距离无法忽略指标度量的差异,所以在使用欧氏距离之前需要对底层指标进行数据的标准化,而基于各指标维度进行标准化后再使用欧氏距离就衍生出来另外一个距离度量——马哈拉诺比斯距离(Mahalanobis Distance),简称马氏距离。 相似度度量 相似度度量(Similarity),即计算个体间的相似程度,与距离度量相反,相似度度量的值越小,说明个体间相似度越小,差异越大。 向量空间余弦相似度(Cosine Similarity) 余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间 差异的大小。相比距离度量,余弦相似度更加注重两个向量在方向上的差异,而非距离或长度上。公式如下: 皮尔森相关系数(Pearson Correlation Coefficient) 即相关分析中的相关系数r,分别对X和Y基于自身总体标准化后计算空间向量的余弦夹角。公式如下:

数据挖掘期末

(一)概述 为什么要数据挖掘(Data Mining)? 存在可以广泛使用的大量数据,并且迫切需要将数据转转换成有用的信息和知识 什么是数据挖掘? 数据挖掘(Data Mining)是指从大量数据中提取或“挖掘”知识。 对何种数据进行数据挖掘? 关系数据库、数据仓库、事务数据库 空间数据 超文本和多媒体数据 时间序列数据 流数据 (二)数据预处理 为什么要预处理数据? 为数据挖掘过程提供干净、准确、简洁的数据,提高数据挖掘的效率和准确性,是数据挖掘中非常重要的环节; 数据库和数据仓库中的原始数据可能存在以下问题: 定性数据需要数字化表示 不完整 含噪声 度量单位不同 维度高 数据的描述 度量数据的中心趋势:均值、加权均值、中位数、众数 度量数据的离散程度:全距、四分位数、方差、标准差 基本描述数据汇总的图形显示:直方图、散点图 度量数据的中心趋势 集中趋势:一组数据向其中心值靠拢的倾向和程度。 集中趋势测度:寻找数据水平的代表值或中心值。 常用的集中趋势的测度指标: 均值: 缺点:易受极端值的影响 中位数:对于不对称的数据,数据中心的一个较好度量是中位数 特点:对一组数据是唯一的。不受极端值的影响。 众数:一组数据中出现次数最多的变量值。 特点:不受极端值的影响。有的数据无众数或有多个众数。

度量数据的离散程度 反映各变量值远离其中心值的程度(离散程度),从另一个侧面说明了集中趋势测度值的代表程度。 常用指标: 全距(极差):全距也称极差,是一组数据的最大值与最小值之差。 R=最大值-最小值 组距分组数据可根据最高组上限-最低组下限计算。 受极端值的影响。 四分位距 (Inter-Quartilenge, IQR):等于上四分位数与下四分位数之差(q3-q1) 反映了中间50%数据的离散程度,数值越小说明中间的数据越集中。 不受极端值的影响。 可以用于衡量中位数的代表性。 四分位数: 把顺序排列的一组数据分割为四(若干相等)部分的分割点的数值。 分位数可以反映数据分布的相对位置(而不单单是中心位置)。 在实际应用中四分位数的计算方法并不统一(数据量大时这些方法差别不大)。对原始数据: SPSS中四分位数的位置为(n+1)/4, 2(n+1)/4, 3 (n+1)/4。 Excel中四分位数的位置分别为(n+3)/4, 2(n+1)/4,(3 n+1)/4。 如果四分位数的位置不是整数,则四分位数等于前后两个数的加权平均。 方差和标准差:方差是一组数据中各数值与其均值离差平方的平均数,标准差是方差正的平方根。 是反映定量数据离散程度的最常用的指标。 基本描述数据汇总的图形显示 直方图(Histogram):使人们能够看出这个数据的大体分布或“形状” 散点图 如何进行预处理 定性数据的数字化表示: 二值描述数据的数字化表示 例如:性别的取值为“男”和“女”,男→1,女→0 多值描述数据的数字化表示 例如:信誉度为“优”、“良”、“中”、“差” 第一种表示方法:优→1,良→2,中→3,差→4 第二种表示方法:

大数据复习提纲

1、线性判别函数的正负和数值大小的几何意义 正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。 2、感知器算法特点 收敛性:经过算法的有限次迭代运算后,求出了一个使所有样本都能正确分类的W,则称算法是收敛的。感知器算法是在模式类别线性可分条件下才是收敛的。 感知器算法只对线性可分样本有收敛的解,对非线性可分样本集会造成训练过程的震荡,这也是它的缺点。 3、聂曼-皮尔逊判决准则、最小最大判决准则等区别 聂曼-皮尔逊判决准则主要用于某一种判决错误较另一种判决错误更为重要情况; 最小最大判别准则主要用于先验概率未知的情况。 4、马式距离较之于欧式距离的优点 优点:马氏距离不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。缺点:夸大了变化微小的变量的作用。受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。尺度不变性;考虑了模式的分布 5、关联规则的经典算法有哪些 Apriori 算法;FP-tree;基于划分的算法 Apriori算法、GRI算法、Carma 6、分类的过程或步骤 答案一:ppt上的 1、模型构建(归纳) 通过对训练集合的归纳,建立分类模型。 2、预测应用(推论) 根据建立的分类模型,对测试集合进行测试。 答案二:老师版本的 训练样本的收集训练集的预处理、模型的选择、模型的训练(问老师后理解整理) 7、分类评价标准

1)正确率(accuracy)就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好; 2)错误率(error rate) 错误率则与正确率相反,描述被分类器错分的比例,error rate = (FP+FN)/(P+N),对某一个实例来说,分对与分错是互斥事件,所以 accuracy =1 - error rate; 3)灵敏度(sensitive) sensitive = TP/P,表示的是所有正例中被分对的比例,衡量了分类器对正例的识别能力; 4)特效度(specificity) specificity = TN/N,表示的是所有负例中被分对的比例,衡量了分类器对负例的识别能力;5)精度(precision) 精度是精确性的度量,表示被分为正例的示例中实际为正例的比例, precision=TP/(TP+FP);6)召回率(recall) 召回率是覆盖面的度量,度量有多个正例被分为正例, recall=TP/(TP+FN)=TP/P= sensitive,可以看到召回率与灵敏度是一样的。 正确率:它表示的预测结果正确比例。包括正例和负例。 精确度:它表示的是预测是正例的结果中,实际为正例的比例。 召回率:它表示的是实际为正例样本中,预测也为正例的比例。 综合指标:F1=2*精确率*召回率/精确率+召回率,它实际上精确度和召回率的一个综合指标。 8、支持向量机及常见的核函数选择 SVM的目的是寻找泛化能力好的决策函数,即由有限样本量的训练样本所得的决策函数,在对独立的测试样本做预测分类时,任然保证较小的误差。 本质:求解凸二次优化问题,能够保证所找到的极值解就是全局最优解。 支持向量机的标准:使两类样本到分类面的最短距离之和尽可能大 支持向量机基本思想:通过训练误差和类间宽度之间的权衡,得到一个最优超平面 支持向量机是利用分类间隔的思想进行训练的,它依赖于对数据的预处理,即在更高维的空间表达原始模式。通过适当的到一个足够高维的非线性映射,分别属于两类的原始数据就能够被一个超平面来分隔。 支持向量机的基本思想可以概括为:首先通过非线性变换将输入空间变换到一个高维空间,然后在这个新空间中求取最优线性分类面,而这种非线性变换是通过定义适当的内积函数来实现的。支持向量机求得的分类函数形式上类似于一个神经网络,其输出是若干中间层节点的线性组合,而每一个中间层节点对应于输入样本与一个支持向量的内积,因此也被叫做支持向量网络。

常用数据分析方法分类介绍(注明来源)

常用数据分析方法有那些 文章来源:ECP数据分析时间:2013/6/2813:35:06发布者:常用数据分析(关注:554) 标签: 本文包括: 常用数据分析方法:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析; 问卷调查常用数据分析方法:描述性统计分析、探索性因素分析、Cronbach’a 信度系数分析、结构方程模型分析(structural equations modeling)。 数据分析常用的图表方法:柏拉图(排列图)、直方图(Histogram)、散点图(scatter diagram)、鱼骨图(Ishikawa)、FMEA、点图、柱状图、雷达图、趋势图。 数据分析统计工具:SPSS、minitab、JMP。 常用数据分析方法: 1、聚类分析(Cluster Analysis) 聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。 2、因子分析(Factor Analysis) 因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。 因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。 3、相关分析(Correlation Analysis) 相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。 4、对应分析(Correspondence Analysis) 对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

高维数据分类方法研究

第21卷第10期 系 统 仿 真 学 报? V ol. 21 No. 10 2009年5月 Journal of System Simulation May, 2009 ? 2933 ? 高维数据分类方法研究 田 江, 顾 宏 (大连理工大学电子与信息工程学院,大连 116023) 摘 要:在对高维度数据进行模式分类时,能否有效进行降维是一个关键问题。提出了一种结合高斯过程潜变量模型(GPLVM)和支持向量机(SVM)的阶梯跳跃降维分类框架方法,能有效的降低样本数据维数,同时提高分类器性能。利用GPLVM 实现数据的平滑映射,对输入样本进行非线性降维后,根据SVM 的分类校验结果进行下一步降维迭代操作;计算新的阶梯维数,根据反馈动态调整降维输入数据。利用该方法对UCI 上的数据集进行分类,仿真结果验证了方法的有效性。 关键词:高斯过程潜变量模型;支持向量机;模式分类;阶梯跳跃降维 中图分类号:TP18 文献标识码:A 文章编号:1004-731X (2009) 10-2933-03 Study on Classification Methods for High-dimensional Data TIAN Jiang, GU Hong (School of Electronic and Information Engineering, Dalian University of Technology, Dalian 116023, China) Abstract: Effective dimensionality reduction is a key issue in high-dimensional data classification. A new ladder jumping dimensional reduction classification framework was proposed which combined the Gaussian process latent variable model (GPLVM) and the Support Vector Machine (SVM). The data dimensions were reduced remarkably, while at the same time improving the performance of SVM classifiers. For the purpose of nonlinear low dimensional embedding of sample datasets, GPLVM provides a smooth probabilistic mapping from latent to data space. According to the feedback results of SVM, the renewed ladder dimension was calculated and the input data was adjusted dynamically. The proposed approach was applied to four benchmark problems, and the simulation results show its validity. Key words: GPLVM; SVM; pattern classification; ladder jumping dimension reduction 引 言模式分类是模式识别中的一项重要内容 ,也是处理许多其它问题的核心。用于模式分类的方法很多 ,传统的模式分类方法主要基于统计分析理论, 如 Bayesian 方法、Fisher 判别、K 近邻分类等。近年来复杂非线性高维数据分析、处理的需要则促进了神经网络、模糊推理及支持向量机等方法的研究与应用[1] 。其中支持向量机的理论基础是V apnik [2, 3] 等提出的统计学习理论,采用结构风险最小化准则 ,在最小化样本点误差的同时,缩小模型泛化误差的上界,即最小化模型的结构风险,从而提高了模型的泛化能力。支持向量机方法的分类性能受特征空间的选择影响较大,在很多应用领域中数据包含大量的特征,过高的特征维数使得训练及分类的速度变慢,同时也会使分类的正确率下降。 主成分分析(PCA)是目前广泛应用的一种降维方法,将多个变量化为少数几个互不相关的主成分,从而描述数据集的内部结构。高斯过程潜变量模型(GPLVM)[4-6]由Lawrence 于2004年提出,是一种新的无监督非线性数据降维方法,实现概率非线性的主成分分析。本文在GPLVM 的基础上,结合支持向量机提出了一种阶梯跳跃式降维的方法,对样本进行动态调整,支持向量机做为分类器迭代计算模型的性能评价标准和最后的分类结果。在UCI 标杆数据集上进行了 收稿日期:2008-01-02 修回日期:2008-07-23 作者简介:田江(1979-), 男, 河北唐山人, 博士生, 研究方向为数据挖掘等;顾宏(1961-), 辽宁大连人, 教授, 博导, 研究方向为数据挖掘, 移动商务等。 相关的仿真实验,实验结果表明了该方法可以获得最优的特征子集,有效的提高了分类的正确率,证明了方法的有效性。 1 高斯过程潜变量模型 高斯过程潜变量模型(GPLVM)[4-6]是一个完全概率非线性的实现主成分分析的潜变量模型。对主成分分析进行概率解释,写成一组具有线性协方差方程的高斯过程的积形式。 设d 维观测数据集记为: 11[,:,...,,:][:,,...,:,]T n d n d Y y y y y ×==∈? 设q 维潜变量数据集记为 11[,:,...,,:][:,,...,:,]T n q n q X x x x x ×==∈? 概率PCA [7]是一个简单的潜变量模型,给出了观测数据y 和潜变量x 之间的关系,它利用低维的潜变量来表示高维 观测数据,具体描述的是线性关系: ,:,:,:i i i y Wx η=+ (1) 其中d q W ×∈?是映射矩阵,噪声向量,:i η服从于均值为0,方差为2I σ的正态分布。 将潜变量同观测数据联系起来,假定各数据相互独立,令条件概率为: 2,:,:1 (|,)(|,)n i i i p Y X W N y Wx I σ==Π (2) 定义潜变量的高斯先验分布表示为: ,:1 ()(|0,)n i i p X N x I ==Π (3) ,:1(|)(|0,)n i i p Y W N y C ==Π (4)

相关文档
最新文档